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Abstract. The open neighborhood NG(e) of an edge e in a graph G is the set consisting
of all edges having a common end-vertex with e. Let f be a function on E(G), the edge set
of G, into the set {−1, 1}. If

∑

x∈NG(e)

f(x) > 1 for each e ∈ E(G), then f is called a signed

edge total dominating function of G. The minimum of the values
∑

e∈E(G)

f(e), taken over

all signed edge total dominating function f of G, is called the signed edge total domination
number of G and is denoted by γ′

st(G). Obviously, γ′

st(G) is defined only for graphs G
which have no connected components isomorphic to K2. In this paper we present some
lower bounds for γ′

st(G). In particular, we prove that γ′

st(T ) > 2−m/3 for every tree T of
size m > 2. We also classify all trees T with γ′

st(T ) = 2− m/3.

Keywords: signed edge domination, signed edge total dominating function, signed edge
total domination number

MSC 2010 : 05C69, 05C05

1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). We use [2] for ter-

minology and notation which are not defined here and consider simple connected

graphs only. Two edges e1, e2 of G are called adjacent if they are distinct and have

a common end-vertex. The open neighborhood NG(e) of an edge e ∈ E(G) is the

set of all edges adjacent to e. Its closed neighborhood is NG[e] = NG(e) ∪ {e}. For

a function f : E(G) −→ {−1, 1} and a subset S of E(G) we define f(S) =
∑

e∈S

f(e).

The edge-neighborhood EG(v) of a vertex v ∈ V (G) is the set of all edges at the
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vertex v. For each vertex v ∈ V (G) we also define f(v) =
∑

e∈EG(v)

f(e). A function

f : E(G) −→ {−1, 1} is called a signed edge total dominating function (SETDF)

of G, if f(NG(e)) > 1 for each edge e ∈ E(G). It is clear that there exists an

SETDF only for graphs G which have no connected components isomorphic to K2.

Throughout this paper we assume G is a simple connected graph of order n > 3.

The minimum of the values f(E(G)), taken over all signed edge total dominating

functions f of G, is called the signed edge total domination number of G. The signed

edge total domination number was introduced by B. Zelinka in [5] and denoted by

γ′

st(G). The signed edge total dominating function f of G with f(E(G)) = γ′

st(G) is

called the γ′

st(G)-function.

Similarly, a function f : E(G) −→ {−1, 1} is called a signed edge dominating

function (SEDF) of G, if f(NG[e]) > 1 for each edge e ∈ E(G). The minimum of

the values f(E(G)), taken over all signed edge dominating functions f of G, is called

the signed edge domination number of G. The signed edge domination number was

introduced by B. Xu in [3] and denoted by γ′

s(G).

Here are some well-known results on γ′

s(G) and γ′

st(G).

Theorem A [1], [4]. For every tree T of order n > 2, γ′

s(T ) > 1.

Theorem B [5]. Let G be a graph with m edges and with no K2-components.

Then γ′

st(G) ≡ m (mod 2).

Theorem C [5]. Let Pm be a path of length m > 2. Then γ′

st(Pm) = m.

Theorem D [5]. Let Cm be a cycle of length m > 3. Then γ′

st(Cm) = m.

Theorem E [5]. Let T be a star with m > 2 edges. If m is odd, then γ′

st(T ) = 3.

If m is even, then γ′

st(T ) = 2.

The following terminology and notation are useful to prove our results. A graph

G with an SETDF f of G, denoted by (G, f), is called a signed total graph. For

simplicity, given a signed total graph (G, f), an edge e is said to be a +1 edge of (G, f)

if f(e) = 1. Similarly, an edge e is said to be a −1 edge of (G, f) if f(e) = −1. We

write E+(G, f) = {e ∈ E(G) ; f(e) = 1} and E−(G, f) = {e ∈ E(G) ; f(e) = −1}.

For any signed total graph (G, f), the two spanning subgraphs G+(f) and G−(f)

of G are defined as V (G+(f)) = V (G−(f)) = V (G) and E(G+(f)) = E+(G, f) and

E(G−(f)) = E−(G, f). For every vertex v ∈ V (G) we have f(v) = degG+(f)(v) −

degG−(f)(v).

596



2. A lower bound for SETDN of trees

In this section we study the signed edge total domination number of trees. We first

prove that for every tree T of size m > 2, γ′

st(T ) > 2 − m/3. Then we characterize

all trees T for which γ′

st(T ) = 2 − m/3.

Theorem 1. For every tree T of size m > 2, γ′

st(T ) > 2 − m/3.

P r o o f. The proof is by induction on m. The statement holds for all trees of

size m = 2, 3, 4. Assume T is an arbitrary tree of size m > 5 and that the statement

holds for all trees with smaller sizes. Let f be a γ′

st-function of T . We consider two

cases.

C a s e 1. There is a non-pendant edge e = uv ∈ E for which f(e) = −1.

Let T1 and T2 be the connected components of T − e with u ∈ T1 and v ∈ T2.

Obviously, the sizes of T1 and T2 are greater than 1 and γ′

st(T ) = f(E(T1)) − 1 +

f(E(T2)). For i = 1, 2, the function f , restricted to Ti, is an SETDF of Ti, hence,

γ′

st(Ti) 6 f(E(Ti)). By the inductive hypothesis, γ
′

st(Ti) > 2 − mi/3, where mi is

the size of Ti. Thus

(1) γ′

ts(T ) > −1 + (2 − m1/3) + (2 − m2/3) = 3 − (m − 1)/3 > 2 − m/3.

C a s e 2. The only edges e for which f(e) = −1 are pendant edges.

By assumption we have f(v) > 0 for each v ∈ V (T ) with deg(v) > 2. Let

Z = {v ∈ V (T ) ; deg(v) > 2 and f(v) = 0}. First, let Z = ∅. Then f is an SEDF of

T . Since m > 5, by Theorem A we have

(2) γ′

st(T ) = f(E(T )) > γ′

s(T ) > 1 > 2 − m/3.

Let Z 6= ∅. It is easy to see that Z is an independent set in T . Let Z = {ui ; 1 6

i 6 k}. Obviously, there is no +1 pendant edge at ui for each i. Let N ′(ui) = {u ∈

N(ui) ; deg(u) > 2}. Let first |N ′(ui)| > 2 for some i. Without loss of generality

we may assume |N ′(u1)| > 2 and v1, v2 ∈ N ′(u1). Let T1 and T2 be the connected

components of T −u1v1 for which v1 ∈ V (T1). Let T
′

1 be obtained from T1 by adding

a new pendant edge v1w1 and let T ′

2 be obtained from T2 by deleting one of the −1

pendant edges at u1. Now define g1 : E(T ′

1) −→ {−1, +1} by

g(v1w1) = +1 and g(e) = f(e) if e ∈ E(T1).

Obviously, g is an SETDF of T ′

1 and f |T ′

2
is an SETDF of T ′

2. By the inductive

hypothesis, γ′

st(T
′

i ) > 2 − mi/3, where mi is the size of T ′

i and m1 + m2 = m − 1.
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Thus

(3) γ′

st(T ) = f(E(T )) = g(E(T ′

1)) + f |T ′

2
(E(T ′

2)) − 1

> −1 + (2 − m1/3) + (2 − m2/3)

> 2 − m/3.

Now let |N ′(ui)| = 1 and N ′(ui) = {vi} for 1 6 i 6 k. It is clear that f(vi) > 3 for

each i. Let T ′ be obtained from T by deleting all leaves and the vertices of Z. Then

since |N ′(ui)| = 1 for each i, T ′ is a tree. Let w ∈ {v1, v2, . . . , vk}. Hence, f(w) > 3

and deg(w) > 3. We consider three subcases.

S u b c a s e 2.1. degT ′(w) > 1, e = ww1 ∈ E(T ′) and f(w1) = 1 in T .

By the construction of T ′ we have degT (w1) > 2. Since f(w1) = 1 and each edge

at w1 in T ′ is a +1 edge, there exists a pendant edge e′ in T at w1. Let T1 and T2 be

the connected components of T −e containing w, w1, respectively. Let T
′

1 be obtained

from T1 by adding a new pendant edge ww′ at w and T ′

2 = T2 − e′. It is easy to see

that the sizes of T ′

1 and T ′

2 are greater than 1. Define g1 : E(T ′

1) −→ {−1, +1} by

g(ww′) = 1 and g(e) = f(e) if e ∈ E(T1).

Obviously, g and f |T ′

2
are SETDFs of T ′

1 and T ′

2, respectively. By the inductive

hypothesis, γ′

st(T
′

i ) > 2 − mi/3 where mi is the size of T ′

i and m1 + m2 = m − 1.

Thus

(4) γ′

st(T ) = f(E(T )) = g(E(T ′

1)) + f |T ′

2
(E(T ′

2)) − 1 > 2 − m/3.

S u b c a s e 2.2. degT ′(w) > 1, e = ww1 ∈ E(T ′) and f(w1) > 2 in T .

Let T1 and T2 be the connected components of T − e. Let T ′

1 and T ′

2 be obtained

from T1 and T2 by adding new pendant edges ww′ and w1w
′

1, respectively. Define

g1 : E(T ′

1) −→ {−1, +1} by

g(ww′) = 1 and g(e) = f(e) if e ∈ E(T1),

and g2 : E(T ′

2) −→ {−1, +1} by

g(w1w
′

1) = 1 and g(e) = f(e) if e ∈ E(T2).

Obviously, gi is an SETDF of T ′

i for i = 1, 2. Let mi = |E(T ′

i )|. Then we have

m1 + m2 = m + 1. By the inductive hypothesis,

(5) γ′

st(T ) = f(E(T )) = g1(E(T ′

1)) + g2(E(T ′

2)) − 1 > 2 − m/3.
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S u b c a s e 2.3. degT ′(w) = 0.

This implies that wui ∈ E(T ) for each 1 6 i 6 k. If there exist two pendant

edges at w, say e′, e′′, such that f(e′) = −1 and f(e′′) = 1, then using the inductive

hypothesis on T − {e′, e′′} we have

(6) γ′

st(T ) > 2 − (m − 2)/3 > 2 − m/3.

Finally, let f assign −1 to all pendant edges at w and let r be the number of pendant

edges at w. By assumption k − r = f(w) > 3. Furthermore, since f(ui) = 0, there

exists a pendant edge uivi for each i. Therefore, m > 2k+ r and hence, r 6 m/3−2.

On the other hand, we have γ′

st(T ) = −r. Therefore, γ′

st(T ) > 2 − m/3. This

completes the proof. �

Now we characterize all trees that attain this bound. We use the notation of

Theorem 1.

Theorem 2. Let T = (V, E) be a tree of size m > 2. Then γ′

st(T ) = 2 − m/3

if and only if V = {w, ui, vi, wj ; 1 6 i 6 k, k > 3 and 1 6 j 6 k − 3}, and

E(T ) = {wwj , wui, uivi ; 1 6 i 6 k and 1 6 j 6 k − 3}.

P r o o f. Let γ′

st(T ) = 2 − m/3. Obviously, m ≡ 0 (mod 3). By Theorems C, D

and E we must have m > 6. Let f be a γ′

st-function of T . By (1), f must assign 1 to

all non-pendant edges of T . Obviously, f(v) > 0 for each v ∈ V (T ) with deg(v) > 2.

By (2), we have Z 6= ∅. Let Z = {ui ; 1 6 i 6 k}. Obviously, there is no +1 pendant

edge at ui for each i and Z is an independent set of T . By (3), |N ′(ui)| = 1 for each

i. Since f(ui) = 0, there exists precisely one pendant edge at ui, hence deg(ui) = 2

for each i. By (4) and (5), the subtree T ′ of T is of order one. Let w ∈ T ′. Then

w ∈ ∩k
i=1N

′(ui). By (6), f assigns −1 to all pendant edges at w. Let r be the

number of pendant edges at w. Then we have 2− (2k+ r)/3 = f(E(T )) = −r, which

implies r = k − 3 and k > 3.

Conversely, let G be a graph with the structure described in the theorem. By

Theorem 1 we have γ′

st(G) > 2 − (3k − 3)/3. Define g : E(T ) −→ {−1, +1} by

g(wui) = 1, g(uivi) = −1 (1 6 i 6 k) and g(wwj) = −1 (1 6 j 6 k − 3).

Obviously, g is an SETDF of T and g(E(T )) = 2 − (3k − 3)/3. This completes the

proof. �
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3. Lower bounds

In this section we find some lower bounds for signed edge total domination numbers

of simple connected graphs. Let G be a simple connected graph of order n and

size m > 2. For every edge e = uv ∈ V (G), the degree of e, d(e), is defined by

d(e) = deg(u) + deg(v) − 2. First we present a lower bound in terms of n, m, δ

and ∆.

Theorem 3. For every simple connected graph of order n > 3, size m and δ > 2,

γ′

st(G) >

⌈m − (∆ − δ)(∆ − 1)(n − δ)

2(∆ − 1)

⌉

.

P r o o f. Let f be a γ′

st-function of G. We have

(7) 2γ′

st(G) = 2f(E(T ) = 2(|E+(G, f)| − |E−(G, f)|)

=
∑

u∈V (G+(f))

degG+(f)(u) −
∑

u∈V (G−(f))

degG−(f)(u)

=
∑

u∈V (G)

f(u).

For uv ∈ E(G) we have f(u) + f(v) − 2f(uv) > 1. Therefore

(8) m + 2γ′

st(G) 6
∑

uv∈E(G)

(f(u) + f(v) − 2f(uv)) + 2
∑

uv∈E(G)

f(uv)

=
∑

uv∈E(G)

(f(u) + f(v))

=
∑

u∈V (G)

f(u) degG(u).

Let B1 = {u ∈ V (G) ; f(u) > 1}, B2 = {u ∈ V (G) ; f(u) 6 −1} and B3 = {u ∈

V (G) ; f(u) = 0}. Obviously, for each u ∈ B2 we have NG(u) ⊆ B1 ∪ B3. Hence,

(9) δ 6 |NG(u)| 6 |B1| + |B3| = n − |B2|.
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Thus by (7) and (8) we have

m + 2γ′

st(G) 6
∑

u∈V (G)

f(u) degG(u)

=
∑

u∈B1

f(u) degG(u) +
∑

u∈B2

f(u) degG(u)

6 ∆
∑

u∈B1

f(u) + δ
∑

u∈B2

f(u)

= ∆
∑

u∈V (G)

f(u) + (δ − ∆)
∑

u∈B2

f(u)

= 2∆γ′

st(G) + (δ − ∆)
∑

u∈B2

f(u).

Hence,

(10) 2(∆ − 1)γ′

st(G) > m + (∆ − δ)
∑

u∈B2

f(u).

Now for each u ∈ B2 there exists v ∈ NG(u) such that f(uv) = −1. So we have

f(u)+f(v) > 1+2f(uv) = −1. Since f(v) 6 ∆−2, it follows that f(u) > −(∆−1).

Using (9) and (10) we have 2(∆ − 1)γ′

st(G) > m − (∆ − δ)(n − δ)(∆ − 1). Now the

result follows. �

The following result is an immediate consequence of Theorem 3.

Corollary 4. For every simple k-regular graph G with k > 2, γ′

st(G) > ⌈ 1
2m×

(k − 1)⌉.

Theorem 5. For every simple connected graph G with 2 6 δ 6 ∆ 6 4,

γ′

st(G) > 0.

P r o o f. Let f be a γ′

st-function of G. Since 2 6 δ 6 ∆ 6 4, we have |NG(e) ∩

E+(G, f)| > 2 and |NG(e) ∩ E−(G, f)| 6 2. Now it is clear that

2|E−(G, f)| 6
∑

e∈E−(G,f)

|NG(e) ∩ E+(G, f)|

=
∑

e∈E+(G,f)

|NG(e) ∩ E−(G, f)|

6 2|E+(G, f)|.

Thus |E−(G, f)| 6 |E+(G, f)| and hence, γ′

st(G) = |E+(G, f)| − |E−(G, f)| > 0.

�
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Theorem 6. For every simple connected graph G of order n > 3 and size m,

γ′

st(G) > m
( 2m

n(∆ − 1)
−

εo

2m(∆ − 1)
− 1

)

where εo is the number of edges of odd degree. Furthermore, this bound is sharp.

P r o o f. Let A be the set of edges of even degree. It is easy to see that if

uv ∈ A, then |NG(e) ∩ E+(G, f)| > 1
2 (deg(u) + deg(v)) and if e ∈ E(G) \ A, then

|NG(e) ∩ E+(G, f)| > 1
2 (deg(u) + deg(v) − 1). Thus

∑

uv∈E(G)

|N(e) ∩ E+(G, f)| >
1

2

∑

uv∈E(G)

(deg(u) + deg(v)) −
1

2
εo

=
1

2

∑

u∈V (G)

deg(u)2 −
1

2
εo

>
1

2n

(

∑

u∈V (G)

deg(u)

)2

−
1

2
εo

=
2m2

n
−

1

2
εo.

On the other hand,

2(∆ − 1)|E+(G, f)| >
∑

e∈E+(G,f)

|NG(e)|

=
∑

e∈E+(G,f)

(|NG(e) ∩ E+(G, f)| + |NG(e) ∩ E−(G, f)|)

=
∑

e∈E+(G,f)

|NG(e) ∩ E+(G, f)| +
∑

e∈E+(G,f)

|NG(e) ∩ E−(G, f)|

=
∑

e∈E+(G,f)

|NG(e) ∩ E+(G, f)| +
∑

e∈E−(G,f)

|NG(e) ∩ E+(G, f)|

=
∑

e∈E(G)

|NG(e) ∩ E+(G, f)|.

Therefore |E+(G, f)| >
m2

n(∆ − 1)
−

εo

4(∆ − 1)
. This implies that

γ′

st(G) = 2|E+(G, f)| − m > m
( 2m

n(∆ − 1)
−

εo

2m(∆ − 1)
− 1

)

.

Theorem D shows that this bound is sharp and the proof is complete. �
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