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OPTIMAL DESIGN PROBLEMS
FOR A DYNAMIC VISCOELASTIC PLATE
I. SHORT MEMORY MATERIAL

IGOR BOCK, Bratislava

(Received March 22, 1993)

Summary. We deal with an optimal control problem with respect to a variable thickness
for a dynamic viscoelastic plate with velocity constraints. The state problem has the form
of a pseudohyperbolic variational inequality. The existence and uniqueness theorem for the
state problem and the existence of an optimal thickness function are proved.

Keywords: optimal control, viscoelastic plate, variable thickness, pseudohyperbolic vari-
ational inequality, penalization

AMS classification: 49J20, 49J40, 35L85, 73F15

Optimal design problems with respect to the thickness of a viscoelastic plate made
of a short memory material were considered in papers [2], [3]. State problems were
initial-boundary value problems for pseudoparabolic equations and variational in-
equalities. In contrast to these papers we consider here dynamic problems with
velocity constraints. The state problem is then an initial-boundary value problem
for a pseudohyperbolic variational inequality. It involves also the hyperbolic case.
Unilateral hyperbolic optimal control problems with controls on right-hand sides were
studied by D. Tiba ([10], [11]). We consider control parameters in coefficients of the
variational inequality as well as on the right-hand side. The first chapter is devoted
to the formulation of the state problem. Using the method of penalization we prove
the existence and uniqueness theorem for a solution of an initial-boundary value
problem for a pseudohyperbolic variational inequality in the second chapter. The
existence of an optimal thickness function will be established in the third chapter.
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1. FORMULATION OF THE STATE PROBLEM

We consider a thin viscoelastic plate made of a short memory material occupying
the domain G C R? of the form

G= {(x,z) ERY: z=(z1,12) € Q,—%e(x) <z< %e(x)},

where 2 € R? is a bounded domain with a Lipschitz boundary 992. We assume the
plate to be clamped on the part

_ 3. _1 1
"= {(s,z) eR’:sel CO9, 26(3) <z< 26(3)}

of the boundary surface dG. Further, it is subjected to surface tractions g(s) acting
on the part

1 1
— 3. —_ =
Yo = {(s,z) e R%:sely CON, 2e(s) <z< 26(5)},
| 9 01‘2=(0, Tl Ufz =6Q,

and to forces f(z) acting perpendicularly on the part
Y3 = {(z 2)eER¥:z€Q,2= le(z)}
) b 2

The displacement vector-valued function u: [0,7] x G — R3 and the symmetric
tensor-valued function o: [0,7] x G — R3X3 fulfill the relations

sym
(1.1) ou; —dive =0 on[0,T] xG,

(1.2) u(0) =up inG,

(1.3) u'(0)=vo inG,

(1.4) u(t,s) =0 on[0,T] X7,

(1.5) o-n=(0,0,g(t,s)) on[0,T]x e,
(1.6) o-n=(0,0,f(t,z)) on[0,T]x s,
(1.7) o=A0@)e' + AV(t)e on [0,T] x G,
(1.8) i = 5 (e + i)

R332 is the set of all 3 x 3 symmetric matrices, n is the exterior unit normal vector

on 8G, o: G — R is the density function, A(®(.), A1(.) are fourth-order symmetric
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tensor-functions fulfilling the assumptions

(L9) AGL() e C*(0,T),
(L10)  AGL®) = AL = AL, ),
(1.11) AR (Besien > 0,
(1‘12) AS,)CI (t)eijskl 2 a1€55€i5, 01 > 0,
d

(1.13) [dt E_?I)cl(t + A‘l]kl( )]Eijt:‘kl > Q2€;j€45, Q2 > 0,

d
(1.14) ASJ,{,( Jeijert <0, for all {e;;} € R3X3 and ¢ € [0,T].

Multiplying the equilibrium equation (1.1) by a test function v and integrating by
parts through the domain G we obtain the relation

e(x)/2
(1.15) / / / [o(@)u” (4, 7) - v(z) + 03je:;(v)] d dz
Q" —e(z)/2
e(s)/2
= // f(t,z)vs(z) dz +% / g(t, s)us(s) dzds
Q T2 /2
for all v € H'(Q)? such that v =0 on 7,

where H*(Q) is the Sobolev space of all functions with generalized derivatives up to
the order k belonging to the space L?(f).

Considering the Kirchhoff hypothesis of a plate ([8], 10.4.41) we express the dis-
placement vector u in the form

ow
u] zaxj’ J 1) ) u3($) 'LU($)
Using the relations

€13 = €23 = €33 =0,
Vi = —2U;, V3 =0, Eij(V) = —2Uyj, i,j = 1,2

we obtain from (1.15) the integral relation for the deflection function w:

(1.16) // X)[ "ta,-)v(z)+ie (@)w!! (t,x)v/i(z)]

+ —ea(a:)[Ag?,)d B)wigi(t, ) + A(.Jl.,)c,(t)w:kl(t, z)|vrij (w)} dz

// fit,z)v(z)dz + fe(s)g(t s)v(s)ds forallv eV,

2
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where

Vz{veHz(Q):v:S—Z:OOnf‘l}.

In the sequel we shall consider the constraints on velocities of vibrations which will
be introduced in the next chapter.

2. EXISTENCE AND UNIQUENESS THEOREM FOR A PSEUDOHYPERBOLIC
VARIATIONAL INEQUALITY

We assume the dynamic problem for a viscoelastic plate considered in the first
chapter with constraints on the velocities of vibrations. The pseudohyperbolic vari-
ational inequality then appears instead of the relation (1.16). Admissible deflections
of the plate belong to the space V, which is a Hilbert space with the inner product

(u,v) = //’U,/ij’l)/ij dz
Q

and the norm ||u|| = (u,u)!/?. Admissible velocities belong to the closed convex set
K CV,0e€ K. We shall deal with an initial-boundary value problem

(2.1) For a.e. tE[O T):

// ' (t,2) (v(a) - w'(t,2))

+ Ilges(z)wl'g(t,z) (vi(z) — w,’i(t,x))]

+ 35 ! 3(1 AL, (Bw!(t,2) + AL (w8, 2)][v i (2) — w"ij(t,it)]} dz

/ £6,9)o@) — (6] + § els)at s)o(s) — ' (t,9)]ds
r2
for allv € K,

(22) Ww'(t)e K forae. te€0,T],
(2.3)  w(0,z) = wo(e,z),
(24) w'(0,z) =wi(z), z€N.
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We have wo = 0 in the case of the Voight model ([6]). In the case of the Zener model
([9]) wo(e,.) € V is a solution of the corresponding elastic problem

(2.5) / [ 3¢ @ AL Owos @vala) do
= / folz)v(z)dz + fe(s)go(s)v(s) ds foralveV.
Q I
Further, we assume
wy € K, few"?(0,T;L*Q)), ge€W"(0,T;L*T2)),

where W12(0, T; X) is the Sobolev space of functions defined on (0, T') with values in
a Hilbert space X with first-order generalized derivatives (with respect to t) belonging
to L2(0,T; X) (see [1] or [3] for more details).

The density and thickness functions g and e are continuous on  and fulfill the
bounds 0 < ¢; < o(z) < 02, z € Q and

(2.6) 0<e; <e(z)<ey foralze.

We denote by E the set of all functions e € C(?) fulfilling the estimates (2.6).
Let V* be the dual space with respect to V with the norm ||.||. and the duality
pairing (.,.). The inequality (2.1) can be expressed in the operator form

(219 (B(e)w" (t) + Ao(e, t)w'(t) + A1 (e, thw(t), v — w'(t))
> (F(t) + G(e,t),v —w'(t)) forallve K,

where the operators B(e) € L(H!(Q),V*), Ao(e,t) € L(V,V*), Ai(e,t) € L(V,V*)
and the functionals F'(t), G(e,t) € V* are defined by

(2.7) (B(e)u,v) = / / o(z) [e(x)u(z)v(:c) + -11—263(1)11:,-(:1;)11/,-(:1:)] de
(28)  (Ar(e,t)u,v) = / / (@) A), (Owij(@)vi(z) de, r=0,1;
(2.9) (F(t),v) = / f(t,2)(@) dz,

o
210)  (Gle,t),v) = }f e(s)g(t, s)u(s)ds, veV.

2
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We solve the problem (2.1'), (2.2), (2.3), (2.4) using the penalized initial value
problem

(2.11) (B(e) + eJ)w! (t) + Ao(e, t)wi () + éﬁ(wé(t))
+ Ai(e, t)we(t) = F(t) + G(e,t), te€[0,TY;

(2.12) we(0) = wo(e),

(2.13) wL(0) = wy,

where J: V — V* is the canonical operator defined by
(Ju,v) = (u,v), u,v €V,
and B: V — V* is the penalty operator defined by
B(u) = J(u— Pgu), u€eV.

We recall ([3]) that Px: V' — K is the projection operator and the penalized operator
B fulfills the conditions

(2.14) i) Bv)=0&vEK,
i) (B(v) - Bw),v—u) >0,
i) (B(u),u) 20,
iv)  |IB(w) — B)||s« < 2|lu—v| forallu,veV.

Let H'(Q) be the Sobolev space equipped with the inner product

(u,v); = !/(uv + wiv;) dz

and the norm ||u||; = (u, u)}/ 2. We assume that the initial functions wg(e), v; fulfill

the condition
(2.15) Ao(e,0)w; + A;(e,0)wo(e) € H'(Q)* for every e € E.

Theorem 2.1. Let T > 0, € > 0. There exists a unique solution w., €
C2([0,T); V) of the initial value problem (2.11), (2.12), (2.13) fulfilling the esti-
mates

(2.16) llwl ()12 + |lwe ()| < My for every t € [0,T],
(2.17) o ()12 + I, (DI < My for every ¢ € [0,T],
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with constants My, M2 not depending on e and .

Proof. The problem (2.11), (2.12), (2.13) can be expressed as an initial value
problem of the first order in V x V:

(2.18) Ul(t) + C-(t)UL(t) = Fx(t), te[0,T),
where

_ (wo(e) _ 0
o = ( wy )’ F® = ([B(e) +eJ]"LF(t) +G(e,t)]>
and the operator C:(t): V x V — V x V is defined by

0 -I
c.) = ([B(e> +eJ] M Aulet) [Ble) +eJ]7 [Ao(e, ) + 18] ) '

The operator B(e) + eJ: V — V* is linear, bounded and strongly monotone and
hence there exists a linear bounded inverse operator [B(e) + eJ]™1: V* — V. The
operator C¢(.) is Lipschitz continuous in the space C([0,7],V x V) and due to the
theory of ordinary differential equations in Banach spaces ([7]) there exists a unique
solution

U, = (), u®)T € C*([0,T],V x V)

of (2.18), (2.19). The function we = u is then a unique solution of the problem
(2.11), (2.12), (2.13).

It remains to verify the estimates (2.16), (2.17). After duality pairing of the
equation (2.11) with w.(t) we obtain due to the symmetry of B(t) and A;(e,t) the
relation

(2:20) S [((BE) +eT)ut (), ul (1) + (s (e, Duue(t), we (1)
= (A1 (e, e (1), we (1)) + 2{Ao(e, hwl (t), we ()

+ 28l 0)),ut () = 2F O + Gle, ), wl(®), e 0.T)
Let us introduce the real function ¢, (¢) by
(2.21) we(t) = ((B(e) + eJ)wL(t), w.(t)) + (A1 (e, )we (t), we ().

Due to the imbedding theorem and the theorem on traces in the Sobolev space
H!(Q), the right-hand side of (2.20) fulfills the inequality

PO+t
1/2 2 1/2 ,
<af| / feopas| "+ | f (e(s)a(t.9)*as]  Jlut 0l
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with a constant ¢; depending only on Q and I';. Due to (1.10), (1.12), (2.14 iii) the
relations (2.20), (2.21) then imply the inequality

PL(t) < // f(t,z)*dz + % (e(s)g(t,s))2ds + co|lwl ()| + csllwe ()%, t €[0,T]
Q r

and integrating it we obtain

e (t) < callwn|f? + ellwi || + csllwo(e) |
T

+/ [//f(t,x)2 dz+%(e(s)g(t,s))2ds] dt

0o Q I

t ¢
+ ¢ / llwl(T)||? d7 + c3 / |lwe(7)||2dr  for all t € [0, T).
0 0
Using (1.12), (2.6), (2.7), (2.21) we arrive at the inequality

t
pe(t) <o+ C7/(pe(7') dr for all € € (0,20), t € [0,T].
0

The Gronwall lemma then implies
©e(t) < cgexp(ert), € € (0,€0), t €[0,T]

and by virtue of (1.12), (2.6), (2.7), (2.21) we obtain the estimate (2.16).
Further, we differentiate the equation (2.11) with respect to ¢ and arrive at

(2.22) [B(e) +eJ]w"(t) + Ao(e, tyw ()
+[Ao(e,t) + Av(e, )]we (t) + Aj (e, hwe (t) + éﬁ(wé (®)’
= F'(t)+ G'(e,t) for ae. t €[0,T].

The function B(w.(.)) is almost everywhere differentiable in the space V*, because
V* is reflexive and f is Lipschitz continuous (see [5], 143-145). The third derivative
w!" € V exits almost everywhere on [0, 7] due to the relation

wl () = [Ble) + eJ) L [F(t) + Gle, 1) — Aole, tyuwl (1
~ ZB(i(0) - Aie, 0w (0], t€[0,T)
and the differentiability of F(t), G(e,t).
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After duality pairing of (2.22) with w (i) w: obtain in the same way as above the
relation

(2.23) %[(( (e) + eJ)wl, wl) + ((Ap(c. ") + Ar (e, t))wl #), wL(t))]
— ((Ag (e, t) + Al (e, 1)) wi(t), wi(t)) + 2(Aole. )wy (t). wy (t))

+ 2(Aj (e, t)we (), wf (t)) + E(ﬁ(we(t)) s we (1
=2(F'(t) + G'(e, t),w’(t)) forae. t€[0,T].

Monotonicity of 3 implies the inequality
(2.24) (B(wl(t)) ,w!(t)) 20 for ae. t €[0,T]

and integrating (2.23) we obtain, taking into account (1.11), (2.11), (2.16), (2.24),
the inequality

(2.25) ((B(e) +eJ)w’, wl) + ((Ao(e t) + Ai(e, t))w.(t), wl(t))
(H(e) (B(e) +¢eJ)” H(e))1 + ((Ap(e, 0) + Ay (e, 0))wy,wn)

/( (A5 (e, ) + A(e,7))wi(r), wi(r)) dr

2/t(A' (e, T)we (1), w2 (7)) d'r+02/||w (r)2dr

0
T
+ f'(t,z)*dz + ¢ (e(s)g'(t, s))2 ds| dt
[ rueres frosuors
for a.e. t € (0,71,
where
(2.26) H(e) = F(0) + G(e,0) — Ao(e,0)w; — A (e, 0)wo(e).

Integration by parts yields the relation

t t

(2.27) —/(Ai(e,T)we(T),w;'(T))dT = /(Ai'(e,f)we(f),WL(T))dT

0 0
+ /(Aﬁ(eaT)wé(T),wé(T))dT— (A (e, t)we(t), we(t))
0
+ (A (e,0)wo(e), wr).
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Using (1.9), (1.19), (2.6), (2.7), (2.25), (2.27) we arrive at the inequality
T
esllwl @ + i) < co+ [ [ [[ 70220+ § (el 0,9))" as]
0 Q T2

T
+enollue (@ + e [ lwe(r)|? dr
0
t
+ e ()P + (7))
0
Considering (2.6) and the just verified estimate (2.16) we obtain the inequality

t
llwe @IF + llweON* < caz + e /[Ilwé(f)ll2 + [lwg ()31 dr
0

for every t € [0,T).

The Gronwall inequality implies (2.17), which completes the proof. a

Using Theorem 2.1 we obtain existence, uniqueness and a priori estimates for a
solution of the unilateral problem (2.1)-(2.4).

Theorem 2.2. There exists a unique solution
w(e) € WH(0,T; V)N W2 (O,T; Hl(Q))
fulfilling the estimates

(2.28) llw' (e, t)||? + |lw(e, t)||> < My  for all t € [0,T),
(2.29) lw” (e, t)||? + ||w'(e,t)||> < My for a.e. t € [0,T].

Proof. We shall use a similar approach as in the proof of Th. 2.2 from {3].

a) Eristence. The family of functions {w,}, € > 0 from Theorem 2.1 is uniformly
bounded with respect to € in all spaces W1?(0,T; V), W27 (0,T; H'(Q)),1 < p < 0.
Further, the sets {w.(t)}, {w.(t)} are bounded in V for every t € [0,T]. Moreover,
we have w(0) = wo(e), w.(0) = w;. Then there exist a sequence {e,} (€, > 0) and
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a function w € W1°(0,T; V) N W2°°(0,T; H*(R2)) such that

(2.30) lim e, =0,
(2.31) we, (t) = w(t) (weakly) in V for every t € [0,T),
(2.32) w, (t) = w'(t) inV forae. te[0,T],

(2.33) w, () = w'(t) in H(Q) for every t € [0,T],
(2.34) we, >w  (weakly star) in L*(0,T;V),

(2.35) w. Sw’'  in L*(0,T;V),

(2.36) w! Sw”  in L°(0,T; H(Q)).

The estimates (2.28), (2.29) then follow from the estimates (2.16), (2.17) and from

the inequalities

. "
lw" || oo 0,75 51 (02)) liminf [|w;, || 0,7;11 @)

<
llw'l| L= 0,1;v) < lim inf llwe, |0,V
llw'(t)|l; <liminf||w, (¢)|ly for every t € [0,T],
n—oo
<

lw(®)]| lin_l}inf [lwe, (t)|l1  for every t € [0,T].

It remains to verify that the function w is solution of the problem (2.1)-(2.4). We
rewrite the penalized equation (2.11) in the form

(2.37)  B(wl, (t) =ea[F(t) +Gle,t) — (B(e) + end)w’ (2)
— Ao(e, t)wl, (t) — A1(e, t)we, (t)] for all t € [0,T).

The sequences {we, (t)}, {w]_(t)} and {w! (t)} are bounded in V and H'(f), re-
spectively. The sequence {B(e)w, (t)} is then bounded in V* as the operator B(e)
belongs to L(H'(2),V*). Combining (2.25) and (2.27) we obtain boundedness of

set {\/Enw (t)} in V and of {\/nJw! (t)} in V*. The relations (2.30), (2.37)

then imply

lim B(w. (t)) =0 in V*forallte [0,T).
Monotonicity of 3 and the relation (2.32) then imply
(2.38) for a.e. t € [0,T] (B(u),w'(t) —u) <0 for every u € V.

Inserting u = w'(t) + sv, s > 0, v € V into (2.38) we obtain

(B(w'(t) + sv),v) >0 for every v € V.
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Due to the Lipschitz continuity of 3 the limiting process s — 0 yields
(B(w'(t)),v) >0 forallveV

and hence
B(w'(t)) =0 for ae. t €[0,T],

which due to (2.14 i) implies
w'(t) e K forae. tel0,T).

Further we verify the initial conditions (2.3), (2.4). After changing the function w
on the set of zero measure in [0, T] we obtain ([5])

w € WH(0,T; V) nW?>>(0,T; H'(?)) nC([0,T], V) n C*([0,T], H (%))

and
w(t) =w(0) + [ w'(7)dr,
/
w'(t) = w'(0) + /w"(r) dr for every t € [0, 7).
0

Simultaneously we have

t

we,, (t) = wo(e) + /wé" (7)dr,
0

w, (t) =w + /w;’“ (r)dr for every t € [0,T)
0

and comparison with (2.13)—(2.36) implies the fulfilling of the initial conditions
(2.39) w(0) = wo(e), w'(0) =w;.

We proceed with the proof of the variational inequality (2.1') which is equivalent
o (2.1). Let v € L*(0,T;V) be an arbitrary function such that

v(t) € K for ae. t €[0,T]
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The properties of the penalty operator 8 imply the inequalities
forae t€[0,T): (B(wg, (t),v(t)—w. (1)) <0 n=12,....
Then we obtain from (2.11) the inequalities

for a.e. t € [0,T]: ([B(e) +enJwy (t) + Ao(e, t)w; (t) + Ai(e, t)ec, (t)
_F(t)_ (e,t),v(t)-— e"(t))>07 n=12,....

Integrating we arrive at the inequalities

(240) (B(e)ul, (£),w, (1) + (A1 (e e, (£), we, (1)
+ [[12lofe, Tyt (7),wl, (7)) = (A4 e, Py (7) e ()] dr
0
< BEJwn, 1) + e+ (42, 0)uo(e) wo(e)

+ 2/([3 e) +enJwl (1) + Ao(e, 7)eL, (1) + A1(e, T)we, (1),v(7)) dr

t
+2/ (1) + G(e,7),w. (1) —v(r))dr for everyn=1,2,....
0

The functionals on the left-hand side of (2.40) are weakly lower semicontinuous on
the spaces H!(Q2), V and W12(0,T; V) due to the assumptions (1.10), (1.11), (1.12),
(1.14) and the form (2.7) of the operator B(e). Further, we have the relation

t
(2.41) ' nlerolo En /(Jwé’n (7),v())dr =0 for every v € L2(0,T;V)
0

which is a consequence of boundedness of the sequence {\/,Jwyg, (t)} in V* verified
above. The relations (2.30)-(2.36), (2.39), (2.41) then imply the inequality

(B(e)w' (), w'(2)) + (A1 (e, )w(t), w(?))

+ /tIZ(Ao(e,T)w’(T),w’(T)) = (A1 (e, )w(r), w(r))]dr

< (Bz)e)w'(O),w'(O)) + (A1 (e, 0)w(0), w(0))
+2 /t [(B(e)w” (r) + Ao(e, 7w (T) + Ay (e, 7)w(T),v(r)) dT
+ (;'(r) +Ge,7),w'(r) —v(r))]dr  for ae. t € [0,T],
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which can be rewritten in the form

t

(2.42) /(B(e)w"(r) + Ao(e, 7)w' (1) + A1(e, )w(T)
— F(r) = G(e,7),v(r) —w'(7))dr >0

for all v € L'(0,T; V), v(t) € K a.e. on [0,1].
Using Proposition 3 from [4] (appendix I) we obtain that

for a.e. t € [0,T]:
(B(e)w" (t) + Ao(e, t)w'(t) + A1 (e, t)w(t) — F(t)G(e,t),v —w'(t)) >0
forallve K

and the inequality (2.1') as well as (2.1) is proved.

b) Uniqueness. Let wi, wa be two solutions of the problem (2.1)-(2.4). Inserting
successively w = w;, v = wj and w = wp, v = w] in (2.42) and adding we obtain
the inequality

t

(2.43) / (B(e) (w1 — ws)" () + Ao(e, ) (wy — wa)' ()
0
+ Ai(e, 7)(wy — wa)(7), (w1 — w2)' (7)) d7 < 0.

Let us denote u = w; — wy. We have u(0) = «'(0) = 0. The inequalities (1.14),
(2.43) then imply

t

(2.44) (B(e)u'(t),u'(t)) + 2 /(Ao(e, ) (1),u (7)) dT
0

+ (A1 (e, t)u(t),u(t)) < /(A'l (e, 7)u(r),u(r))dr < 0.

0

The operators B(e): H'(Q) — (H'(Q))" and Ai(e,t): V — V* are positive definite,
the operator Ag(e,7): V — V* is nonnegative. The relations (2.44) then imply
u=w; —wz = 0 on [0,7] and the proof of the theorem is complete. a
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3. SOLVING AN OPTIMAL CONTROL PROBLEM

We assume a variable thickness e € F of the plate in the role of a control parameter.
Considering the operator form (2.1') of the variational inequality (2.1) we shall deal
with the initial value state problem

for a.e. t € 0,T]:

(3.1) (B(e)w" (e, t) + Ao(e, t)w' (e, t) + A1 (e, t)w(e,t)
—F(t) - G(e,t),v—w'(t)) 20 forallve K,
(3.2) w'(e,t) € K for ae. t€[0,T),
(3.3) w(e,0) = wo(e) €V,
(3.4) w'(e,0) = w; € K.

We associate with (3.1)—(3.4) the minimum problem

(3.5) j(w(é),é) = min j(w(e),e),

e€Uaq

where U,q is defined by

(3:6) Uad = {e€H2(Q)30<61 <e(r)<exforallzeq,
lel <C1,//e(:c)dx:02}
Q

and the functional
i W0, T; V) nw22(0,T; H'(Q))] x H*(Q) = R
is weakly lower semicontinuous, i.e.

(3.7) w, =w in W"?(0,T;V) and in W??(0,T; H'(2)),
en—e in H*(Q) = j(w(e),e) < liminf j(w(en),en).
n—00

The data of (3.1)—(3.4) fulfill the assumptions

(3.8) (B(e)u,v) = (B(e)v,u),
(3.9) (B(e)u,u) > Bollull}, B >0
for all u,v € H*(Q), t € [0,T), e € Uag,
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(3.10) Ao(e, 0)wy + Ay (e, 0)wo(e) € H'(Q)*,

(3.11) Ar(e,.) € C*([0,T],L(V, V™)),

(3.12) (Ar(e,t)u,v) = (Ar(e, t)v, u),

(3.13) (Ao (e, t)u,u) >0,

(3.14) (A1(e,t)u,u) > aqlul®>, ay >0,

(3.15) (Ag(e,t) + Ar(e, t)]u,u) > agllull®>, az >0,
(3.16) (Al (e,t)u,u) <0

forall u,v eV, t €[0,T], e € Uaq; r =0,1,

(1) Ar(en,.) = Ar(e,.), r=0,1

in C1([0, T}, L(V,V*))
(3.17) en—e in H*(Q) = { ii) B(en) = B(e) in L(H (), (H*())")
iii)  Gen,.) > G(e,.) in (H'())"

L iv) wo(en) = wo(e) in V.

The property (3.17) is a consequence of the compact imbedding H2(Q) cC C(Q), of
the theorem on traces in the space H!(f2) and of the relation (2.5) determining the
initial function wo/(e).

Now, we formulate and verify the existence theorem for the Optimal Control Prob-
lem (3.1)—(3.4).

Theorem 3.1. There exists at least one solution of the Optimal Control Problem
(3.1)-(3.5).

Proof. Due to Theorem 2.2, for every e € U,q there exists a unique solution
w(e) € W= (0,T; V)N W2>(0,T; H'(Q)) of the state initial value problem (3.1)-
(3.4). We can define a functional

J: U = R, J(e) =j(e,ule)).
Let {en} € Uaq be a minimizing sequence for J:
(3.18) nll}n;o J(en) = eg{ljfml J(e),

where we put inf J(e) = —oo if the set {J(e)} is not lower bounded.

e€Uaq

Since the set U,q is bounded, convex and closed in the space H?(f), there exist
an element € € U,q and a subsequence of {e,} (denoted again by {e,}) such that

(3.19) en —e in H*(Q).
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Denoting w(en) = w, we rewrite the state problem (3.1)—(3.4) for e = e, in the
following form:

for a.e. t €[0,77]:

(3.20) (B(en)wi(t) + Ao(en, t)ws, (t) + A1(en, t)wn(t)
— F(t) — G(en,t),v —wp(t)) >0 forallve K,
(3.21) w,(t) € K for a.e. t €[0,7],
(3.22) wn(0) = wo(en) €V,
(3.23) w! (0) = w; € K.

Using the estimates (2.28), (2.29) we obtain an a priori estimates for w, and w;;:

(3.24) lwnllwreoo,m;v) + lwnllLoeo,r;Hr(0)) < M3, n=1,2,....

Then there exists a function w € W1>(0,T;V) N W2 (0,T; H'(?)) and a subse-
quence of {w,} (denoted again by {w,}) such that

(3.25) w, ~w in W"*(0,T;V) and in W22(0,T; H'(Q)),
(3.26) Wy 2w, w, 2% in L®(0,T; V),

(3.27) wi 2w’ in L*®(0,T; H'(Q)),

(3.28) wn(t) = w(t) inV forallt e [0,T],

(3.29) wh(t) =w'(t) inV forae. t€[0,T),

(3.30) wh(t) =~w'(t) in HY(Q) for all t € [0,T).

The relations (3.21), (3.29) imply
(3.31) w'(t)e K forae. te(0,7)
Further, from (3.17 iv), (3.20), (3.21), (3.25)-(3.30) we obtain the initial conditions
(3.32) w(0) = wo(e), w'(0) =ws,
Let v € L'(0,T;V) be an arbitrary function such that
v(t) e K forae. t€[0,T].

The inequality (3.20) implies

t

(333) [ (Bleaull(r) + Aolen, L") + Aren, Tun(r)
0
— F(1) — G(en,7), V(1) —wl(1))dr 20, n=1,2,....
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The inequality (3.33) can be expressed in the form
(Ben)ul 0,0, 0) + (s e, () a8
+ [[12(Aolen, 700 (7), 0, (7)) = (AL (e, TV (7), wn ()] 0
< (Blenuly (0) 1 0) + (s e O)un(0), i 0)

+ 2/(B(en)w::(r) + Ag(€n, T)wi (1) + A1(en, T)wn(7),v(r)) dT
0

t

+2 / (F(7) + Glen, 7), wh(r) — o(r)) dr
0

and, further,
(3.34) (B@)wy, (t), wn (1)) + (A1(E, )wn(t), wa(t))

t

+ [ [2(40(e, (), wh () = (44 @ (), wn ()] dr
0
< ([B(@) - Blew)wly(t), 0l (1)) + ([A1(,£) — As(em, )]wn(t), wa(t))

+ 2/[(Ao(é, 7) — Ao(en, 7)Jwl (1), w) (7)) dT

(0]
- / (AL, 7) — AL (en, )wn(P)wn(r)) dr
0
+ (B(en)w1,w1) + (A1(en, 0)wo(en), wo(en))

+ 2/(B(en)wﬁ(1') + Ao(en, T)wy (1) + A1(€n, T)wn (1), v(7)) d7
0
+ 2/<F(T) + Glem, Ty wl(7) = v(r)) dr, n=1,2,....
0
The functionals v = (B(€)v,v), v = (A; (€, t)v,v)

w(.) = /[2(,40(@, Tw' (1), w'(7)) — (A1 (& T)w(r), w(r))]d7
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on the left-hand side of the last inequality are weakly lower semicontinuous on the
spaces H}(R2), V, W12(0,T;V) due to the assumptions (3.8), (3.9), (3.12), (3.14),
(3.15), and we obtain applying (3.25), (3.28), (3.30) the inequality
(B(e)w'(t),w'(t)) + (A1 (e, t)w(t), w(t))
2
+ [[12(0(e, 0 (1), (7) - (3 @, ()] dr
0

< liminf {(B(é)w;(t),w’n(t)) + (A1 &, )Tu(t), Ta(t))

n—oo

+ [ 200(E, )W (1), W(1)) = (A1 (&) (r), B (7))}
0

Applying the assumptions (3.17) and the relations (3.25)—(3.30), (3.32) to the right-
hand side of (3.34) we arrive at the inequality

(B (1), (1)) + (A @, (1), (1))
+ [2o(e, )0 (),5(7) - (44, V() W) o
0
< (B@T (0),T(0)) + (A1 (=, 0)m(0), m(0))

+2 [ (Be)w" (1) + Ao(e, )W (1) + A1(e, 7)w(7),v(r)) dT

+2 [(F(1) + G(e,7),w' (1) — v(7))dT.

o . O— .

Using the initial conditions (3.32), the symmetry of operators B(e), Ao(€,t), A1(€,t)
e arrive at the inequality

i
(3.35) / (B@)@"(r) + Ao(e, )W (r) + A (&, 7)w(r)
0
- F(r) - G(e,7),v(r) —w'(r))dr >0 for a.e. t €[0,T],
which implies due to [4] (Proposition 3, App. I) the inequality

(3.36) (B(e)w"(t) + Ao (e, t)w'(t) + A1 (e, t)w(t)
- F(t) - G(e,t),v(t) —w'(t)) 20 forae. t€[0,T).
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Hence the function w: [0,7] — V solves the initial value problem (2.1)-(2.4) for
e = €. The uniqueness of a solution of (2.1)-(2.4) then implies the relations

3.37) W) = w@,b),
(3.38) w(e,) = w(e) in WH2(0,T;V) and in W2%(0,T; H'(Q)).

The assumption (3.7) and the relation (3.18) imply
J(w(®),e) <liminfj(w(en),en) = inf j(w(e),e)

and the relation (3.5) follows, which completes the proof. O

Let X be any Hilbert space z4 € X; let ®: H2(Q2) — R be a weakly lower semi-
continuous functional. Cost functionals can have the form

ji(e,w(e)) = [[Dw(e) — zall% + B(e),
where D: W12(0,T;V)NW22(0,T; H () — X is the linear bounded operator; or

j2(e,w(e)) = ||Dw(e,T) — zal%x + ®(e), D € L(V,X),
j3(6,w(€)) = ”Dlwl(eaT)”2X7 Dl € L(wa)
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