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THE COMPLEXITY OF UNIFORM DISTRIBUTION 

MARTIN GOLDSTERN1 

(Communicated by Stanislav Jakubec) 

ABSTRACT. We investigate the notion of testable sequence which was proposed 
in [3], and we show that the set of uniformly distributed sequences is n^-complete, 
hence not refutable. 

0. In troduc t ion 

In [3], W i n k l e r discussed various properties of pseudorandom sequences 
and how to "test" them. The purpose of this paper is to characterize this testabil­
ity in the more familiar terms of the Borel hierarchy, and to answer two questions 
left open by [3] for the case of finite measure spaces. 

Let X be a finite set, and \± be a probability measure on X. To simplify 
the notation and to exclude trivialities, we assume that all singletons of X are 
measurable and have positive measure. Let nX and ^X be furnished with the 
product measure. 

A test is a measurable function t: (J nX —> [0,1], where UJ — {0,1, 2 , . . . } . 
n£u> 

For x — (XQ,X\, ...) £ ^X, we write tn(x) for i ( # o , . . . , x n _ i ) . (See 0.1 for 
notation.) 

t is called a discrete test if all values of t are in {0,1} . 

The acceptance set of a test t is defined by 

I W : = { x e w I : lim in(x) = l} . 
n—+oo 

A set is testable if it is the acceptance set of some test, and a set is refutable 
if its complement is testable. 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 03D30. Secondary 11K06, 11B50, 
11U99. 
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A test t , or equivalently, its acceptance set Xtii, is called invariant, if Xt^\ 

has the property x G Xj,i if and only if x~ G -X^i, where 

x~ (the s/ii/t of x ) is defined by x~(n) = x(n + 1) for all n . 

t is generous if X^i has full measure. 

The above definitions are from [3], where also an extensive list of pointers to 
the relevant literature can be found. 

One of the questions left open in [3] is whether there are any nontrivial 
generous invariant tests on a finite set X. We show that there are many such 
tests; in fact, any null set can be refuted by some invariant generous test. This 
observation is due to Saharon Shelah. 

The motivation of [3] comes from the set 

U : = U e ш 2 : lim ^г < n : Xi ~ 
71—>00 

жч} 
of uniformly distributed sequences. It is clear that U is testable, but it was left 
open if U could be discretely testable, or refutable. 

The main result proved here is that U is njj-complete, that is, U is as 
complicated as any testable set can be. In particular, there is a (recursively 
defined) continuous function F : ^2 x ^2 —* "2 such that for every Fa$ set X 
there is a G ̂ 2 such that 

V x G w 2 : x G X <=> F ( x , a ) G U , 

i.e., every Fas set is a continuous preimage of U . Consequently, U is not 
refutable ( = S 3 ) . (This was to be expected; see, e.g., the relevant remark in 
[2; p. 330].) 

0 .1 . NOTATION. We use standard (set-theoretical) notation. 

cO = {0,1, 2 , . . . } is the set of natural numbers, and we identify each natural 
number with the set of its predecessors, n = {0,.. ., n — 1}. 

BA is the set of functions from S to j4. (By "function" we mean the graph 

of a function.) Occasionally we write functions / G nX or ^X as sequences 

( / o , . . . , / „ - i ) or ( / 0 , / i , . . . ) . We let <«"X = \J nX. 
n£u> 

If / G AB, A! C A, then we write / \ A! for the restriction of / to A! 
(so f\A'Cf). 

The cardinality of a set x is denoted by \x\. In particular, for / G nX we 
have l/l = n. 
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If n £ cO, t £ nX, x £ X , then t ^ x denotes the extension of t by x 
(i.e., Vx is a function with domain n + 1 = n U {n}, P x extends £ and 
(t^x)(n) = x). 

On any topological space, we let E? be the family of open sets and TH® the 
family of closed sets. .£2 a r e the Fa sets, II2 are the Gs sets, S3 the Gsa-
sets, e t c A ° := S^ VI IlJ are the clopen sets, e t c 

When a set R C <a ;2 defines in a natural way a subset of u2, then we denote 
this subset of w2 by R . Similarly, a function from ^2 to ^2 which is induced 
by a function F: <u2 -> <CJ2 will be called F . See 2.1 and 2.2. 

1. T h e complexity of t es tab l e sets 

It is clear that any discretely testable set must be a £2 set, i.e., a countable 
union of closed sets. Here we show that also the converse is true. 

The following two lemmas were pointed out by Shelah. 

1.1. FACT. If A C UX is a £2 se^ then there is a discrete test t such that 
A = Xttl. 

P r o o f. Let A — (J An, where each An is closed, and A0 C A\ C . . . . For 
71 

s £ <0J2 let 
n(s) — minjfc : 3x £ A^ s C x} 

(and n(s) -= 00 if no such x £ A exists). Then we have 

(1) For each x £ u2 the sequence (n(x f k) : fc £ uo) is nondecreasing. 
(2) If x £ Ai, then this sequence is eventually constant with value < i. 
(3) If n(x \ k) = i < 00 for almost all k, then x £ Ai. 

(1) and (2) are clear. To show (3), let x \ k C x^ for almost all fc, where 
x& £ Ai. As A?- is closed, also x £ Ai. 

Now define £(s) = 1 if and only if |s| > 0 and n(s) = n(s \ (\s\ — 1)) < 00 . 

By ( l ) - ( 3 ) , x £ A if and only if (t(x. \ n) : n £ cO) is eventually equal to 1, 

i.e., if x £ X / j . 

As a consequence of 1.1 we get the following solution to Winkler's problem: 

1.2. COROLLARY. For any measure zero set A there is a generous discrete 
invariant test t such thai t refutes a superset of A, i.e., Ar\Xt^ = 0 . 

P r o o f . Let A be a measure zero set. Let A' be the smallest invariant set 
containing A . Then A1, as a countable union of measure zero sets, is still a mea­
sure zero set. Note that the measure on ^X is regular, i.e., we can approximate 
any measurable set with closed sets fronr below. So there is a closed set B of 
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positive measure disjoint from A', and let B' be the smallest invariant set con­
taining S . So B' still disjoint from A' , B' is a S 2 set, and by the well-known 
0-1-law, B' must have measure 1. So by 1.1, there is a discrete test t with 
Xt,i = B', and in particular t refutes a superset of A. 

We can similarly characterize testable sets: 

1.3. FACT. A is testable if and only if A is a II3 set. 

P r o o f . If A -= Xt,i for some test t, then 

A = {x : \fk 3n Vm > n : i (x \ m) > 1 - j j , 

so A is clearly I I 3 . 

To show the converse, it is enough to show that the family 

{Xt,o : t a test} 

is closed under countable intersections (where Xt o := {x £ ^X : lim t n (x ) = 0} 

— X i_ t , i ) . So let t o , . . •, t n , . . . be tests. Then it is easy to see that 

I \xtn,o = Xtio , 

where £ is defined by t(s) -- Yl n^,^ . 

We can summarize the relations described above in the following diagram, 
where arrows denote (proper) inclusions: 

testable = n ^ S 3 = refutable 

A 3 = testable and refutable 

discretely refutable = I I 2 S 2 = discretely testable 

A 2 = discretely testable 
and discretely refutable 
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2. U is a complete £ 3 set 

To simplify the notation (but really without loss of generality) we will in this 
section consider only the case where our finite discrete measure space X has 
only two elements of the same probability, so X = 2 = {0,1}. 

Recall that U is the set of uniformly distributed sequences in ^ 2 . Clearly U 
is II3 = Fas , hence testable. Is U refutable ( £ 3 , GsG ) or maybe even discretely 
testable ( E g , Fa)l 

We answer this question negatively by showing that U is in fact a complete 
II3 set. In particular, every II3 set is a continuous preimage of U , whereas it 
is well known (and easy to prove, see 2,3.(2)) that there are II3 sets which are 
not £ 3 , hence not a continuous preimage of any refutable set. 

2.1. NOTATION. The variables x and t will range over ^ 2 , x and t will range 
over <L02. If F : <L02 —» <UJ2 is weakly increasing, i.e., satisfies 

Xl C x2 => F(xx) C F(x2), 

and for all x £ ^2 the domain of (J F ( x \ n) is all of cO, then F naturally 
n£u> 

induces a continuous function from ^2 to ^ 2 , which we denote by F: 

F ( x ) = \jF(x\n) 
n£co 

Conversely, every continuous function F : ^2 -» ^2 is induced by such a function 
p: <^2 -> <LV2. 

2.2. M A I N T H E O R E M . 

(1) For every recursive relation R C u x to x tu x <LJ2 there is a recursive 
function F such that for all x E w 2 : 

Vk 3n Vra (fc, n, m, x \ m) e R ^==> F(x) G U . 

(We will write R for the set {x : Vk 3n Vm (fc, n,m,x \ m) G i?} .) 

(2) Moreover, the construction of F is uniform in R, that is: If R is a 
(recursive) relation, R(ZUJXUXUJX <LO2 X <L02, then there is a (recursive) 
function F: <UJ2x <^2 -» <UJ2 such that for all a G w 2 ; for all x G w 2 ; 

Vfc 3n Vm (fc, n, m, x f m, a \ m) e R ^=> F(x, a) € U . 
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2.3. C O N C L U S I O N . 

(1) Every Fa$ set is a continuous preimage of U . 

(2) U is not a Eg set. 

P r o o f . 

(1) There is a (recursive) relation R such that the set 

R := {(x, a) : VA: 3n Vm (fc, n, m, x \ m, a \ m) G i2} 

is a universal Il^-set, i.e., every II3 set is of the form 

R a := {x.eUJ2: V& 3n Vm (&, n, m, x f m, a f m) G R} 

for some a € w2. (Why? Any Ilg-set is of the form f| U f l { x : f(ki n > m ) = x } 
k m n 

for some function / : CVXLJXU; —> <u2. Let FI: UJXUJXUJX<UJ2 —» a; be a recursive 
bijection, and let a(^) = 1 if and only if £ is of the form H(k, n, m, /(&, n, m)) 
for some fc, n, m.) 

Now find F as in the theorem, let F a ( x ) := F ( x , a ) , then R a = F " 1 ^ ) . 
(2) If U were E § , then also {x : F ( x , x ) e U } would be Eg , so its 

complement would be II3 , so for some a would have 

( x : F ( x , x ) £ U } = { x : F ( x , a ) e U } , 

which is a contradiction. 

2.4. R e m a r k . The word "recursive" is not really necessary in the above the­
orem. It just emphasizes the fact that all constructions in the proof below (e.g., 
the computation of t' from t in fact 2.8) are effective. 

P r o o f o f t h e m a i n t h e o r e m . (We will prove only (1). (2) is 
similar - we just have to add a parameter a or a everywhere.) 

So fix a recursive relation i ? C c O x a ; x u ; x <UJ2. 

2.5. Fi rst Step. From x G w2 we can uniformly and recursively find a family 
(Ak(x) : k € u) of r.e. sets such that x € R if and only if Vfc Ak(x) is finite. 

We accomplish this as follows: 
We define a recursive function f: u x u x <U)2 —> UJ by 

/ *"ie * e a s t n < M such that Vm < M (k,n,m,x \ m) G R; 

\ M , if either \x\ < M or such an n as above does not exist. 
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Note that for given k and M , /(.fc, M,x) depends only on x f M , so we will 
abuse notation and write /(&, M , x ) for /(fc, M , x \ M) whenever x E w 2 . 

To explain the motivation for this definition, let us fix x and k. If there is 
an n such that 

Vra (fc, n, ra, x \ m) E R, 

then for all large enough values of M , /(fc,M, x) will be the minimal such n. 

Otherwise we will have /(fc, M, x) = M for infinitely many M . 

For x E <UJ2 let 

Afc(x) = {/(*, M , x ) : M < | x | } , 

and for x G w 2 let 

Afc(x) = {/(*, M , x ) : M<u>}=(jAk(x\n). 
n£u) 

By the above argument, we have for all x G w 2 : 

x G R <*=> Vfc .Afc(x) is finite. 

2.6. Second S t e p . From t E w2 we can uniformly and recursively find a family 

(J3fc(t) : k E cO) of r.e. sets such that t E U if and only if VA: Bk(t) is finite. 

For t E n2 let 

D(t) = 
\{i<n: t ( i ) = l } | 1 

n 2 
2. 

For t Є w 2 w e let 

Foг t Є ш 2 let 

D ( t ) = l imsupD( t ffc). 
k—>OQ 

Bfc(t) = {. < |t| : D(t\i)>T^-) 

(this definition makes sense also for t E <UJ2). 

Clearly, if Bk(t) is infinite, then D ( t ) > , 1 , and if jB^(t) is finite, then 

D(t) < . So t E U if and only if for all k the set Bk(t) is finite. 
AC "T~ 1 

Before we continue, we mention the following two facts: 

2.7. FACT. If D(t) = 0, and \t\ > k, \t\ > 0, then, letting tf := t ^ O ^ l we 
get: D(t') = 0 and Bk(t') = Bk(t). 
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2.8. FACT. / / D(t) = 0, \t\ > k, \t\ > 0 , n e w , then there is t' such that 

• tdt', 
• D(t') = 0, 
• \Bk(t')\ = \Bk(t)\ + n, 
• For all k' <k, Bk>(t') = Bk>(t). 

We will only hint at the (easy) proof of 2.8 with a picture. For some sequence 
x extending t and t' as in 2.8 we plot the function i i—• D(x \ i): 

D(x\i) 

2.9. T h i r d Step. Now we have prepared all the necessary notation for trans­
lating our general set R into the set U . We will find a strictly increasing 
recursive function F: <UJ2 x <UJ2 —> <UJ2 such that for the induced function 
F : "2 x ^2 -.- ^2 the following holds: 

• If for all k the set Ak(x.) is finite, then also all the sets Bk(F(x.)) will 
be finite. 

• If k* is the minimal k such that Ak(x) is infinite, then for all k > k* 

the set Bk(F(x.)) will be infinite. 

Let (ki : i E UJ) be a recursive enumeration of u in which each number 
occurs infinitely often. Also assume that for all i we have ki < i. 

We will define F by induction. We let F(0) be the 2-element sequence (0,1) . 
F will satisfy 

Vx E <UJ2 : D(F(x)) = 0 and \F(x)\ > \x\ . 

Let i := \y\ — 1, x := y \ i. We assume that F(x) is already defined, and we 
have to define F(y). We distinguish two cases: 

Case 1: \Aki(y)\ < \Bki(F(x))\. In this case we let F(y) = F(x)~0^l. 

So in this case we have: 

\Aki(y)\<\Bki(F(y))\, 

Bí(F(x)) = Be(F(y)) for £<\F(x)\. 

(1) 

(2) 
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(Note that ki < i — \x\ < \F(x)\, so equation (2) holds in particular for all 
i < i, and even more so for all i < ki.) 

Case 2: Otherwise. By 2.8, we can find F(y) D F(x) such that 

D(F(y))=0, 

\Akz(y)\<\Bki(F(y))\, (3) 

Be(F(y)) = Be(F(x)) for £ < k{. (4) 

2.10. Last Step. We have to check that F satisfies all the requirements. 

Clearly F is recursive, and strictly increasing, and it defines a function 
F : ^2 -> w 2 . We have to show x E R <=> F(x) G U . 

First consider x ^ R . So for some k the set Ak(x) is infinite. Since Ak(x) is 
the increasing union of the sets A(x \ i), this means that lim |-A&(x \ i)\ = oo . 

i—>-oo 

For infinitely many i (namely, for all numbers i for which k = ki) we have 
\Ak(x \ i+l)\ < \Bk(F(x \ i+l))\. Hence the set Bk(F(x)) will be infinite, so 
F(x) g U. 

Now let x G R . So for each i G to the set A£(x) is finite. This means that 
for each natural number i we can find a number je such that 

A£(x \ jt) = A£(x \ je+1) = ••• = A£(x). 

Moreover, (by increasing ji, if necessary) we may assume that j£ > max(^, ji-i) 
and that 

kje-i = i • 

Applying (1) and (3) to x := x \ j £ - 1, y := x \ je we get 

\Ai(x\j£)\<\Bi(F(x\h))\ 

and also (since the right side increases with increasing i while the left side stays 
constant) 

Vi>ji: \A£(x\i+l)\<\Be(F(x\i))\. (5) 

Now fix k. To show that Bk(x) is finite, it will be enough to show that the 
sequence (Bk(x \ i) : j k < i < oo) is constant. So let us fix / > j k . 

If k < ki, then it is clear from (2) and (4) that Bk(x \ i) = Bk(x \ i+1), so 
we may assume that k > ki. Let i := ki. So k > i, hence j k > je and therefore 
i > 3t- Hence, by (5), we have \A£(x \ i+l)\ < \B£(F(x \i))\. 

This means that F(x \ i+1) was defined in Case 1: F ( x \ i+1) = 
F(x \ i)^0^1. Since k < j k < i, the remark after equation (2) tells us 
that Bk(F(x \ i)) = Bk(F(x \ i+1)) , and we are done. 

This finishes the proof of 2.2 . 
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