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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF THE
DIFFERENTIAL EQUATION OF THE FOURTH ORDER II

JOZEF MIKLO

In paper [7] the asymptotic behaviour of solutions of the linear differential
equation of the fourth order of the form

) YO +p®y" +q@)y — (=1)"r()y=0, m=1,2

was investigated, where the functions p(¢), ¢(¢) and r(z) were supposed con-
tinuous and continuously differentiable to the order which stands in the Theo-
rems and r(¢) > 0 on the interval [a, c0).

In the paper presented an asymptotic behaviour of solutions of the equation
of the form

2 Y@+ p)y" —(=D"q@®)y +r(t)y =0, m=1,2

is studied, where the functions p(¢), ¢(¢) and r(¢) have the same properties as in
the equation (1) but g(¢) > 0 is supposed instead of r(z) > 0.

Eight new asymptotic formulae for the linear differential equation of the
fourth order are shown. The results in this paper generalize the results in [8].
Theorem 8.1 in [1], p.92 (in [7] as TheoremI) and Corollary in [2] (in [7] as
Theorem II) will be apllied in this paper.

The equation (2) is equivalent to the system of linear differential equations
of the first order

3 Z(1) = A1) 2(2),
' where
0 1 0 0
mo-( 90
—r(@®) (=l)"g() —p@) O

and z(¢) = (¥(1), y'(1), y"(1), y"(1))".
Let T(¢) = diag[q(?), ¢**(1), ¢"*(¢), 1] and let

Z(1) = T7'(1) w(2).
183



If z(¢) is substituted in (3), then the system (3) has the form
4 w()=[Ag"(t) + Ar(t)g~'(t) + Ap(t) g~ (1) + Asq'(t) g~ (D] (1),

where A; = diag[1,2/3,1/3,0], A, = (a;), A, = (b;) and A, = (c;) are matrices
of the fourth degree such that a,, = a,; = a;, = 1, a,, = (— 1)" and all the others
a!-,.=();l):;-!:Ofori;é4,j;né l,by=—1;¢c;=0fori#4,j+#3and c;; = —1.

LetJ q'(t) dt = oo, then the function s = w(t) = J q' (1) duis defined on
the interval [a, c0) and has an inverse function ¢ = a(s) defined on the interval
[0, 00). By substituting ¢ = a(s) the system (4) has the form

(%) xX'(s) =[Ag+ A, f(s) + A,g(s) + A h(s)] x(s),

where

x(s) = wla(s)), f(s) = r(a(s)) g ~**(a(s)),
8(s) = p(a(s)) g~ (a(s)), h(s) = ¢'(a(s)) q~* (als)).

In order to apply TheoremI (see [1], p.92 or [7]) the system (5) will be
considered in the form

(6) X'(5) = (Ay + V(s) + R(s)) x(s).

There are the following alternatives

(A1) V(s) = A f(s) + Ag(s) + Ash(s) and R(s) =0,
(A2) V(s) =A,f(s) + Ag(s) and R(s) = Ash(s),
(A3) V(s) = A f(s) + Ash(s) and R(s) = A,q(s),
(A4) V(s) =A,f(s) and R(s) = A,g(s) + Ash(s),
(A5) V(s) = A,g(s) + Ash(s) and R(s) = A, f(s),
(A6) V(s) = Ag(s) and R(s) = A, f(s) + Ash(s),
(A7) V(s) = Ajh(s) and R(s) = A, f(s) + A,g(s),
(A8) V(is) =0 and R(s) =A,f(s) + Ag(s) + Ah(s).

The following designations will be used in Theorems of this paper
E(1, 1) = eXp[—(— l)mf r(u)q " (u) du]’
fo

(=D
3

E\(t, 1) = eXp[— j [ukq”’(u) - (ip) g~ ") + r(u)q“(u))] du}
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Ey(t,1) = exp| — f (ukq'”(u) _ (‘3”"'r(u)q-'(u)) du],

Ey(t, 1) = exp| — f (ukq'“(u) - %m-uzp(u)q-'”(u)) d'u],

Ey(1,1,) = exp (_ f g ' (u) du:l )
- ’0

where u, k=1, 2, 3, 4 are the roots of the characteristic equation
pt—(=1)"u=0, m=1,2 of the matrix A, and p, = (1, y, u?, ;)" are the
characteristic vectors of the matrix A,.

The symbol £ [a, c0) will refer to the set of all complexvalued functions
which are Lebesgue integrable on the interval [a, o).

Applying Theorem1I to the system (6) eight asymptotic formulae for the
solutions of the equation (2) will be obtained.

Theorem 1. Let ¢"(t)q~*(t), p'(t)q (1), p*()q~'(1), r'(1)g~**(r) and
r(t) g "(¢) be in Z[a, ). Then there is a fundamental system of solutions y,(t),
k =1, 2, 3, 4 of the equation (2) and a number t, > a such that

lliril PO EQW ) =1, lim v g () E(t, 1) =0, j=1,2,3
thm ylsl)(t)q(z —j)/3(t) Elk(’s tO) = l’lia k = 2’ 39 4’ .] = 0’ 1’ 2’ 3.

If in addition it is supposed that q'(t)q~'(t) is in & [a, ), then there is a
fundamental system of solutions y,(t), k = 1,2,3,4 of the equation (2) and a
number ty, = a such that

lim y,(1) g() E(t, 1) = 1, lim y(1) @) E(t,8) = 0, j=1,2,3,
(F2) e =
lim y@(1) @~ 7%(1t) Ey(t, 1) = ply k=2,3,4, j=0,1,2,3.

Theorem 2. Let ¢"(¢) g ~**(¢), r'(t) g ~*(¢), r*(t) ¢ ~"(t) and p(t) ¢ ~'7(¢) be in
. X2[a, ). Then there is a fundamental system of solutions yi(t), k = 1,2,3,4 of
the equation (2) and a number t, = a such that

lim y,(¢) E(t,t) = 1, lim y?(t) g /P(t) E(t,1,) = 0, J=1,2,3,
(FS) t— 00 t— o0
lim y@(6) @~ 7(0) Ex(t, t0) = , k =2,3,4, j=0,1,2,3,

If in addition it is supposed that q'(t)q~'(t) is in & [a@ ®), then there is a
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fundamental system of solutions y(t), k =1, 2, 3, 4 of the equation (2) and a
number t, = a such that

lim y,(t) q(¢) E(t,2,) = 1, lim y,(£) q® @) E(t,1,) =0, j=1,2,3,
(F4) t— 11— ©

lim yPqC="3(t) Ey (1, t,) = #i, k=2,3,4, j=0,1,2,3.

Theorem 3. Let ¢"(t)q~**(t), p'(t) ¢ ¥ (1), pX(t)q~'(t) and r(t)q~'(t) be in
' %la, ). Then there is a fundamental system of solutions y\(1), k = 1,2,3,4 of
the equation (2) and a number t, 2 a such that

limy, () = 1, limy,(1)g (1) =0, j=1,2,3,
(FS) t— t— 00
lim y9(1) g~ 73(t) Ey (1, o) = g, k =2,3,4, j=0,1,2,3.

If in addition it is supposed that q'(t)q~'(t) is in ¥ [a, ), then there is a
fundamental system of sulutions y(t), k = 1,2,3,4 of the equation (2) and a
number t, = a such that

lim y,(t)q(¢) = 1, lim y,())g® @) =0, j=12,3,
1t 0

(F6) t— o0 .
lim y(1) g ~7%(t) Ey(1,10) = iy k=2,3,4, j=0,1,2,3.
t—=

Theorem 4. Let ¢"(t) g ~*(¢), r(t) g~ '(¢) and p(t) g='(¢) be in £ [a, ).
Then there is a fundamental system of solutions yi(1), k = 1,2, 3,4 of the equation
(2) and a number t, = a such that

lim y,(t) =1, lim y?()q7P(1)=0, j=1,2,3,

(F7) 1— 00 t—
llm ylgn(t) q(2 _ﬁ/s(t) E4k(ts tO) = uia k = 2’ 39 4’ j = 0, la 2, 3
t—

Theorem 5. Let q’(t)q~\(¢), r(t)q~'(¢t) and p(t) g='7(¢) be in £ [a, ) and
J‘ q"*(t) dt = oo.

Then there is a fundamental system of solutions Y«(t), k = 1,2, 3, 4 of the equation
(2) and a number t, > a such that

lim y,(t)q(t) = 1, lLim yP(r)q®-7(1) =0, j=1,2,3,
(F8) t— o0 11— oo

lim yO(t) g° (1) Eaty 1) = s k=23,4, j=0,1,2,3.
t— 00
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Proof of Theorem 1. In this case all assumptions of Theorem]1 are
satisfied. (The proof of this fact is analogous to the proof of Theorem 1 in [7]).
Then there are four linearly independent solutions x,(s) of the system (6) in the
case of the alternative (A1) and a number s, = 0 such that

s

lim x,(s) exp[—- '[ A () du] = Px,

So

where 4,(s), k = 1,2, 3,4 are the roots of the characteristic equation
(7) A«A + 0113 + 612242 + (131 + (14 = 0

of the matrix A, + V(s), where

11
a, = —2h(s), a,= —9—h2(s) + g(s),

ay= — %h’(s) - -i—h(s)g(s) — (=1

4= 2Hs)g(6) = (=17 hs) +£(5), m=1,2.

Similarly as in [7] it can be proved that the roots 4,(s) of the equation (7) can
be expressed in the form

Ai(s) = h(s) + (=1)"f(s) + ni(s),
A(s) = e + %[h(S) — (= 1)"(ig(s) + f(] + %),

k =2,3,4, where f(s) » 0, g(s) = 0, h(s) = 0 and y,(s) = 0 as s = 00 and ¥,(s)
is in £ [0, ). Then

lim x&s)exp[—J (@) + (= 1" f@) + 7(w) du] ~p,
) . 1
tim x,(5) exp[— f [uk + 300 = (1" i)+ £G) +

S

+ yk(u):l du] = P> k= 2,3,4,

©

Denoting exp U‘

So
u = w(v) and du = ¢'3(v) dv, uel[s,, s], ve[ty, t], (8) may be written as

7:(s) ds] =B, k=1,2,3,4 and putting a(u) =v, ie.,
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lim wi(1)q ' (t) E(t, 1)) = p,B,q " \(1,),
lim wk(t)q’lﬁ(t) Eu(t, 1) = pBg~"(ty), k=2,3,4,
t— 0

where the functions w,(?), k = 1,2, 3,4 are solutions of the system (4).
Since w(r) = T(7) z(¢) and the system (3) is linear there are linearly indepen-
dent solutions z,(?), k = 1,2,3,4 of (3) such that

lim T(1) z1(1) ¢ ~'(1) E1, 1) = py

()]
lim T(t) zk(t) q _]/3(t) Elk(t’ 10) = pk’ k = 2’ 3, 4

Substituting T(¢) = diag(q(1), ¢**(¢), ¢"*(¢), 1) and
z(t) = (1), 2 (0, y{ (1), (@), k=1,2,3,4

in (9), becomes

lim diag (1), yi(1) ¢ ~17(0), y7 (1) g (), y1'(6) g (1)) E(t, 15) =
= (1,0,0,0)"

lim diag (.(#) g0, yi() g0, yi (1), yi'(1) g (0) En(t, 15) =

(10)

= (lsuk’#1c25ﬂl?)rs k= 2,3:4-

Then the formula (F1) follows directly from (10). Therefore the first part of
Theorem 1 is proved.
The formulae (F2)—(F8) may be proved analogously.

Corollary. The formulae (F1)—(F8) imply the corresponding formulae (F’1)
—(F’8) for the general solution of the equation (2):

(F'1) y= [CIE Nt 1) + ‘1_2/3(’)22 i Eq'(t, to)](l + o(1))
(F2) y= q“(t)[clE () + éz amER\, to)](l + o(1)),
(F'3) y= [c,E Nt 1) + ¢7P() éz e B (1, to)](l + o(1)),
(F4) y= q"(t)[clE It 1) + éz TN vl (A zo)](l + o(1)),
(F’5) y = [cl + q'”’(t)é2 i Ex\(@, zo)](l + o(1)),
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(F’6) y= q_l(t)I:C] + i i Ex' (1, to)](l + o(1)),
k=2
(F7) y= [c, 470 Y e, m](l +o(1)),
k=2

(F’8) y= q"(t)[ﬁ + i amEg'(@, to):l(l + o(1))
k=2

where ¢, ¢,, ¢;, ¢, are arbitrary numbers and the symbol o(1) denotes a function
which converges to zero as t — 0.

Remark. The equation y® + g’y =0, a > 0 satisfies the hypothesis of
Theorems 1—S5, thus from each formula (F'1)—(F’8) it follows that the general
solution of this equation is of the form

y = [e, + e + e *%(c; cos (a/31/2) + ¢, sin (a~/3t/2)](1 + o(1))
This equation has constant coefficients and therefore its general solution is
y =c, + et + e¥2(c, cos (a/3t/2) + c, sin (a+/31/2))
and so o(1) = 0.
Example. If p(t)q~'*(¢) and r(t)q~'(¢) are in &L[a, ), a >0, where
q(t) = <t_—2+iT>3’ then the equation

YO+ p()y" —q@)y +r()y=0

satisfies the assumptions of Theorem 5 and therefore its general solution has the
form

2t

t+l)3|: e _
=— |+ c——+ @+ De™! 3¢—In(t+ 1)+
y (2t Har et De (@ eos3(—In(t+ 1)

+ ¢, sin3(t —In(r + 1)))}(1 + o(1)),

where ¢, ¢,, ¢; and ¢, are arbitrary numbers.

From this example it may be seen that the coefficients do not satisfy the
assumptions of theorems in [3], [4] and therefore this paper gives new results on
the asymptotic behaviour of solutions of the linear differential equation of the
fourth order.
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ACUMIITOTUYECKHUE MOBEAEHUS PELIEHUN JTU®PEPEHLIMAJIBHOIO
YPABHEHHUS YETBEPTOI'O ITOPAAKA 11

Jozef Miklo
Pe3rome

B paboTte paccMeTpUBarOTC aCHMITOTHYECKHE TOBEICHU S PELLICHUI YpaBHEHHs (2) Ipu 1 — oC,
€CJIH HeCOOCTBEHHBIE HHTErpasbl OT HEKOTOPbIX Opobei GyHKLMIA p, ¢ U r ABISIOTCA KOHEYHBIMH.
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