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ON POSITIVE SOLUTIONS OF NONLINEAR 

RETARDED DIFFERENTIAL EQUATIONS 

RUDOLF OLAH 

ABSTRACT. In this paper there are given for nonlinear retarded differential 

equations */n*(l) --- / ( ^ , ? t ( r ( 0 ) ) the conditions of the absence and the existence 

of solutions that have the property 

( - l ) \ y ( 7 ) ( t ) > 0 for / > / , > ( ) ( i - 0 r t - 1 ) . 

We will consider the nonlinear differential equation with re tarded argument 

yin){t)=f(t,y{T(t))), (1) 

where / : R + x R —> R , R + = [0, oo) , and r : R + —> R arc continuous functions, 
T(t) < t for / > 0 , lim -(t) = oo. 

t—<-oo 

Below we will assume that there exist fi > 0 , A > 1 and a continuous function 
p: R+ —> R+ such tha t one of the next inequalities holds: 

( - i ) " / U y)>p(t)yx (2) 

for f G K + ! y G [0, 6] or 

0 < ( - l ) " / ( j , y)<p(t)yx (3) 

for < G R + , i/ G (0, <•>]. It is the well-known fact (see. e.g., [2. 4]) tha t if (2) 
holds, p(t) ^ 0 in any neighbourhood of oo and r(t) = t, then the equat ion 
(1) has a. solution y: [to, oo) —> R which satisfies the following conditions: 

(-iyy('}(t) > 0 for t > U > t0 > 0 , . = 0 , . . . , n - 1 , 
(4) 

0 < lim y(t) <6. 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34K25. Secondary 34K15. 
Key w o r d s : Differential equations, Nonlinear, Retarded, Positive solutions, Asymptotic 

properties. 
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If r(t) < t, then the solutions that satisfy (4) can be absent (see [3, 5]). 

In this paper such conditions will be established under which the equat ion 

(1) has not the solutions tha t satisfy (4) and likewise conditions tha t guarantee 

the existence of a solution which has the property (4) (cf. [3]). 

Let r : R+ —> R+ be continuous and increasing on [io, oo) , rjo G R-f , r(t) < t 
for t > to . 

For t > r~[(t\), t\ > to , we define the function 

J7l(t) — 777 , Xm < t < Xm+1 , 777 — 0, 1, . . . , 

where xo = r~[(t\), . rm+i = r~[{xm) and r~[(t) denotes the inverse function 
of r(t). 

We denote the 771 th i teration of the function r(t) = r0(t) as r m ( t ) , 777 = 

1 , 2 , . . . . Thus with regard to the function m(t) for arbi t rary t > r~[(t\) we 

have 

U < rm{t)(t) < r~[ (t\). 

T H E O R E M 1. Suppose that (2) holds for some S > 0 , A > 1 and 

r(t) < r(t) < t 

for t>t0, 

lim 
t—•00 

r-*(r (0 ) 

t 

/

r - i n - 1 

5 - r " Ҷ r ( ť ) ) p(5)d5 - O O . (5) 

Then the equation (1) has not a solution which satisfies ( 4 ) . 

P r o o f . Assume the contrary, i.e. the equation (1) has a solution t h a t sat­
isfies (4) and 

y(t) < 6 for t > t\ > t0 , 
(6) 

r(t) > t\ for t>t2>t\. 

F r o m t h e identity 

— 1 s 

y(t) = B - D ' ^ T ^ - 0 ' " + 7 7 ^ 7 /«"t)n->y(n\Od£, 

where 5 > t, with regard to (1), (2), (6) we have 

00 

y(t) > ^ ^ y j(s - ty^pis) [y(r(s))] " ds (7) 
t 
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ON POSITIVE SOLUTIONS OF NONLINEAR RETARDED DIFFERENTIAL EQUATIONS 

for t > t2 . We choose c > 0 such tha t 

p(s) ds > c(n — 1)! j [s-r-\r(t))Y~' 
r - l ( - (0) 

for t > ti and if for arbi t rary t > r _ 1 ( < 2 ) we take £ such tha t 

r(0 = Ht), r(s)<r(t) 

for s < £ , then according to (7), (8) we get 

y( 
ť ) - J^íy. J h r lHO)]n"'^)[yH^)) 

r-Чт(O) 

> ^J I [s- r~l (r(0)] " ' 'K^ da [У{r(t)) 

> c 

г-Ҷr(O) 

y{r(t))ì , r(t)>t2. 

Using the last inequality we find by iteration 

y(t) > C i+A+-+A" 

T h u s there follows: 

1 A*1 

y(rm(t))\, rm(t)>t2, m G { 0 } U N . 

y(t) > exp ] rA' lnc + Am+1lny(rm(ť)) 
L t = 0 

(8) 

r m ( ť ) > * 2 , rnЄ {0}UN. (9) 

For arb i t rary t > r l(t2) we define 

m(t) = m , xm < t < x m + 1 , m = 0 , 1 , . . . , 

x0 = r - 1 ( i 2 ) , x m + 1 = r~l(xm) 

a n d 

Cm(t) = sup i - 1 -i n - 1 
s - r l{т(t))\ p(s)ds>C, xm < t < x m + 1 > , 

г-Ҷr(ť)) 
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where m £ {0} U N , £0 = r ] (t2), x m + 1 = r l(xm) 

Hence we have 
*2 < r m ( 0 ( 0 < r - 1 ( * 2 ) 

for tf > r~l(t2) and by vir tue of (9), (10) we obtain 

r m(0 

;ю) 

y(ť) > exp J]A 1 lnC„ i ( 0 + A"l<') + , lny(r- , (í 2 ) ) 
L i = 0 

for t > r } (t2). Therefore y(t) —> oo as t —> oo and this contradicts (6). 

COROLLARY 1. Assume that for some S > 0, A > 1, (2) foo/ds anrf 

T 7 ( I ) < * /or 7 > 1 , * > *o , 

lim / [ s - т 7 ( ť ) ] " " V ( s ) d 3 = oo . 

rҶO 

TV&en t/ie equation (1) /las not a solution with the property (4). 

P r o o f . The assertion of the Corollary 1 follows from the Theorem 1 if we 

put r(t) =V~l . 

THEOREM 2. Suppose that for some t > 0. A > 1 (2) holds and 

r(t) < r(t) <t for t>t0, 

lim inf . . 
<-oo <p(т(t)) 

^ — ln J [s - v'1 {r(t))Y ip(s)ds>0, 

• » ( ' • ( « ) ) 

дm(t) 
lim inf 

t—юo nг(t) 

E AV(Г,(0) 
i=0 

= o, 

(12) 

(13) 

(14) 

where ip(t) is a continuous function such that 

lim ip(t) = oo. 
t—•oo 

Then the equation (1) /ia^ not a solution with the property (4). 

P r o o f . We continue as in the proof of Theorem 1. With regard to (12), 
(14) there is t2 > ô and c > 0 such that 

t 

-?— ln J [.-r-Ҷr(ť))]ПЛ(*) 
4>(т{t)) 

ds > 

r-Ҷr(()) 

ln(n - 1)! 

V(r(ť)) 
+ c 
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for t > 12 and if for arbitrary / > r - 1 ^ ) we take £ such that 

r(0 = r(t), r(s)<r(t) for s<(, 

we get 

[ 1 [ 1A 

y(t) > exp^cy>(r(£))J |y(r(r))j = exp 

Using the last inequality we find 

<•¥>('•(.-)); |y('-(0)i , r ( ť ) > ť 2 . 

y(ť) > exp c ^ A V ( r t ( ť ) ) 
i = 0 

y{rm(t)) , r m ( ť ) > ť 2 , m Є { 0 } U N . 

With regard to the last inequality and (10) we get 

y(t) > exp c ^ Л V ( r ť ( ť ) ) + A " ' < ' ) + 1 l n y ( r - 1 ( ť 2 ) ) 
1 = 0 

ť > r - Ҷ ť 2 ) . 

According to (13) and the above inequality we find that 

limsupy(tf) = oo , 
ř—юo 

which is a contradiction to (4). 

COROLLARY 2. Assume that for some 6 > 0, A > 1 , 7 > 1 and \x e (0, 1) 
(2) holds and 

r 7 ( t ) < t for t>tQ, 

t 

l i m i n f - ^ In / [s - T^t)}'1'1 p(s) ds > 0 , 
<-oo v?(r(<)) j 

П ( l ) 

where ip(t) = (\n\nt) / x ( lni) , n ' ' . 
T/ien the equation (1) /ia.5 not a solution which satisfies (4). 

P r o o f . We will show that the condition (13) is satisfied. 

If we put r(t) = t1 , we have 

7 7 1 — 1 771 

52AV(r,(t))=2A,""V(*7"''), t>tf, mG 
i = 0 i = l 
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According to the fact that 

tp(t) = (\nlnt)-'l(\nt)lK$ , (15) 

we get (cf. [3]) 

v?(r~m) > A-"V(t), t>q, men. 

So we obtain 

m —1 

m 
1 = 0 

We have 

£ AV(r ť(í)) > y V(l), < > l2 , ^ 6 N . (16) 

ť2 < í 7 " " " " < í 7 , for ť > ť 7 , 

and 
In hit - ln lnt 2 - I n 7 < m ( t ) h i 7 < In hit - lnhir 2 . (17) 

With regard to (15), (16), (17) we conclude that 

yn(t)-\ yn(t) 
lim inf : < lim inf ——7—7— -= 0 . 

<—>oo rn(t)-\ t-^00 m(t)ip(t) 

£ *V(n(<)) 
i = 0 

T H E O R E M 3. Let 

r(t)<t for < > 0 , 

and let there be 6 > 0, A > 1. /i G (0, A) 3̂ cfe t/iat (3) holds and 

t / r(e) . _ ^ 

lim sup J sn~lp(s)dsl I sn'lp(s)ds\ < 00. (18) 

0 ^ 0 ' 

P/ien rJie equation (1) tWs a solution with the property (4). 

P r o o f . According to (18) there is c > 0 and £0 > 0 such that r(t) > 0 
for t > t0 and 

t ,T(t) . ^ 

f sn-lp(s)ds<cl f sn~lp(s)ds ) , f > r 0 . 

0 M) ^ 
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We p u t 

t>(0 = c 0 | [sn-lp(s)dsj for * > * 0 , 

where 

c0 = (^l)!^-^1^]"1 

and c is so large that v(t) < 8 for t >t0 . 
By Cioc([^o, oo); R) we denote the space of continuous functions x : [£0,oo) —> R 
endowed with the topology of local uniform convergence. S C Cioc([^o, oo); R) 
is the set of functions which satisfy inequalities 0 < x(t) < v(t) for t > t0 and 
F: S —> Cioc([^o5 oo) J R) is the operator which is defined by 

F{x){t) = / feS {(* ~ « ) n - 7 ( ^ * H * ) ) ) cLs for t>tx, 

[ v(t) - v(U) + F(x)(U) for te [<o, 

where we take t\ > t0 such that r(t) > t0 for t > t\ . 

If x 6 S, we have 

oo 

0 < E(*)(0 < j^-y JS»-"P(S)[X(T(S))\Xd.s 

< l ) , 

< 

oo r ( я ) 

^wJ^HI^ 
<-—~v-г- Л-W/г-1 

Г Í - І ! C І ^ І Li 

PÍOdíj 

Ж)<tf ds < u(ť), 

since 

where 

< 0 

ť > ť,, 

Л'(ť) = 0, ť > ť i , 

л °° 5 

л(ť) = ü(ť) _ (íл]i/5"_lp(á)[/г~V(°dЄ d í . 

Thus PX-?) C 5 . The operator F is continuous and the functions belonging to 
the set F(S) are equicontinuous on every compact subinterval of [t0, oo). Since 
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the set S is closed and convex, according to the Schauder-Tychonoff fixed point 
theorem (cf., e.g. [1, p . 231]) F has an element y £ S such tha t y = F(y). It is 
easy to see tha t y satisfies (1) on [£j, oo) and has the proper ty (4). The proof 
is complete. 

T H E O R E M 4 . Let 

r(t)<t for r > 0 , 

and let there exist 6 > 0 , A > 1, /J > A, T 6 [0, oo) such that (3) holds and 

OO t - A / n-\ \ 

Jtn-im(Jsu-lp(s)**y~*dt<A = (ttj^) ,* 
T 

limsup f sn~lp(s)ds( I sn-xp(s)ds\ 

т т , s 

(19) 
( г ( í ) V У 

Then the equation (1) has a solution with the property ( 4 ) . 

P r o o f . Wi th regard to (19) there exist c > 1 and to > T such that 

r(t) >T for / > i 0 and 

t r(t) 

f sn'lp(s)ds<c( f sn-lp(s)ds) , t>t0. 

We p u t 
t 

i - 1 . 

where 

v(t) = C0(A + /".ч"- ,(.s)d.s ) for ŕ > < 0 , 

т 

co = [(n-iy.c^A^]^-' 

and we choose c so large tha t 

v(t) < S for t > t0 . 

Now we proceed as in the proof of the above Theorem and we define the o p e r a t o r 

F: S —> Ci o c ([Io, oo) ; R) in the same way. 
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I f x G S, we have 

o < F(x){t) < ~rïӯjsn-lp(s)(л + / Г-V(ЄHč) X_" <ь 
t т 
co S 1. 

< 

< 

< 

ds 

OO S \ 

ţ^Js«-*it*)(A + c- c-*p(t)Л<iy-\ъ 

л oo 

Ï^Js^мţA + Jc-Ыtw) 
A - , i 

tф)[A+ I Г~'Ж)<lc;) <••"<"(*), 
t т 

t>U>ło, 

since 
/ i ( T ) > 0 , /»'(«)> 0, < > т , 

where 

h(t) = 

t 

c(л + / . -
T 

\ \-џ 

Vooc (n - 1)! 

2-^ӯJ SП-1

P(S)(A + J c-ЫO^У'"1 ds, 

ł > Т. 

T h u s F ( 5 ) C 5 . 

Now we continue as in the proof of Theorem 3 and we can prove the existence 

of a solution y(t) of (1) which has the property (4) . T h e proof is complete. 
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