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DERIVATION OF BICG FROM THE CONDITIONS DEFINING

LANCZOS’ METHOD FOR SOLVING A SYSTEM

OF LINEAR EQUATIONS

Petr Tichý, Jan Zítko, Praha

(Received December 12, 1997)

Abstract. Lanczos’ method for solving the system of linear algebraic equations Ax = b
consists in constructing a sequence of vectors xk in such a way that rk = b − Axk ∈
r0 + AKk(A, r0) and rk ⊥ Kk(A

T , r̃0). This sequence of vectors can be computed by the
BiCG (BiOMin) algorithm. In this paper is shown how to obtain the recurrences of BiCG
(BiOMin) directly from this conditions.
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1. Introduction

The application of recursive biorthogonalization to the numerical solution of eigen-
value problems and linear systems goes back to Lanczos ([Lancz–50], [Lancz–52])

and is therefore referred to as the Lanczos process. In its basic form [Lancz–50], the
process generates a pair of biorthogonal bases for a pair of Krylov spaces, one gener-

ated by the matrix A and the other by the matrix AT . This process is characterized
by a three-term recurrence and is here called the Lanczos biorthogonalization (BiO)

algorithm [Gutkn–97]. A variation of it, described already in the second Lanczos pa-
per [Lancz–52] under the section heading “The Complete Algorithm for Minimized

Iterations”, applies instead a pair of coupled two-term recurrences and is here re-
ferred to as BiOC algorithm [Gutkn–97], because it produces additionaly a second

pair of biconjugate bases.

This paper was supported by the Grant Agency of the Czech Republic under Grant No
201/96/0918.
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An application of the BiOC for solving linear algebraic systems was already pre-

sented in the above mentioned Lanczos paper. This algorithm was later reformulated
by many authors and is named BiOMin [Gutkn–97] or Biconjugate gradient (BiCG)
algorithm [Fletch–76]. Block formulation of BiCG is due to [Leary–80].

Let Kk(A, r0) = span{r0, Ar0, . . . , A
k−1r0} be the Krylov space spanned by a

nonsingular matrix A ∈ �
n×n and a vector r0 ∈ �

n . Let x0 be any initial guess
for the solution of the system Ax = b, r0 = b − Ax0 the starting residual and r̃0 an

arbitrary nonzero vector. The Lanczos’ method for solving this system consists in
the construction of a sequence of vectors xk and residuals rk = b−Axk (k � 1) such
that

• xk ∈ x0 +Kk(A, r0),

• rk ⊥ Kk(AT , r̃0).

Figure 1: In 1950, Lanczos introduced an algorithm (BiO) that generates a pair of biorthog-
onal vector sequences. Lanczos (1952) suggested under the section heading “The Complete
Algorithm for Minimized Iterations” an alternative algorithm (BiOC) for computing these
sequences of vectors generated by the BiO algorithm. In the same paper an algorithm
for solving linear algebraic systems was presented. Many authors ([Leary–80], [Gutkn–97])
showed that the vectors xk and rk generated by the BiCG algorithm fulfil the conditions
(∗) xk ∈ x0 + Kk(A, r0) and rk ⊥ Kk(A

T , r̃0). In this paper we show how to obtain the
recurrences of BiCG directly from these conditions.

For deriving BiCG we need to define auxiliary vektors r̃k (k � 1) under conditions
• r̃k ∈ r̃0 +ATKk(AT , r̃0),

• r̃k ⊥ Kk(A, r0).

If we substitute the residual ri+1 in the form

ri+1 = r0 +A

i∑

j=0

b
(i)
j Ajr0 (i = 0, . . . , k − 1)
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into conditions rT
i+1A

T j
r̃0) = 0 (j = 0, . . . , i) we find that the coefficients b

(i)
j fulfil

the system of linear equations

−




(r̃0, r0)

(r̃0, Ar0)
...

(r̃0, Air0)


 =




(r̃0, Ar0) (r̃0, A2r0) . . . (r̃0, Ai+1r0)

(r̃0, A2r0) (r̃0, A3r0) . . . (r̃0, Ai+2r0)
...

(r̃0, Ai+1r0) (r̃0, Ai+2r0) . . . (r̃0, A2i+1r0)







b
(i)
0

b
(i)
1
...

b
(i)
i


 .

The determinant of the matrix of this system is called the Hankel determinant

and is denoted by di+1. If di+1 �= 0 then the residual ri+1 exists and is unique. By
analogy, it can be shown that if di+1 �= 0, the vektor r̃i+1 exists, is defined uniquely

and can be written in the form

r̃i+1 = r̃0 +AT
i∑

j=0

b
(i)
j (A

T )j r̃0 (i = 0, . . . , k − 1).

Moreover, if r̃T
j rj �= 0 (j = 0, . . . , i) then the vectors rj and the vectors r̃j are linearly

independent,

(1) span{r0, . . . , ri} = Ki+1(A, r0), span{r̃0, . . . , r̃i} = Ki+1(A
T , r̃0)

and the vectors ri+1 and r̃i+1 can then be written as

ri+1 = ri +A

i∑

j=0

γ
(i)
j rj and r̃i+1 = r̃i +AT

i∑

j=0

γ
(i)
j r̃j (i = 0, . . . , k − 1).

It will be shown in Lemma 1 and in Theorem 1 that if dj+1 �= 0 and r̃T
j rj �= 0 for j =

0, . . . , i then all coefficients γ
(i)
j are different from zero and the vectors ri+1 can be

written in the form

ri+1 = ri + γ
(i)
i A

(
ri +

γ
(i)
i−1

γ
(i)
i

(
ri−1 +

γ
(i)
i−2

γ
(i)
i−1

(
ri−2 + . . .

γ
(i)
1

γ
(i)
2

(
r1 +

γ
(i)
0

γ
(i)
1

r0

)
. . .

)))

and the ratio γ
(i)
j−1/γ

(i)
j does not depend on i. If we set αi = −γ

(i)
i and βi−1 =

γ
(i)
i−1/γ

(i)
i , then ri+1 can be written as

ri+1 = ri−αiA(ri+βi−1(ri−1+βi−2(ri−2+ . . . β1(r1+β0r0) . . .))) (i = 0, . . . , k−1).

If we define p0 = r0, pj+1 = rj+1 + βjpj for j = 0, . . . , i− 1, then

ri+1 = ri − αiApi,

xi+1 = xi + αipi.
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Likewise, if we define p̃0 = r̃0, p̃j+1 = r̃j+1 + βj p̃j, we obtain recurrences for vectors

r̃i+1 in the form
r̃i+1 = r̃i − αiA

T p̃i.

The classical form of coefficients αi and βi will be obtained by using biorthogonal

relations.

2. Recurrences for the BiCG iterates

Lemma 1. Let us suppose that dj �= 0 for j = 1, . . . , k + 1 and r̃T
i ri �= 0 for

i = 0, . . . , k. Then there exist real numbers γ
(i)
j �= 0, 0 � j � i � k, such that

ri+1 = ri +A(γ(i)i ri + γ
(i)
i−1ri−1 + . . .+ γ

(i)
1 r1 + γ

(i)
0 r0),(2)

r̃i+1 = r̃i +AT (γ(i)i r̃i + γ
(i)
i−1r̃i−1 + . . .+ γ

(i)
1 r̃1 + γ

(i)
0 r̃0).(3)

Moreover, the numbers γ
(i)
j are determined uniquely.

�����. The vectors ri+1 and ri fulfil

ri+1 = r0 + b
(i+1)
1 Ar0 + b

(i+1)
2 A2r0 + . . .+ b

(i+1)
i+1 Ai+1r0,

ri = r0 + b
(i)
1 Ar0 + b

(i)
2 A2r0 + . . .+ b

(i)
i Air0,

and thus

ri+1 = ri +A((b(i+1)1 − b
(i)
1 )r0 + . . .+ (b(i+1)i − b

(i)
i )A

i−1r0 + b
(i+1)
i+1 Air0).

According to (1), there exist uniquely determined real numbers γ
(i)
0 , . . . , γ

(i)
i such

that

(4) ri+1 = ri +A(γ(i)i ri + γ
(i)
i−1ri−1 + . . .+ γ

(i)
1 r1 + γ

(i)
0 r0).

Analogously we obtain equality (3).

Now, we have to prove that the real numbers γ
(i)
j are different from zero. Let us

define ci,j = r̃T
i Arj . It is easy to see that ci,j = 0 when |i − j| > 1. For i = 0, . . . , k

we have

(5) ri = ri−1 +A(γ(i−1)i−1 ri−1 + . . .+ γ
(i−1)
0 r0).

If we multiply the equation (5) from the left by the vector r̃T
i we obtain

r̃T
i ri = γ

(i−1)
i−1 r̃T

i Ari−1.
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Since r̃T
i ri �= 0 we have r̃T

i Ari−1 �= 0 and hence ci,i−1 �= 0. Likewise, if we write r̃i

in the form (3), we get ci−1,i �= 0. Let us multiply the equation

ri+1 = ri +A(γ(i)i ri + . . .+ γ
(i)
0 r0)

from the left by the vectors r̃T
i , . . . , r̃T

0 . Then we get for the real numbers γ
(i)
j the

identity

(6) −




r̃T
i ri

0
...

0


 =




ci,i ci,i−1
ci−1,i ci−1,i−1 ci−1,i−2

ci−2,i−1 ci−2,i−2 ci−2,i−3
. . .

. . .
. . .

c1,2 c1,1 c1,0
c0,1 c0,0







γ
(i)
i

γ
(i)
i−1
...

γ
(i)
0


 .

The matrix in (6) is nonsingular because if a vector (γ̂i, γ̂i−1, . . . , γ̂0)T fulfils the

identity (6) then the vector r̂i+1 = ri+A(γ̂iri+ . . .+ γ̂0r0) is orthogonal to r̃0, . . . , r̃i

and lies in r0 + AKi+1(A, r0). But the uniqueness implies that r̂i+1 = ri+1 and

thus γ̂j = γ
(i)
j , j = 0, . . . , i. The matrix in the identity (6) has to be nonsingular.

If we denote the three-diagonal matrix in identity (6) as Vi, then det(Vi) �= 0 for
i = 0, . . . , k. Let us denote by V

(j)
i the matrix that arises from the matrix Vi if we

substitute the jth column of the matrix Vi by the left hand side of identity (6). Then

according to the Cramer rule for j = 0, . . . , i we have

γ
(i)
j =

det(V (i+1−j)
i )
det(Vi)

.

If we define V−1 = 1, then we can write det(V
(j)
i ) in the form

(7) det(V (j)i ) = (−1)j · r̃T
i ri ·

i−1∏

l=i−j+1

cl,l+1 · det(Vi−j), j = 1, . . . , i+ 1.

From (7) it follows that det(V (i+1−j)
i ) �= 0 and hence γ

(i)
j �= 0 for j = 0, . . . , i. �

Theorem 1. Let us suppose that di �= 0 for i = 1, . . . , k + 1, r̃T
i ri �= 0 for

i = 0, . . . , k and p0 = r0, p̃0 = r̃0. Then we can compute the vectors ri+1, r̃i+1 and

xi+1 for i = 0, . . . , k from the recurrences

ri+1 = ri − αiApi,(8)

r̃i+1 = r̃i − αiA
T p̃i,(9)

pi+1 = ri+1 + βipi,(10)

p̃i+1 = r̃i+1 + βip̃i,(11)

xi+1 = xi + αipi,(12)
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where

(13) αi =
r̃T
i ri

p̃T
i Api

, βi =
r̃T
i+1ri+1

r̃T
i ri

.

�����. According to relation (5) (we know that γ
(i)
j �= 0 for j � i � k) we can

write

(14)

ri+1 = ri + γ
(i)
i A

(
ri +

γ
(i)
i−1

γ
(i)
i

ri−1 +
γ
(i)
i−2

γ
(i)
i

ri−2 + . . .+
γ
(i)
0

γ
(i)
i

r0

)

= ri + γ
(i)
i A

(
ri +

γ
(i)
i−1

γ
(i)
i

(
ri−1 +

γ
(i)
i−2

γ
(i)
i−1

ri−2 + . . .+
γ
(i)
0

γ
(i)
i−1

r0

))

= ri + γ
(i)
i A

(
ri +

γ
(i)
i−1

γ
(i)
i

(
ri−1 +

γ
(i)
i−2

γ
(i)
i−1

(
ri−2 + . . .

γ
(i)
1

γ
(i)
2

(
r1 +

γ
(i)
0

γ
(i)
1

r0

)
. . .

)))
.

We can rewrite all residuals (i = 0, . . . , k) in the form (14). Let us prove that

(15)
γ
(l)
i−1

γ
(l)
i

=
γ
(j)
i−1

γ
(j)
i

for 1 � i � l � k, 1 � i � j � k

holds. We have

γ
(l)
i−1

γ
(l)
i

=
det(V (l+2−i)

l )

det(V (l+1−i)
l )

=

(−1)l+2−i · r̃T
l r̃l ·

l−1∏
j=i−1

cj,j+1 det(Vi−2)

(−1)l+1−i · r̃T
l r̃l ·

l−1∏
j=i

cj,j+1 det(Vi−1)

= − ci−1,i
det(Vi−2)
det(Vi−1)

.

We can see that the right-hand side does not depend on the index l. Likewise we
can write

γ
(j)
i−1

γ
(j)
i

= −ci−1,i ·
det(Vi−2)
det(Vi−1)

and (15) holds. Let us define real numbers αi and βi as

αi = −γ
(i)
i and βi−1 =

γ
(i)
i−1

γ
(i)
i

.
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Then according to relations (15) and (14), we can rewrite the residuals ri+1 (i =

0, . . . , k) in the form

(16) ri+1 = ri − αiA(ri + βi−1(ri−1 + βi−2(ri−2 + . . . β1(r1 + β0r0) . . .))).

If we define

p0 = r0, pj+1 = rj+1 + βjpj for j = 0, . . . , i− 1,

we can rewrite (16) in the form

(17) ri+1 = ri − αiApi for i = 0, . . . , k.

Since αi �= 0 we have that p̃T
i Api = −r̃T

i ri/αi �= 0. Let us derive now the well-known
forms of the real numbers αi and βi. We find that

p̃T
i ri+1 = p̃T

i ri − αip̃
T
i Api

and thus we obtain for αi the formula

αi =
p̃T

i ri

p̃T
i Api

.

Since
p̃T

i ri = r̃T
i ri + βi−1p̃

T
i−1ri = r̃T

i ri,

we obtain

αi =
r̃T
i ri

p̃T
i Api

.

Let us carry on the derivation of βi. We have

r̃T
i pi+1 = r̃T

i ri+1 + βir̃
T
i pi

and therefore

βi =
r̃T
i pi+1

r̃T
i ri

.

Since

r̃T
i+1ri+1 = r̃T

i+1pi+1 = r̃T
i pi+1−αip̃

T
i Api+1 = r̃T

i pi+1+
αi

αi+1
p̃T

i (ri+2−ri+1) = r̃T
i pi+1,

we get

βi =
r̃T
i+1ri+1

r̃T
i ri

.

The forms (9) and (11) can be proved analogously. The form (12) we get from

b−Axi+1 = b−Axi − αiApi.

�
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According to the previous theorem, we can formulate Algorithm of BiCG.

Algorithm BiCG
Input x0, A, b, r̃0 �= o, ε;
r0 = b−Ax0;

p0 = r0; p̃0 = r̃0;
k = 0;

while ‖rk‖
‖r0‖ > ε do

begin
αk = r̃T

k rk

p̃T
k Apk

;
xk+1= xk + αkpk;

rk+1= rk − αkApk;
r̃k+1= r̃k − αkAT p̃k;

βk =
r̃T

k+1rk+1

r̃T
k rk

;
pk+1= rk+1 + βkpk;

p̃k+1= r̃k+1 + βkp̃k;
k = k + 1

end;
x∗ = xk.
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