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K Y B E R N E T I K A — VOLUME 38 (2002) , NUMBER 3, PAGES 3 2 7 - 338 

INFORMATION BOUNDEDNESS P R I N C I P L E 
IN FUZZY I N F E R E N C E PROCESS 

PETER SARKOCI AND MlCHAL SABO 

The information boundedness principle requires that the knowledge obtained as a re­
sult of an inference process should not have more information than that contained in the 
consequent of the rule. From this point of view relevancy transformation operators as a 
generalization of implications are investigated. 

1. PRELIMINARIES 

The main goal of the fuzzy modeling inference process is to find a value of the output 
associated with a particular input value. Fuzzy system modeling usually involves 
the use of a fuzzy rule base consisting in several fuzzy statements. The most widely 
used type of fuzzy statements are if-then rules with fuzzy predicates (generalized 
modus ponens). 

Suppose that our rules have formulations: 

If U is Ai then V is B{ i = l , 2 , . . . , n 

where £/, V are variables taking the values over spaces X and Y respectively and Ai, 
B{ are fuzzy sets on X and Y. So, the use of the if-then rule in generalized modus 
ponens needs three factors: The antecedent Ai, the consequent B{ and the current 
input (crisp or fuzzy). 

The fuzzy system modeling is often based on the use of fuzzy implications or 
fuzzy conjunctions [2]. The relevancy transformation operator (RET) introduced 
by Yager [7] is a generalization of both approaches. RET operator can be defined 
(see below) as a binary operation defined on the unit interval. It is appropriate for 
obtaining of the effective individual rule output from the rule relevancy and the rule 
consequent. 

Overall fuzzy system output can be obtained by aggregation [3, 7] of individual 
rule outputs and by a possible defuzzification [7]. In this paper we shall deal with 
the problem of finding the individual rule output only. 

Now we suppose that the relevancy of the individual rule is obtained from the 
antecedent Ai and the current input. For example, if the input value x is crisp then 
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the relevancy of the rule can be determined by the membership grade of the input 
value x in the antecedent fuzzy set Ai, i.e., 

r{ = Ai(x). 

If the input value is a fuzzy set C on X then the relevancy ri of the rule can be 
determined by 

r{ = supmin(C(x),Ai(x)). 
X 

We also assume that the individual rule output Fi can be obtained from the relevancy 
ri of the rule and the rule consequent Bi pointwisely, i.e., 

' Fi(y) = h(ri,Bi(y)) y eY. 

Below we shall give a definition of the relevancy transformation operator h [5, 7]. 
The operator h is closely related to the aggregation operator. If the rule relevancy is 
zero, the effective output should not influence the aggregation process. Therefore, in 
this case, we suppose that the rule output should be the element c which is neutral 
under aggregation operation [3]. 

Definition 1. Let c G [0,1] be a given element. A binary operation h : [0, l ]2 -» 
[0,1] is called a relevancy transformation (RET) operator with respect to the element 
c if it satisfies the following axioms: 

(Rl) h(l, a)=a for all a G [0,1], 

(R2) h(0, a) = c for all a G [0,1], 

(R3) h(r,ai) < h(r,a2) for all ai,a2 G [0,1], such that ai < a2 and all r G [0,1], 

(R4) if a > c, then h(r\,a) < h(r2,a) for all rr,r2 G [0,1] such that rA < r2, 

(R5) if a < c then h(r\,a) > h(r2,a) for all r i , r2 G [0,1] such that rr < r2-

Note that the axiom (Rl) means that the effective rule output is equal to the con­
sequent if the rule relevancy is full. The element c is related to the global aggregation 
operator, namely it should be its neutral element, i.e., 

Agg(ai,a2,... ,ai,c,ai+i,... ,an) = Agg(ai,a2,... ,ai,ai+i,... ,an). 

The last two conditions are called a consistency in antecedent argument and they 
imply together with (R2) a necessary condition for h to be a RET operator, namely 

h(r, c) = c for any r G [0,1]. 

In [7] one can find more about the philosophical background of these properties. 
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Example 1. (i) Let T be a t-novm [5]. Put h(r,a) = T(r,a) where r,a G [0,1]. 
Then h is a RET operator with respect to the element c = 0. 

(ii) Let 5 be a f-conorm [5]. Put h(r,a) = 5(1 — r,a) where r,a G [0,1]. Then 
h is a RET operator with respect to the element c = 1. Note that in this case h is 
called 5-implicator. 

(iii) Let c£ [0,1] be a given element. Define 

h(r, a) = ra + (1 — r)c 

Then h is a RET operator with respect to the element c. We shall call it Product 
RET (PRET) operator. 

We have described how to obtain an individual rule output using a RET opera­
tor. We shall concentrate on the problem whether this process is always meaningful. 
Namely, we shall investigate whether the RET operator fulfills the natural require­
ment of any inference process: Knowledge obtained as a results of this process should 
not have more information than that contained in the consequent of the rule [6]. This 
principle is usually called the information boundedness principle (IBP). 

The next example shows a fuzzy modeling inference process with one simple rule 
only and a RET operator such that IBP is evidently not fulfilled. 

Example 2. Let the rule has the form: 

If U is A then V is B 

where variables U and V take values over space of real numbers and fuzzy sets A 
and B are triangular fuzzy numbers given by expressions 

A(x) = max(0, 1 - |x|), B(y) = max(0, 1 - \y\), x, y G R 

It means that this rule says: if U is "around zero", then V is "around zero". Let h 
be a RET operator with respect to c = 0 given by 

h(r, a) 

f 1 if r > 0 and a = 1 

a if r = 1 

0 elsewhere. 

Then for any relevance r G]0,1[ we obtain the current output 

( 1 if y = 0 

^ioel^er. 
It means that F is a singleton and the rule gives the certainty that V is zero. Of 
course, our rule says only that V is "around zero". 
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Many information measures have been proposed attached to fuzzy sets or bodies 
of evidence (Shannon's entropy, fuzziness, measure of imprecision etc. [2]). Yager [6] 
introduced a concept of specificity of fuzzy sets, measuring to what extent a fuzzy 
set restricts a small number of values for a variable. Dubois and Prade [1] extended 
this concept for bodies of evidence. They utilized the fact that bodies of evidence 
with the nested basic probability assignment can be characterized by a possibility 
distributions. Such possibility distribution can be viewed as the membership func­
tion of some fuzzy set. From such point of view the maximal specificity measure 
relates to the complete knowledge which can be represented by singleton and min­
imal specificity measure relates to complete ignorance which can be represented by 
constant fuzzy set equal to one. 

Since considered mentioned membership functions are always normal (at leasr one 
element is fully possible), the older definitions of specificity measure are convenient 
for normal fuzzy sets only. In [6] Yager introduced definition of specificity measure 
which did not require normal fuzzy sets. 

Now we formulate the information boundedness principle (IBP) related to a given 
RET operator h and a given specificity measure Sp. 

(IBP) Let Fi(y) = h(n,B(y)), F2(y) = h(r2,B(y)) be individual outputs of the 
same rule with the consequent B and r i , r2 are the levels of relevancy such 
that 1 > ri > r2 > 0. Then 

Sp(F,) > Sp(F2). 

Putting n = 1, r2 = r and using (RI) we obtain a weaker form of IBP. 

(IBP*) Let F(y) = h(r,B(y)) be an individual output of the rule. Then 

Sp(F) < Sp(B). 

In the next sections we shall try to reformulate the definition of specificity measure 
[6] for fuzzy sets on a finite universe and then classify RET operators with respect 
to various specificity measures. 

2. SPECIFICITY MEASURE 

In the next sections we shall consider fuzzy subsets of a finite universe X with the 
cardinality n. Then each fuzzy set is represented by an n-tuple ( a i , a 2 , . . . ,an) G 
[0, l ] n . Now we shall define a specificity as a mapping from the system of all fuzzy 
sets on X to the unit interval. Our definition is reformulation of the definition 
published in [6]. 

Definition 2. A mapping Sp: [0, l ] n -> [0,1] is called a specificity measure (speci­
ficity for short) if it satisfies the following axioms: 

(SI) For any permutation (pi,p2,... ,pn) of (1 ,2 , . . . ,n) is 

Sp(ai,a2,... ,an) = Sp(aPl,aP2,... ,aPn). 
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(52) If 1 > bi > b2 > a2 > a3 > • • • > an > 0 then 

5p(b i , a 2 , a 3 , . . . ,an) > 5p(b 2 ,a 2 ,a 3 , . . . , a n ) . 

(53) If 1 > ai > a2 > • • • > an > 0, ax > b2 > b3 > • • • > bn > 0 and a{ > b{ for 
each 2 = 2 , 3 , . . . , n, then 

5p(a i , a 2 , . . . ,an) < 5p(ai ,b 2 , . . . ,bn) . 

(54) 5p(a i , a 2 , . . . ,a n ) = 1 if and only if exists the unique i such that a; = 1 and 
aj = 0 for each j ^ i. 

(55) 5p(0,0 , . . . ,0) = 0. 

Axiom (SI) means that the specificity is invariant with respect to order of mem­
bership degrees, the property of symmetry. Axioms (S2) and (S3) mean that speci­
ficity is increasing in the greatest membership value but nonincreasing in the others. 
Axiom (S4) requires that only singletons have maximal specificity. The axiom (S5) 
says that the specificity of the empty set is equal to zero. 

In [6] Yager permits that axiom (S5) may be too strong. On the other hand, 
if specificity represents how much the greatest membership degree protrudes the 
others, this claim should be accepted, if not enforced. Moreover, from our viewpoint, 
this definition of specificty should be weak. Therefore we introduce two additional 
properties. 

Definition 3. We say that a specificity measure Sp is grounded if 

(GS) 5p(b, b,... , b) = 0 for all b G [0,1], 
and we say that a specificity measure is shift invariant if 

(SIS) 5p (a i , a 2 , . . . ,a n ) = Sp{ai + 6,a2 + 6, . . . , a n + b) 
for all b G [— min^a;), 1 — maxi(aj)]. 

Note that axiom (GS) implies axiom (S5) and axiom (SIS) with (S5) together 
imply (GS). 

Remark 1. If 5pi and Sp2 are two different specificity measures, then any convex 
combination, i.e., the function a5pi + (1 — a)Sp2 where a G [0,1], is a specificity 
measure. Moreover if both specificities are grounded (shift invariant), then their 
convex combination is also a grounded (shift invariant) specificity. 
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Example 3. In this example we consider fuzzy sets over 2-membered universe 
only, that is n = 2. 

(i) Put Sp(x,y) = max(x,?/) — min(x,y). Then Sp is a shift invariant and 
grounded specificity. 

(ii) Specificity Sp(x,y) = max(x,y) — 0.5min(x,y) is not grounded and thus not 
shift invariant. 

(iii) Put 

( 2.4max(x,2/) — 2.4min(x,y) if min(x,y) > 1.5max(x,i/) — 0.5 

0.3max(x,^7/) — min(x,y) + 0.7 elsewhere. 

Then Sp is a grounded specificity but not shift invariant. 

The class of all specificities is very large, so it is reasonable to search some inter­
esting sub-classes. One of them is the class of so called linear specificities [6]. 

Definition 4. Let 1 > u>2 > w3 > • • • > wn > 0 be given constants such that 
_Cr=2 Wi = 1. If 1 > ai > a2 > • • • > an > 0, then the linear specificity is defined as: 

Sp(a i , a 2 , . . . ,a n ) = a\ - }Wjaj. 
i=2 

Note that every linear specificity is grounded and shift invariant. For n = 2, any 
linear specificity is equivalent to the specificity from Example 3 (i). 

Example 4. Let 1 > ai > a2 > • • • > an > 0. 

(i) Specificity defined as 

5p(a i ,q 2 , . . . ,a n ) = ai~a2 

is a linear specificity with weight constants uv2 = 1 and w% = w± = • • • = wn = 0. 

(ii) Specificity defined by the expression 

n 

l j 
S p ( a ь a 2 , . . . ,a n ) = ai — T / , a i 

i=2 

is also a linear specificty with constants W2 = ws = • • •= wn = ^-y. Yager [6] 

showed that any linear specificity Sp satisfies Sp> Sp> Sp. 
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3. INFORMATION BOUNDEDNESS PRINCIPLE FOR RELEVANCY 
TRANSFORMATION OPERATORS 

In this section we are looking for RET operators which fullfil IBP with respect to 
some specificities. The direct consequence of the result reached in [6] is that any 
S-implicator satisfies IBP with respect to a linear specificity if and only if the S-
implicator is 2-increasing. This property plays an important role in the theory of 
copulas [4]. 

Definition 5. We say that a mapping F: E2 -» R is 2-increasing if 

F(xuyi)-F(xuy2)-F(x2,yi) + F(x2,y2)>0 

for any x1 > x2 and yi > y2. 

Main result of this article is a generalization of mentioned theorem for .S-implicators. 
First we prove a Lemma. 

Lemma 1. Let Sp : [0, l ] n —r [0,1] be a shift invariant specificity. There exist a 
strictly increasing mapping g : [0,1] -» [0,1] such that #(0) = 0, #(1) = 1 and 

9(a1 -an) > Sp(a1,a2,... ,an) > g(a1 - a2) 

for any 1 > ai > a2 > • • • > an > 0. 

P r o o f . For simplicity consider 1 > a1 > a2 > • • • > an > 0. The situation is the 
same for another order of arguments due to axiom (SI). 

Define g(x) = Sp(x,0 ,0 , . . . ,0) for any x G [0,1]. According to axiom (S2) of 
specificity, mapping g(x) is strictly increasing. From axioms (S4) and (S5) follows 
g(0) = Sp(0,0,... , 0) = 0 and g(l) = Sp(l, 0 , . . . , 0) = 1 respectively. 

Since we suppose 1 > ai > a2 > • • • > an > 0, from the axiom (S3) we obtain 
inequality. 

Sp(a1,an,... ,a n) > Sp(a i ,a 2 , . . . ,a n) > 5p(a i , a 2 , . . . ,a2) . 

Let us subtract constant an from each argument of the left specificity and a2 from 
each argument of the right one. Due to Sp is shift invariant, such change has no 
effect to its value and following inequality hold 

Sp(ax - a n , 0 , . . . ,0) > £p(a i , a 2 , . . . ,a n) > Sp(a1 - a 2 , 0 , . . . ,0). 

Rewriting expression for definition of g we obtain 

g(a1 -an) > Sp(a1,a2,... ,an) > ^(ax - a2) 

which is our claim. ---
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Theorem 1. Let Sp : [0, l ] n -> [0,1] be a shift invariant specificity and let h be a 
RET operator. Following statements are equivalent: 

(a) h satisfies IBP with respect to Sp, 

(b) h is 2-increasing. x 

P r o o f . For simplicity consider 1 > ai > a2 > • • • > an > 0. The situation is the 
same for another order of arguments due to axiom (SI). 

(a) -=-!> (b) RET operator h satisfies IBP with respect to Sp, therefore 

5p(/i(ri, ai) , / i (n, a 2 ) , . . . h{ruan)) > Sp(h(r2, ax), h(r2, a 2 ) , . . . h(r2,an)) 

for any ri > r2. Putting a1 > a2 = a% = - - = an we obtain 

5p(/i(ri, ai) , / i (n, a 2 ) , . . . h(ri, a2)) > Sp(h(r2,a±),h(r2,a2),... /i(r2, a2)). 

According to Lemma 1 there exist strictly increasing mapping g : [0,1] -> [0,1] such 
that g(0) = 0 and g(l) = 1 and 

g(h(ri,ai) -h(ri,a2)) > Sp(h(rx,ai),h(ri,a2),.. .h(ri,a2)) 

> Sp(h(r2jai),h(r2,a2),.. .h(r2,a2)) >g(h(r2,ax) -h(r2,a2)) 

or simply 
g(h(ri,ai) -h(n,a2)) >g(h(r2,ax) -h(r2,a2)). 

Because of g is strictly increasing, for RET operator h follows that 

h(ri,a{) -h(ri,a2) > h(r2,ax) -h(r2,a2) 

or 
h(ri,ai) ~h(n,a2) - h(r2,ai) + h(r2,a2) > 0 

for any ai > a2 and ri > r2 and thus h is 2-increasing. 

(b) =-> (a) Let h be 2-increasing RET operator and let 1 > ri > r2 > 0. Consider 
expression 

5p( / i ( r 2 ,a i ) , / i ( r 2 ,a 2 ) , . . . / i ( r 2 ,a n ) ) . 

First we will show that h(r\,a\) — h(r2,a\) is a proper "shift" for this expression in 
the sense of Definition 3 (SIS), i.e., following inequalities holds 

1 - h(r2,ai) > h(ri,ai) -h(r2,ai) > -h(r2,an) 

for any ri > r2 and ai > an . First inequality follows from 1 > h(r\,ai) which 
is a general property of RET operators. The second inequality follows from 2-
increasingness of h, we have 

h(ri,a\) - / i ( r i , a n ) - h(r2,ax) + h(r2,an) > 0 
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or 
/ i(ri ,ai) - / i ( r 2 , a i ) + h(r2,an) > h(ruan) > 0 

which implies 
M r i> a i ) ~h(ruan) > -h(r2,an). 

Let us add h(r\,ai) — / i(r2 ,ai) to each argument of specificity in first expression. 
Due to specificity Sp is shift invariant, the expression above is equal to 

Sp(h(r2,ai) + h(ruai) - / i(r2 ,ai), / i(r2 ,a2) + /*(rr,ai) - / i ( r 2 , a i ) , . . . 

••• ,h(r2,an) + h(ruai) - /i(r2 ,ai)). 

Since considered 1 > ai > a2 > • • • > an > 0 and due to RET operator h has 
2-increasing property follows 

h(r2, ai) + h(ruai) - h(r2,ai)>h(ruai) 

for any i = 1,2,.. .n. Moreover the first argument is equal to / i(ri ,ai) . Applying 
axiom (S3) of specificity measure we have that former expression is less or equal 
than expression 

5p( / i ( r i ,a i ) , / i ( r i ,a 2 ) , . . . / i ( r i ,a n ) ) 

so that the following inequality holds 

Sp(h(ruai),h(rx,a2),... h(rx,an)) > Sp(h(r2,ai),/i(r2,a2),... ,h(r2 ,an)) 

which means that h satisfies IBP property. • 

Example 5. Let c G [0,1] be a given element. 

(i) It can be easily shown that PRET operator from Example 1 (iii) is 2-increasing. 

(ii) Let b G [0,1] be a given element. Put 

^ ' ~~ \ ra + (1 — r) c elsewhere ' *• J 1 

then h is a 2-increasing RET operator, 

(iii) Let b £ (0,1] be a given element. Define 

^ ' ' \ a elsewhere ' \. > 1 

then h is a 2-increasing RET operator. 

Next we show that some 2-increasing RET operators can be easily generated. 
First, recall the definition of a copula [4, 5]. 
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Definition 6. A two-dimensional copula (copula for short) is a mapping C : 

[0,1]2 -> [0,1], such that 

(CI) C is a 2-increasing function, 

(C2) C(x, 0) = C(0, x) = 0 for all x G [0,1] 

(C3) C(x, 1) = C(l , x)=x for all x G [0,1]. 

The next theorem gives a possibility to generate RET operators by some copu­
las [5]. 

Theorem 2. Let c G [0,1] be a given element. If C is a copula which for all r G 
[0,1] satisfies the property C(r, c ) + C ( l - r , c) = c, then the function h: [0, l ] 2 -» [0,1] 
defined as 

/i(r,a) = C(r,a) + C ( l - r , c ) 

is a RET operator with respect to the element c. 

Now we shall show that RET operators generated by a copula are 2-incr easing. 

Theorem 3. Let / i b e a RET operator generated by a copula C in the sense of 
Theorem 2. Then h is 2-increasing. 

P r o o f . By the assumption h is defined by the expression 

h(r,a) = C(r,a) + C(l - r,c) 

where C is a copula, and thus 2-increasing function. So for any a± > a2 and for any 
r i ^ r2? both from the unit interval, is 

C( r i , a i ) - C(r 2 , a i ) - C(rua2) + C(r2ya2) > 0. 

Extending this inequality by two zeros we obtain 

C( r i , a i ) + C(l - ruc) - C(r2,ax) - C( l - r2,c) 

-C(rua2) - C(l - ruc) + C(r2,a2) + C(l - r2,c) > 0 

which is equivalent to 

h(ruai) -h(rua2) - /i(r2 ,ai) + h(r2,a2) > 0 

which is our claim. • 

In the next example we show a 2-increasing RET operator and a nonlinear speci­
ficity such that IBP is not satisfied. 



Information Boundedness Principle in Fuzzy Infeгence Pгocess 337 

Example 6. Let Sp be the specificity from Example З(iii). As h take PRET 
operator with respect to c = 0, Љ(r, a) = ra introduced in Example 1 (iii). According 
to Example 5 (i) such h is 2-increasing. Put a\ = 1, a2 = 0.5, n = 1 and r 2 = 0.5. 
We obtain 

5p(Mn,a i ) ,/г(n,a 2 ) ) = -?p(l,0.5) = 0.5 

and 

Sp(h(r2ìaг),h(r2ìa2)) = 5p(0.5,0.25) = 0.6. 

Due to ri > r2, IBP is violated. 

On the other hand, there exist RET operators which satisfy IBP with respect to 
any specificity. Such RET operator is for example the function h from Example 5 (iii) 
if c = 0. 

For simplicity we shall restrict our considerations on the PRET operators from 
Example 1 (iii). Prom the Theorem 1 follows, that any PRET operator satisfies 
IBP with respect to any shift invariant specificity. The next theorem is a necessary 
condition for specificity if any PRET satisfies IBP with respect to this specificity. 

Theo rem 4. If any product RET operator satisfies IBP with respect to some 
specificity Sp, then Sp is grounded. 

P r o o f . Take two PRET operators with respect to c = 0 and c = 1 respectively, 
hi(r,a) = ra and h2(r,a) = ra + 1 — r. Because h\ satisfies IBP with respect to Sp, 
for any ri > r2 we have 

S p ( M n , l ) , M r i , l ) , . . . , M ^ 

Due to /ii(ri , 1) = n and /ii(r2,1) = r2, the last inequality can be rewriten to 

5 p ( r i , r ь . . . , n ) > Sp(r2ìr2,... , r2) 

so Sp(x, x,... , x) is nondecreasing function of variable x. 

Similary, using h2(l — n , 0 ) = n and h2(l - r2 ,0) = r2, it can be shown, that 
Sp(x, x , . . . , x) is nonincreasing function of x. Consequently Sp(x, x , . . . , x) is a 
constant function. Using axiom (S5) we obtain Sp(x, x,... , x) = 0 for all x Є [0,1]. 

D 
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