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NOTE ON THE ASYMPTOTIC BEHAVIOR
OF THE SOLUTIONS OF DIFFERENTIAL EQUATIONS
WITH DEVIATING ARGUMENTS

JAROSLAV WERBOWSKI

We consider the asymptotic behavior of the solutions of the following differential
equation

(M OO+ X)X @O o 3 @) =0, 12,

where the functions g.: (0, ©)—R, lim g,(t)=» (k=0, 1, ..., n—1) and f:

(0, ®) X R"—> R are continuous and such that they guarantee the existence of
solutions of (1) which are indefinitely extendable to the right. In the following we
shall always suppose that the function f satisfies the conditions:

2) Xof (£, X0y .y Xau1)>0 for x,#0,
3) (8, %oy +vrs Xam)| S IFCEs Yoo s yu)| - fOr | < 3]
’ (k=0,1,...,n—1), x0y0>0.
In this note we preserit a necessary and sufficient condition for the existence of

a solution x(¢) of equation (1) with the property

(M) lim t*"x®(t)=L, 0 (k=0,1,...,m),

lim x®(t)=0 (k=m+1,...,n-1),

where me{0,1,...,n—1} and L, a constants. This problem for differential
equations with a retarded argument in the cases m=0 and m=n—1 was
investigated in [3—9]. The proofs of theorems of this note are based on combining
the arguments of Bobrowski [1] and Kiguradze [2] with those of MaruS§iak

[5]-
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Theorem 1. If equation (1) has a solution x(t) with the property (M), then
f £ |f(t, Cogy C1g7 ™", vy Corm-zy Coy O, ..., 0)| dt <0,

0# C, =constant (k=0,1,...,m).

Proof. Let the solution x(¢) of (1) have the property (M) and assume that L, >0
(k=0,1, ..., m) (a similar argument holds if L, <0). Then there exists a point
t,=0 such that T

x®()=Cuam*, Cu=iL., (k=0,1,...,m),
(1) *x®()=0 (k=m+1,..,n—1)

for ¢t =1t,. Choose a point T =t, such that g,‘(i)Zto (k=0,1,...,n—1) fort=T.
Therefore for t=T we have

x*®(g)=Cgr™ (k=0,1,...,m),
(-1 *x9(g)=0 (k=m+1,..,n—1).

4

Multiplying both sides of equation (1) by "'~ and integrating from T to t we
obtain

(=" x() = x"(T)]+ Pu(T) = P () +

+j "I, £(Go)s -vs X O(ga_y))ds
T

where

P.(t)= k:gﬂ (=1)y1* —("(; i:n’)",) ! £ mx®(t)

for Osm<n-2, P,_.(t)=0.

Since }Ln: x“(t)= L., <% and P,(t) is a nonnegative function, then the integral on
the right side converges as t— o, Thus in view of (2), (3) and (4) we obtain for all
t=T

j s""""f(s, Cog:)", Clg'ln—l, ceey Cm—lgm—l, Cm’ 09 eees O)ds =

T

SL $"TU (s, x(Go), ey X T(gaoy))ds < 0.

Theorem 2. Let me{0,1, ... n— 1}, and let for any constants C,#0 (k=
0,1,...,n-1)
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(5) (¢, Cog?, C:g7 ™", ..., Cn-ry Cm, ..., Ca1)|  is bounded,

(6) f tn-l_mlf(t’ COg(’)”’ Clg’l"—lr ey Cm—lgm—l’ Cm’ b C"_')ldt<w'

Then equation (1) has a solution x(t) with the property (M).
Proof. The existence of a solution x(¢) of (1), having the property (M), will be

proved by the method of successive approximations. We denote

s_t n—1-1 L 1 1
Q.(1)= f (n— ) l)’ f(s, Coggq', Cig1 ,...,C,,,_,,Cm,z,“_,_z_)ds,
1
C=tmory1 k=01, .m).

From the condition (6) it follows that lim Q,(t)=0 (1=m, ..., n —1). Let a point

, n—1) for all t=T. Consider the

T>0 be chosen such that Q.(t)S-é— (Il=m
, n —1) defined as follows:

sequence of functions {y. .(t)};20 (k=0,1, ...

Ck (k=0, 1, ,m) :
= /T,
(7 Y.o(t) {0 (k=m+1, ..n—1) o t<Tandt=
G (k=0,1,..,m) -
(8) Ye.i(2) {O (k=m+1, .on—1) for ¢ :

and for t=T

em o t t— m—1—k
yk_,~(t)=Ck +(—1)n 1=m gk A ((rn—_—%_T)!Rm,i—l(S)dS,

9) (k=0,1,..,m—1),
Ymi(0)=Cr +(—=1)"""""Rm,i2a(t),
Vii®)=(=1)""*Re.4(t), (k=m+1,..,n-1),

n—1-1

where
Gl
R’l(t) ——)’f(s go}’o,, gl Y1.,~ 9gm lym laym iy oo 9Yn l')ds

gk=gk(s)’ Ye.i = Ye.i(ge(s)), (k=0,1,...,n—1).

From (7)—(9) it is obvious that the functions {y. ,(¢)}i= (k=0, 1, ...,

continuous for t=T.
Let n —1—m be odd. By mathematical induction we shall prove that

%Ck syk,i(i)sck (k=0,1,...,m)
(10)
o=s(-1)"""*y.:()<} (k=m+1,..,n-1)

n—1) are



for t=T. From (7) it follows that for t=T we have

s ={3" 6 St
Therefore, in view of (2) and (3) we obtain for t=T

R ()<Q()<: (I=m,..,n—1).
Then from (9) we get for t=T

. t (t__s)m-l—k

Ck ?yk',(t)=ck'—tk_ R,,.'o(s)dSB

r (m—1-k)!
m t t—s m—1—-k
=C, —3t* a ((T_ﬁds?%(l

(k=0,1,...,m—-1),
Cn = Yma(0) = Co = R o) =3C.n,
0<(—1)""*y:()=Reo()<t (k=m+1,...,n-1).
Suppose that the condition (10) holds for some i =j. Then for t=T we have
1CG<y;(@)<C. (k=0,1,..,m),
0<(-1"*y,(g)<} (k=m+1,...,n—1),

which implies R,,(f)<Q.(t)<} (1=m, ..., n —1). Then from (9) we obtain for
t=T

t (t_s)m—l—k
r (m—1—k)!

(k=0,1,...m—1),
Cm Zym,i+l(t)= Cm —Rm.i(t)aécm 1)
0<(—1)""*y,n(t)=Re, ()<} (k=m+1,..,n-1).

Therefore the condition (10) holds for i =1, 2, .... From (5), (9) and (10) we get
fort=Tand i=1,2,...

[ye®=t"yerri(®) = (m =Ky .(t)<2T7'Ci1y
(k=0,1,..,m—1),
(1) i@ = yeeri(®O| <} (k=m, ...,n—2),
[Yior O] = |Ricrica D] < (2, Cogly C1g7 ™" ooy G 3y s DISL,

Ck ?yk'i...](t)'_—ck—tk_m R,,.,(s)ds ?%Ck
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where L is a positive constant. In view of (10) and (11) the family {y. .(¢)}o
(k=0,1,...,n—1) is uniformly bounded and equicontinuous on (T,A)c c
(T, »), (A is arbitrary). We extract from {y.(#)} a uniformly convergent

subsequence {yi.;(¢)} on (T, A) and convergenton (T, =), i.e. }L’E Ve, (£) = yi(2)
(k=0,1,...,n—1)existon (T, ©). Then y.(¢t) (k=0, 1, ..., n — 1) is a solution of
the following system of integral equations

t (t _s)m—l—k
T (m -1-k)!
ym(t)= Cm _Rm(t)’
Y(@)=(—-1)""*Re(t), (k=m+1,...,n-1).

yk(t)=ck_tk-m R,,.(S)ds, (k=0, 1, ...,m_l),

(12)

for t= T, and

C. (k=0,1,...,m)

yk(t)={0 kmm bl umhy for ¢<T,

where Ri(t)=lim R, ,(t) (k=m, ...,n—1). We prove that

(13) G (k=0,1,...m),

!L‘By"(‘)={o (k=m+1,..,n-1).

From (8) and (10) it follows that for =T we have
31Co<y(9)<C. (k=0,1,.. m),
U 0<(— 1) Mg <t (k=m+1,...,n—1).
Thus, in view of (2) and (3), for =T we obtain 0<R,(£)<Q,(t) ((=m, ...,
n —1). Since !Lrg Q,(t)=0, then !EE R(t)=0({=m, ..., n—1) and

: k—m ! (t_s)m-l_k
!Lrgt i mRm(s)ds=0 (k=0,1,...,m—-1).

Therefore, from this and (12) we obtain (13). Now we put in (12)

[T (@) (k=0,1,...,m),
yk(t)_{xk(t) (k=m+1,...,n-1).

Then, by easy calculation, it follows that x,(¢) is the solution of (1) and it has the
property (M).
In the case of n —1—m being even the proof is similar.
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Theorem 3. Consider the equation
(14) xO@)+f(t, x(go), x'(g1)s s X" (gn-2), K)=0,

where K is a constant and f satisfies the conditions (2) and (3). If the condition (6)
holds for C,_, = K, then equation (14) has a solution x (t) with the property (M).
Proof. The proof of this theorem follows exactly the same procedure as the

proof of Theorem 2.
Corollary 1. Consider the equation
(15) x(n)(t) +p(t)F(x(g0)9 x'(gl)’ LR x("_z)(gn—z)) = O’

where p(t)>0 and the function p(t)F(xo, ..., X._,) satisfies (2) and (3). From

Theorems 1 and 3 it follows that

f " 'p(t)dt<
is a necessary and suficient condition for the existence of solution x (t) of (15) with
the property

limx(¢t)=L,#0, L,=constant,

!irg x()=0 (k=1,2,..,n—-1).
Remark 1. A similar result as in Corollary 1 has been obtained by Marusiak
[5] in the case g.(¢)<t.
Corollary 2. Consider the equation
(16) x®(t) +p(O)[x(go(1)]) =0,

where p(t)>0 and 8 >0 is the ratio of odd integers. Then from Theorems 1 and
3 it follows that

[ e laorp @<

is a necessary and suficient condition for the existence of the solution of equation

(16) having the property (M).
Remark 2. If go(t)<t¢ in (16), then from Corollary 2, in the cases m =0 and
m =n — 1, we obtain some results of Odarich [6], Odarich and Shevelo [7, 9].

If go(t) =t in (16), then from Corollary 2 we obtain some result of Kiguradze [2].
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Theorem 4. Assume for equation (1) that

(17) f t"'|f(t, C, 0, ...,0)|dt =, 0% C =constant.

Then

(i) for n even every bounded solution of (1) is oscillatory,

(if) for n odd every bounded solution of (1) is either oscillatory or tends
monotonically to zero as t— .

Proof. Assume that under the condition (17) there exists a nonoscillatory
bounded solution x(¢) of equation (1) and let x(¢)>0 for t=¢,=0.

(i) Let n be even. Then x(¢) is nondecreasing and the limit is finite as — oo,
Hence the argument in the proof of Theorem 1 is applicable, which leads us to
a contradiction.

(if) Let n be odd. Then x(¢) is nonincreasing. We prove that x(¢)—0 as t— o,
Suppose x(¢)— L,>0 as t— . Then analogously as in the proof of (i) we obtain
a contradiction to the condition (17).
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3AMETKA OB ACUMIITOTUYECKOM CBOVICTBE PEIIEHHUN
IUPPEPEHIIMAIIBHOIO YPABHEHHUS C OTKIIOHAIOUMUMCA APITYMEHTOM

SIpocnaB Bep6oBckn
Pesiome

ns auddepeHUnanbHOro ypaBHEHUs C OTKJIOHSIOWMMCS apryMEHTOM

x() +£(t, xgo(2)), ..., x"P(ga-1(1))) =0
10Ka3aHO HEOGXONMMOE M JOCTATOYHOE YCIOBUE YTOGBI CYLIECTBOBANO PELIEHHE CO CBOWCTBAMH

'lirgt"""x""(t)=L,(#0, L, —xouctranra, k=(0,1,...,m),
!Ln_!x“"(t)=0 (k=M+1,...,n-1)

mame{0,1,2,..,n—1}.
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