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BOUNDARY VALUE PROBLEMS FOR COUPLED SYSTEMS
OF SECOND ORDER DIFFERENTIAL EQUATIONS
WITH A SINGULARITY OF THE FIRST KIND:
EXPLICIT SOLUTIONS

Lucas JODAR, Valencia

(Received October 25, 1991)

Summary. In this paper we obtain existence conditions and an explicit closed form
expression of the general solution of twopoint boundary value problems for coupled systems
of second order differential equations with a singularity of the first kind. The approach is
algebraic and is based on a matrix representation of the system as a second order Euler
matrix differential equation that avoids the increase of the problem dimension derived from
the standard reduction of the order method.
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1. INTRODUCTION

We consider boundary value problems of the type

(L1) V0 + S0+ 2y = 1), 0<i<t
(1.2) E1y(0) + E2y(1) = E3;  Fiy'(0) + Fay/(1) = F3,

where y, f are vector functions with values in C", Ag, Ay, E;, F; are n x n matrices,
elements of C"*n for i = 1,2, and E3, F3 are vectors in C™.

Problems of type (1.1)—(1.2) appear in spherical shells theory [6,12], and they have
been studied in [13], considering an equivalent extended first order system. Following
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the ideas developed in (3], [4], [5], the aim of this paper is to find an explicit closed
form solution of problems of the type (1.1)-(1.2), avoiding the increase of the problem
dimension but without the assumnption of the existence of solutions for the associated
algebraic matrix equation

(1.3) 2P+ (A= DZ+ Ag =0.

The paper is organized as follows. In Section 2 we present a closed form expression
for the general solution of the homogeneous equation

(1.4) y'(t) + %y’(t) + %z (t)=0, 0<tg1
as well as existence conditions and the corresponding closed form expression for the
solutions of (1.4) continuously differentiable and prolongable to the point ¢ = 0. In
Section 3 we consider the boundary value problem (1.1), (1.2).

If S is a matrix in C™*" we denote by ST its Moore-Penrose pseudoinverse and
recall that an account of uses and properties of this concept may be found in [1],

[11]. The effective computation of St is an easy mnatter using MATLAB, [9].

2. ON THE HOMOGENOUS EQUATION y"(t) + (A1/)y' (1) + (Ao/t})y(t) =0

For the sake of clarity in the presentation we begin this section by introducing the
companion matrix C associated to the matrix equation (1.3)

(2.1) C= [_(;0 I_IAI].

Theorem 1. Let J = [Diag(J/y,...,Ji)] be the Jordan canonical form of the
matrix C defined by (2.1), where J; is a matrix in C™*™5 for 1 < j < k. If
M = (M;j;) with M;; € C**™i, 1 < i < 2,1 < j <k, is an invertible matrix in
C27%2n such that

(2.2) M([Diag(Jy,..., k)] = CM

and my + ...+ my = 2n, then the general solution of equation (1.4) is given by

k

(2.3) y(t) = ) Myjexp (J; log(t))d;, dj € C™.
j=1



Proof. Note that (2.2) implies that
(2.4) MjyjJ; = —AoMyj + (I — A\)Ma; and MyjJ; = My; for 1 < j < k.
From (2.4) we have
(2.5) My;J} + (A= )My J; + AgMy; =0, 1<j<k

Now let us consider the vector function y;(t) = Mij exp (J; log(t))d; with d; € C™.
An easy computation and (2.5) yield

A A
(O + S0 + 7 (0

= [My;J} + (Ay = )My J; + AoMy;)t=2 exp (Jjlog(t))d; =0 for0< t < 1.

Thus y;(t) is a solution of (1.4) for any vector d; € C™, 1 < j < k and y(t) defined
by (2.3) describes a set of solutions of (1.4) in 0 < ¢ < 1. In order to prove that (2.3)
defines the general solution of (1.4), let z(t) be any solution of (1.4) in 0 <t < 1,
and let z(1) = ¢o, 2'(1) = ¢;. From the uniqueness of solutions for a Cauchy problem
related to (1.4), the result is proved if we find an appropriate vector d; € C™; such
that y(t) defined by (2.3) satisfies the same initial conditions as 2(t) at t = 1. Note
that the derivative of y(¢) defined by (2.3) takes the form

k
J.
Y(t) =) M 5 exp (J; log(1)) d;

i=1
and from (2.4),
k Mo:
(26) AOEDY % exp (J; log(t))d;.
j=1

By virtue of (2.3) and (2.4), the initial conditions y(1) = co, ¥/ (1) = ¢; are satisfied
if there exist vectors dj € C™ such that

d

(2.7) M d;k =[°°].

Since M is invertible, the system (2.7) admits only one solution defined by

d,

Thus the result is established. m]



In order to study the existence of solutions of (1.4) which are continuously differ-
entiable in the closed interval [0,1], it is important to recall that [10], p. 66, implies
that if J; is a Jordan block of size p x p associated to an eigenvalue A;, then

(2.8)

1 logt (logt)?/2! ... (logt)>=!/(p—1)!
1 logt
exp (J; log(t)) = exp (A log(t)) 1 e
log t
1

Hence it follows that if Re();) > 0, then exp (J; log(!)) tends to the p x p zero
matrix as ¢ tends to zero. If Re();) < 0, then exp (J; log(t)) is unbounded as ! tends
to zero. Finally, if Re(\;) = 0, since log ¢ is unbounded as ¢ tends to zero, the matrix
function exp (J;j log(t)) is bounded if and only if the Jordan block J; is of size 1 x 1.
On the other hand, note that the first derivative of y;(t) = M,; exp(J; logt)d; is
y;(t) = (Maj/t)exp(Jjlogt)d;, and due to the invertibility of M = (M;;) and to
(2.4), the block matrices M;; are nonzero for 1 < j < k. An analogous analysis
related to exp(J;j logt) shows that the matrix (1/t) exp(J; logt) = exp ((J; — 1) logt)
remains bounded as ¢ tends to zero if Re(A;) > 1, and when Re(};) = 1, the size of
Jjis 1 x 1.

The previous comments and Theorem 1 yields the following result:

Corollary 1. Let us consider the notation of Theorem 1. Then

(i) Equation (1.4) admits bounded solutions y(t) in all the half-open interval 0, 1],
if and only if there exist eigenvalues Aj of the companion matrix C defined by (2.1)
such that Re()A;) > 1 and if Re(\j,) = 1, then the index of Aj, as an eigenvalue of
C is one.

(i1) Under the hypotheses of (i), if Jy,. .., Jn, are the Jordan blocks of the Jordan
canonical form of C corresponding to those eigenvalues A; satisfying the conditions
of (1), then the set of all bounded solutions y(t) of (1.4) with bounded derivative in
10, 1] is given by

(2.9) y(t) = EMU exp(Jjlogt)d;, d; eC™, 1<j<m<k.
i=1

The set of all values y(1) of the bounded solutions of (1.4) in the interval ]0, 1] is the
range of the matrix M = [My,..., My,]. If d lies in the range of M, then taking
vectors dj in (2.9) satisfying M col(d,,...,dn) = d, one gets a bounded solution y(t)
of (1.4) such that y(1) = d.
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Proof. It is a consequence of the previous comments and the fact that if an
eigenvalue A of C has index one then all Jordan blocks associated to A have size 1x 1,
[7. a

Note that under the conditions of Corollary 1, all solutions y(t) defined by (2.9)
as well as /(1) have a well defined value at t = 0, if their limits as ¢ tends to zero in
(2.9) and in the expression

(2.10) Y(t) =) Majexp ((J; — I)logt)d;

ji=1

exist. From the previous comments it is clear that exp ((J;—1) logt) and exp(J; logt)
tend to the zero matrix as t tends to zero, if J; is a Jordan block associated to an
eigenvalue A; of C with Re(}A;) > 1. If Re(d;) = 1 and Im();) = b; # 0, then,
having index one, it follows that

exp(Jjlogt) = exp ((1 +ib;) logt) = texp(id; logt),
(2.11)  exp ((J; — I)logt) = exp(ib; logt) = cos(b; logt) + isin(b; logt).

Since the limits of the real and the imaginary part of (2.11) as ¢ tends to zero do not
exist, we conclude that in order to have well defined solutions y(t) of (1.4) and with
well defined derivative at t = 0, it is necessary that b; = 0. Thus the following result
has been proved:

Corollary 2. Let us consider the notation of Theorem 1. Then

(i) Equation (1.4) admits continuously differentiable solutions in the closed interval
[0, 1), if and only if there exist eigenvalues \; of the companion matrix C such that
Re(};) > 1 and the single possible cigenvalue with real part equal to one is \; = 1
and has index one.

(ii) Under the hypotheses of (i), if J1,...,J, are the Jordan blocks of the Jordan
canonical form of C associated to eigenvalues Ay, ..., A, with Re(Aj) > 1for1 £j <
p, and Jpy1 = Jpy2 = ... = Ji coincide with the real number 1, then the set of all
continuously differentiable solutions of (1.4) in the closed interval [0, 1] is given by

1 k
(212) y(t) = EM],' exp(J; logt)dj +1 Z M,;d;, dj €eC™ 1<jkk

= fleed
with
k
(2.13) ¥(0) = limy(t) =0, ¥'(0)=limy/(t) = '2;1 My;d;.
I=pr



The set of the attainable values of these solutions at t = 1 is the range of the matrix

= [M11|-~-1M1k]-

3. THE BOUNDARY VALUE PROBLEM

We begin this section with obtaining a closed forin expression for the general
solution of equation (1.1) where f(t) is a continuous function in [0, 1]. Let M = (M;;)
be the invertible matrix in C2"*2? from Theorem 1 and let us write

Lo | - Vn | Vau
Vin |V12| I Vik , ) Vas
(3.1) V=M= o o vl Bl B : ,
a1 Vo2 | o) Var L
Vie | Var
where V;; € C™*" for 1 <7< 2and 1 < j < k. Based on the expression (2.3) we

are looking for a particular solutlon of the mhomogeneous equation (1.1) of the form

k
(3:2) up(t) = D Myjexp(J; log t)d;(2)
j=1
where d;(t) are C™ valued vector functions to be determined for 1 < j < k. Choose
the functions d;(t) so that
di(t)
1 | ——— 0
(3.3) -—l—- M [Dmg(exp(J; logt),...,exp(Jx Iogt))] = [——] .
0 1/t f®)

di (1)
Note that (3.3) implies that y,(t) defined by (3.2) satisfies

k

Y(t) = D MyjJjexp ((J; — I)logt)dj(t),
i=1

Y (t) = D (M3 7 = Mi;J;) exp ((J2 = 21) log )d; (1) + £().

(3.4)

It follows from (3.2), (3.4) and (2.5) that
A A
y;,'(t) + =5 (0 + )

= Z (M]ij + (Ay = )M, J; +AOM1j) exp ((JJ —2I) logt)dj(t) + f(t) = f(v).
j=1



Now from (3.3) and taking into account the notation (3.1), we conclude that
Lo
1 IO ——— 0
(3.5) [Diag(exp(Jl logt),...,exp(J; logt))}M'1 o = [-——} )
oju) -—— L
&, ()

t
(3.6) di(t)+L; +/ exp(—Jjlogs)Vajsf(s)ds, 1<j <k, L; €eC™.
1
Taking for L; the zero vector in C™J for 1 < j < k and denoting
(3.7) u’i = exp(J; logu), u>0,

from (3.2) and (3.6) we have
k oty
(3.8) u() = ZMU/ (2) Vassfis)ds, 0<tgL,
i=1 1

that is a particular solution of (1.1) such that y,(1) = 0. Note also that the derivative

of yp(t) takes the form
k

Z ez —!)/ (l/s)" V2]Sf(5)ds+ZA’IIJV2]tf(t)

= i=1
i /()(J Vojf(s)ds, 0<t<,

and in particular at ¢t = 1 we have

(3.9)

v, 1)—ZM1,v2, f(1) = (ZM,,VZ,) f(1) =0.

Jj=1

From Theorem 1 and the previous comments the following result can be established:

Theorem 2. Let us consider the notation of Theorem 1, let f(t) be a continuous
function in ]0, 1] and let V = M~ = (V;;)T be the block partitioned matrix defined

by (3.1). Then the general solution of (1.1) in 0 < t < 1 is defined by

k
(3.10) y(t) = > Mythid; +y(1), d;eC™, 1< <k
j=1




where y,(t) is defined by (3.8) and satisfies y,(1) = 0, y,(1) = 0.

Corollary 2 provides conditions obtaining solutions of (1.4) which admit a con-
tinuously differentiable extension to the point ¢ = 0. Now we are interested in the
study of the existence of a limit as ¢ tends to zero of the functions yp(t) and y,(t)
defined by (3.8) and (3.9), respectively.

Let us consider the change of variable ¢/s = u in the integral

(3.11) Hi= [ (O st

which yields
1 1
(3.12) H; = —t/ w30V, f(t/u) du = t/ exp ((J; — 31) log u) Va;j f(t/u) du.
t t

Now let us consider the change logu = v. Then (3.12) implies that

0
(3.13) H; = —t/ exp(vJ;)e™?"Va; f(te™") do.

I

ogt

Let us suppose that J; is the Jordan block of size 1 x 1 corresponding to the eigenvalue
A;j = 1, then making the change te™* = p in (3.13) we obtain that

t t
(3.14) Hj:/1 ngf(p)(lp:ng/1 f(p) dp.

If Re(A;) > 1, from (2.8) the integral H; is convergent as t tends to zero if the limit
of the integrals

0
(3.15) Hij(m) = t/ exp (v(A; —2))v™ Vo f(te™")dv, m >0
logt

exists. To study the limit of H/;(m) as t tends to zero, we distinguish the cases A; = 2
and A; # 2. If A\; = 2 then since f is bounded, the integral H;(m) defined by (3.15)

converges to zero as ¢ tends to zero. If A; # 2, then from the boundedness of f and
taking into account [2], p. 92, one gets for m > 1, a £ 0,

av, m m - 3 - ... - k + 1) -
(316) ey dy = e L + (__I)L m(m 1) (m o™ k .
/ (2 )

ak+1

From (3.15) and (3.16) one concludes that if Re(A;) > 1, A; # 2, the integral H;
defined by (3.13) converges to zero as t tends to zero. Note that from (3.14), the
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integral H; corresponding to the case A\; = 1 converges to —Va; fol f(p)dp as t tends
to zero.

Note that due to the relationship

/1' (é)JJ Vajsf(s)ds = t/lt (2)(Jj_l)vzjf(s)ds

and to the previous comments related to the integral (3.11), for Re(};) > 1 the limit
of (3.17) is the zero matrix as ¢t tends to zero. In particular, yp(t) defined by (3.8)
converges to zero as ¢ tends to zero. Thus the following result has been established:

Theorem 3. Le f(t) be a continuous hounded function in the interval 10, 1] and
let us consider the notation of Theorem 2.

(i) Equation (1.1) has solutions which admit a continuously differentiable extension
to the closed interval [0, 1], if all eigenvalues A; of the companion matrix C satisfy
Re(};) > 1 and the only possible eigenvalue with real part equal to one is Aj =1
and its index is one.

(i1) Under the hypotheses of (i), all solutions of (1.1) which admit a continuously
differentiable extension to [0, 1] satisfy y(0) = 0.

The general solution of (1.1) which admits a continuously differentiable extension
to the closed interval [0, 1] is given by

k k t .
. t\J;
G100 =30 Mt + 3 My [ (3) vararas, o<ig
= 1=

where d; is an arbitrary vector in C™.

(iit) If all eigenvalues A; of the companion matrix satisfy Re();) > 1, then any
solution y(t) given by (3.17) satisfies y(0) = y'(0) = 0.

(iv) If the real number A = 1 is an eigenvalue of C' with index one and if the
Jordan blocks Jp41 = Jpy2 = ... = Ji = 1, then y(t) defined by (3.17) satisfies

k- k 1
y(0)= ) M,,-dj-( > Mz,-vz,-)/o f(s)ds and y(0) =0.

i=p+1 j=p+1

Now we are in a good position to study the boundary value problem (1.1), (1.2). If
all eigenvalues A; of the companion matrix C satisfy Re(}j) > 1, and we impose the
boundary value conditions (1.2) onto the general solution of (1.1) defined by (3.17),

9



it follows that the vectors d; for 1 < j < k must verify

dy
dy E
(3.18) [Diag(Eq, F2)|M | | = [ 3] .
: I3
dk
To solve (3.18), let us consider the change defined by
d vy
(3.19) M| | =
dy Vk
Then system (3.18) takes the form
V1
v E
(3.20) [Diag(E2, F2)] 2= [F‘"] )
: 3
vk

Now from Theorem 2.3.2 of [11], p. 24, the system (3.20) is compatible if and only if
(3.21) EyEYEs = E3 and FyFS F3 = Fs,

and under this condition the general solution of (3.20) is given by

v1
(3.22) - | = [Diag(ES, F)] [;} + {1 - Diag(E{ Es, Ff F2)} Z
Vg ?
where Z is an arbitrary vector in C2*. By virtue of (3.19), the general solution of

system (3.18) is given by

dl v
(3.23) =M

dk U
where vy, ..., v are determined by (3.22).

Now we consider the boundary value problem (1.1), (1.2) in the case (iv) of The-
orem 3. If we impose (1.2) onto the general solution of (1.1) defined by (3.17), it
follows that vectors dy, ..., dr must verify

dl E‘3
. —_ k
Fs+ Fi( Y MyVay) fi f(s)ds
j=p+1

(3.24) v :
dy

10



where V is the block matrix defined by

(3.25)
B |:E2M“ EasMiz ... ExMy |  ExMyyi ... ExMy
V==l ——m—m—— -  — — — T————————————————
FaoMay  FaMas ... FoMayy |(Fi+ Fo)Maopyy ... (Fi1+4 F)Myy
and Jp41 = Jp42 = ... = Ji are the Jordan blocks that correspond to the eigenvalue
A=1.

From Theorem 2.3.2 of [11], p. 24, the system (3.24) is compatible if and only if
the matrix V satisfies

Es3
k =0
Fs+ Fi( 2 Ma;Vsy) [y F(s)ds
H

=P

(3.26) (I—W)[

and under this condition the general solution of (3.24) is given by

d,

dy =+ Es e V4
3.27 = k I1-V ' V)Z,
(3.27) : Fs+ Fi( Y Mo;Va;) [y f(s)ds * )

d j=p+1

k

where Z is an arbitrary vector in C?".

From the previous comments and Theorem 3 the following result has been estab-
lished:

Theorem 4. Let f() be a continuous bounded function in the interval ]0,1], and
let us consider the notation of Theorem 2.

(i) If all eigenvalues of the companion matrix C satisfy Re(A;) > 1, then the
boundary value problem (1.1), (1.2) is compatible if and only if the condition (3.21)
is satisfied. Under this condition, the general solution of problem (1.1), (1.2), is given
by (3.17) where d,, . ..,d; are given by (3.23), (3.22).

(i1) If all eigenvalues A; of C satisfy Re(Aj) > 1, but Jp41 = ... = Ji = 1, then the
boundary value problem (1.1), (1.2) is solvable, if and only if the matrix V defined
by (3.25) satisfies (3.26). Under this condition the general solution of problem (1.1),
(1.2) is given by (3.17) where dj, for 1 < j < k, are determined by (3.27).

Remark 1. Note that the solutions of problem (1.1), (1.2) are given in terms
of the Jordan canonical form of the companion matrix C defined by (2.1). The

computation of the Jordan canonical form of a matrix can be efficiently performed
by using MACSYMA, [8].
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In order to show that the construction of the solutions proposed by the above
results is straightforward let us introduce a family of examples.

Example 1. Let us consider the problem in C2? defined by

e vo+i|7 T]rorz[l =m0 0<ict

The companion matrix and its Jordan canonical form take the form

0 0 1 0 1 000
0 0 0 1 0210
C'-10—478’J‘0021
2 0 -10 00 0 2

The matrix M, its inverse V and the corresponding blocks are given by

1 4 0 0 2 4 -1 -4
[t o -11 o |-1/4 -1 174 1
M= 1 8 4 o0}’ M= =V= 0 1 0 -1’

1 0 -2 1 -2 -2 1 3

Mn‘—‘[”, M12=[3 _01 (l)]’ M21=[:], M'zz-——[g _42 (])],
14 1
V2] = [-—l,—‘ﬂ, V22= [ 0 —1}
1 3

Notethat k=2, m; =1, my; =3, n=2,

2 10
Jy=(1), Ja = [0 2 IJ.
0 0 2

All eigenvalues of the companion matrix C satisfy Re(};) > 1, where A; = 1 is with
index one and A; = 2. Given a bounded continuous function f(t) in ]0, 1}, then by
virtue of Theorem 3-(ii), the set of all solutions of (1.1) which admit a continuously
differentiable extension to the interval [0, 1] is given by

1 logt log®t
y(t):t[i]d1+[3 _01 g]t"’[o 1 logtildz

0 © 1
1/4 1
-1 -41 4 0 0] [* .
t s)ds t2[ ] -l -1 d
+ [-—l _4][ f(s)ds + 0 -1 1 /13 [ - :lvsf(s) s

where d, is an arbitrary vector in € and ds is an arbitrary vector in C3.
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