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COMPACT IMAGES OF SPACES WITH A

WEAKER METRIC TOPOLOGY

Peng-fei Yan, Guangdong, Cheng Lü, Anhui

(Received September 20, 2006)

Abstract. If X is a space that can be mapped onto a metric space by a one-to-one
mapping, then X is said to have a weaker metric topology.

In this paper, we give characterizations of sequence-covering compact images and
sequentially-quotient compact images of spaces with a weaker metric topology. The main
results are that

(1) Y is a sequence-covering compact image of a space with a weaker metric topology if
and only if Y has a sequence {Fi}i∈N of point-finite cs-covers such that

⋂

i∈N

st(y,Fi) = {y}
for each y ∈ Y .

(2) Y is a sequentially-quotient compact image of a space with a weaker metric topology if
and only if Y has a sequence {Fi}i∈N of point-finite cs∗-covers such that

⋂

i∈N

st(y,Fi) = {y}
for each y ∈ Y .

Keywords: sequence-covering mappings, sequentially-quotient mappings, compact map-
pings, weaker metric topology
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1. Introduction

Since A. V.Arhangel’skii published the famous paper “Mappings and spaces“ in

1966 ([1]), the behavior of certain images (including some compact images) on metric

spaces has attracted considerable attention, and some noticeable results have been

obtained ([4], [7], [16]). In recent years, a number of topologists use sequence-covering

mappings to systematically study metric spaces and generalized metric spaces ([6],

[8], [10], [11], [12], [13], [14], [15], [17]). Especially, J. Chaber investigated the class

of spaces that can be mapped onto metric spaces by a mapping with fibers having

Supported by the NNSF(10471084) of China.

921



a given property P in [2]. These inspire us to discuss spaces with a weaker met-

ric topology and characterize sequence-covering compact images and sequentially-

quotient compact images of the class of spaces.

Throughout this paper, all spaces are considered to be regular and T1, and all

mappings are continuous and onto. N denotes the set of all natural numbers. Let

A be a subset of a space X , x ∈ X , and U be a family of subsets of X . We write

st(x, U ) =
⋃
{U ∈ U : x ∈ U} and st(A, U ) =

⋃
{U ∈ U : U ∩ A 6= ∅}. For a

product space
∏

n∈N

Xn and some m ∈ N, the symbol πm :
∏

n∈N

Xn → Xm denotes the

projection of
∏

n∈N

Xn onto its m-th coordinate.

First, recall some basic definitions. For terms which are not defined here, please

refer to [3] and [9].

Definition 1 [5]. Let X be a space and x ∈ P ⊂ X . P is said to be a sequential

neighborhood of x, if every sequence {xn}n∈N converging to x is eventually in P ; i.e.,

there is k ∈ N such that xn ∈ P for n > k.

Definition 2 [9]. Let f : X → Y be a mapping.

(1) f is compact, if each f−1(y) is compact.

(2) f is sequence-covering, if for every convergent sequence S in Y , there is a

convergent sequence L in X such that f(L) = S.

(3) f is sequentially-quotient, if for every convergent sequence S in Y , there is a

convergent sequence L in X such that f(L) is an infinite subsequence of S.

(4) f is 1-sequence-covering, if for each y ∈ Y , there is x ∈ f−1(y) such that

whenever {yn} is a sequence converging to y in Y there is a sequence {xn} converging

to x in X with each xn ∈ f−1(yn).

Definition 3 [9]. Let X be a space, and let P be a cover of X .

(1) P is a cs-cover of X , if for any convergent sequence S in X , there exists

P ∈ P such that S is eventually in P .

(2) P is a cs∗-cover of X , if for any convergent sequence S in X , there exists

P ∈ P such that some subsequence of S is eventually in P .

(3) P is an sn-cover of X , if each element of P is a sequential neighborhood

of some point of X and for each x ∈ X , there exists P ∈ P such that P is the

sequential neighborhood of x.

Definition 4 [2]. If X is a space that can be mapped onto a metric space by a

one-to-one mapping, then X has a weaker metric topology.
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2. Main results

Lemma 1. Let X be a space with a weaker metric topology. Then there is a

sequence {Pi}i∈N of locally finite open covers of X such that
⋂

i∈N

st(K, Pi) = K for

each compact subset K ⊂ X .

P r o o f. Suppose f : X → M is a one-to-one mapping, M being a metric

space. There is a sequence {Ui}i∈N of locally finite open covers in M such that

{st(L, Ui)}i∈N is a neighborhood base of L for each compact subset L ⊂ M . For

each i ∈ N, put Pi = f−1(Ui) in X . Then Pi is a locally finite open cover. Notice

that any compact subset K ⊂ X is a compact set of M . Thus,
⋂

i∈N

st(K, Pi) =
⋂

i∈N

st(K, Ui) = K. The lemma holds. �

Theorem 2. The following conditions are equivalent for a space Y :

(1) Y is a 1-sequence-covering compact image of a space with a weaker metric

topology.

(2) Y is a sequence-covering compact image of a space with a weaker metric topol-

ogy.

(3) Y has a sequence {Fi}i∈N of point-finite sn-covers such that
⋂

i∈N

st(y, Fi) = {y}

for each y ∈ Y .

(4) Y has a sequence {Fi}i∈N of point-finite cs-covers such that
⋂

i∈N

st(y, Fi) = {y}

for each y ∈ Y .

P r o o f. (1) ⇒ (2), (3) ⇒ (4) Obvious.

(2) ⇒ (4) Suppose f : X → Y is a sequence-covering compact mapping, here X

being a space with a weaker metric topology. There is a sequence {Pi}i∈N of locally

finite open covers of X such that
⋂

i∈N

st(K, Pi) = K for each compact subset K ⊂ X

by Lemma 1. For each i ∈ N, put Fi = f(Pi). f is compact, so each Fi is a

point-finite cover of Y . Let S be a convergent sequence in Y containing its limit

point y0. f is sequence-covering, so there is a convergent sequence L in X containing

its limit point x0 such that f(L) = S. Each Pi is an open cover of X ; there is

P ∈ Pi such that x0 ∈ P , so L is eventually in P . Thus, S = f(L) is eventually

in F = f(P ) ∈ Fi. Hence each Fi is a cs-cover of Y . For each y ∈ Y , f−1(y) is a

compact subset of X and
⋂

i∈N

st(f−1(y), Pi) = f−1(y). Thus
⋂

i∈N

st(y, Fi) = {y}.

(4) ⇒ (3) It suffices to show that whenever F is a cs-cover of Y , there exists

F ′ ⊂ F which is an sn-cover of Y . Notice that F is point-finite. For each y ∈ Y ,

put (F )y = {F : y ∈ F, F ∈ F} = {Fj : j 6 k}. If each element of (F )y is not the

sequential neighborhood of y, then there is a sequence {yjn} converging to y in Y \Fj
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for each j 6 k. For each n ∈ N, j ∈ K, put zj+(n−1)k = yjn. Then the sequence {zm}

is still converging to y, but not eventually in Fj for each j 6 k, contradicting that

F is a cs-cover of Y . Thus there exists Fy ∈ F which is a sequential neighborhood

of y in Y . Then F ′ = {Fy : y ∈ Y } ⊂ F is a point-finite sn-cover of Y .

(3) ⇒ (1) For each i ∈ N, put Fi = {Fα : α ∈ Λi}. Each Λi is endowed with

discrete topology. Let M = {{αi} ∈
∏

i∈N

Λi: there is y ∈ Y such that
⋂

i∈N

Fαi
= {y}}

and give M the subspace topology induced from the usual product topology. Then

M is a metric space. Let X = {(y, {αi}) ∈ Y ×M : y ∈
⋂

i∈N

Fαi
}. Let f and p be the

restrictions to X of the projections of Y × M onto Y and M . For each {αi} ∈ M ,

there is y ∈ Y such that
⋂

i∈N

Fαi
= {y}. Then p−1({αi}) = (y, {αi}), and p is a

one-to-one mapping. Thus X is a space with a weaker metric topology. As Fi is a

point-finite cover of Y for each i ∈ N, it is easy to show that f is a compact mapping.

Next we prove that f is a 1-sequence-covering mapping.

Take y0 ∈ Y . For each i ∈ N, choose αi ∈ Λi such that Fαi
is a sequential

neighborhood of y0. Let β0 = (y0, {αi}) ∈ Y ×
∏

i∈N

Λi. Then β0 ∈ f−1(y0) ⊂ Y ×M .

If {yn}n∈N is a sequence in Y converging to y0, then {yn}n∈N is eventually in Fαi
for

each i ∈ N. For each n ∈ N, if yn ∈ Fαi
, define αin = αi; if yn /∈ Fαi

, take αin ∈ Λi

such that yn ∈ Fαin
. Thereby, there exists ni ∈ N such that αin = αi when n > ni.

Thus the sequence {αin}n∈N is converging to αi in Λi. Put βn = (yn, {αin}) for each

n ∈ N. Then f(βn) = yn and the sequence {βn}n∈N is converging to β0 in X . So f

is a 1-sequence-covering mapping. �

Theorem 3. The following conditions are equivalent for a space Y :

(1) Y is a sequentially-quotient compact image of a space with a weaker metric

topology.

(2) Y has a sequence {Fi}i∈N of point-finite cs∗-covers such that
⋂

i∈N

st(y, Fi) = {y}

for each y ∈ Y .

P r o o f. (1) ⇒ (2) Suppose f : X → Y is a sequentially-quotient compact

mapping, here X being a space with a weaker metric topology. There is a sequence

{Pi}i∈N of locally finite open covers of X and {Fi}i∈N = {f(Pi)}i∈N is a sequence

of point-finite covers such that
⋂

i∈N

st(y, Fi) = {y} for each y ∈ Y (see the proof of

(2) ⇒ (4) in Theorem 2). We show that each Fi is a cs∗-cover of Y .

Let S be a convergent sequence in Y containing its limit point y0. f is sequentially-

quotient, so there is a convergent sequence L in X containing its limit point x0 such

that f(L) is an infinite subsequence of S. As each Pi is an open cover of X , there

is P ∈ Pi such that x0 ∈ P . So L is eventually in P and f(L) is eventually in

F = f(P ) ∈ Fi. Hence each Fi is a cs∗-cover of Y.
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(2) ⇒ (1) For each i ∈ N, put Fi = {Fα : α ∈ Λi}. Each Λi is endowed with

discrete topology. Let M = {{αi} ∈
∏

i∈N

Λi: there is y ∈ Y such that
⋂

i∈N

Fαi
= {y}}

and give M the subspace topology induced from the usual product topology. Then

M is a metric space. Let X = {(y, {αi}) ∈ Y × M : y ∈
⋂

i∈N

Fαi
}. Let f and p be

the restrictions to X of the projections of Y ×M onto Y and M . From the proof of

Theorem 2, X is a space with a weaker metric topology and f is a compact mapping.

It is sufficient to show that f is a sequentially-quotient mapping.

Let {yn}n∈N be a sequence converging to y0 in Y . Without loss of generality,

suppose yn 6= y0 for each n ∈ N. AsF1 is a cs∗-cover of Y , there exists a subsequence

T1 of {yn}n∈N and α1 ∈ Λ1 such that T1 is eventually in Fα1
. Inductively, for each

i ∈ N we can choose Ti and αi ∈ Λi such that Ti+1 is a subsequence of Ti and Ti is

eventually in Fαi
. Thus Ti ⊂

⋂

k6i

Fαk
. Take yni

∈ Ti and βi ∈ f−1(yni
) such that

ni < ni+1 and that πk(βi) = αk−1 when 1 < k 6 i + 1. Thus lim
i→∞

πk(βi) = αk−1.

Put β0 = (y0, {αi}). Then the sequence {βi}i∈N is converging to β0 in X . Thus f is

a sequentially-quotient mapping. �
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