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THE HADWIGER NUMBER OF 
COMPLEMENTS OF SOME GRAPHS 

JAROSLAV I V A N C O 

(Communicated by Martin Skoviera ) 

A B S T R A C T . The Hadwiger number of a graph G is the maximum size of a 
complete graph to which G can be contracted. We investigate the Hadwiger 
number of some graphs by the special s t ructure of their complements . Determined 
here are the Hadwiger number for the Zykov sum of graphs, and the Hadwiger 
number for the complement of graphs without short circuits. 

1. Introduction 

In the present paper, we consider only finite undirected graphs without loops 
or multiple edges. Concepts and notation not defined in this paper will be used 
as in standard texts, for example [1]. 

Let G be a connected graph. A decomposition {Vp . . . , Vm} of its vertex set 
V(G) into nonempty subsets with the following properties 

(i) Vi induces a connected subgraph of G for all i = 1 , . . . , m , 
(ii) ViUV- induces a connected subgraph of G for all i = 1 , . . . , m and all 

j = l , . . . , m , 

is called an H-decomposition of G. 

The Hadwiger number r/(G) of a connected graph G is the maximum positive 
integer m such that there exists an if-decomposition of G into m subsets. The 
Hadwiger number of a disconnected graph is the maximum Hadwiger number of 
its components. 

In [2], there are established bounds of t](G) depending on u)(G) (i.e., the 
maximal number of vertices in a clique of G) and otQ(G) (i.e., the vertex covering 
number of G). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C35. 
K e y w o r d s : Hadwiger number, LT-decomposition, complement of graph. 
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THEOREM 1. ([2]) Let G be a graph. Then 

.(G) < n(0) < min{l + ao(G), [^ + ^ j } . 

The vertices of an independent set of any graph G induce a clique of G (i.e., 
the complement of G) , therefore w(G) is equal to the vertex independence 
number /30(G) of the graph G. By Theorem 1 and the Gallai theorem (i.e., 
a 0 (G ) + /30(O) = |V(G) | ) ,wege t : 

COROLLARY 1. Let G be the complement of a graph G. Then 

\VW\-c^W<v(G)<wm{l + \VW\-u>W,\V(Cf)\- ^ p - } • 

Let Kn ( P n + 1 ) denote the complete graph of order n (the path of length n ) , 
then we get following Corollary. 

COROLLARY 2. Suppose G is a graph such that ot0(G) < 2. Then the Had-
wiger number of the complement of G satisfies: 

If a0(G) = 0, then 77(G) = \V(G)\. 

/ / a0(G) = 1, then 17(G) = \V(G)\ - 1. 
If a0(G) = 2 and G contains no subgraph isomorphic to K3 or P 4 , 
then 77(G) = | V ( G ) | - 1 . 
If OL0(G) = 2 and G contains a subgraph isomorphic to K3 or P 4 ; 

thenri(G) = | V ( G ) | - 2 . 

P r o o f . By Corollary 1, the assertions are evident for oi0(G) = 0 and 
&0(G) = 1. Therefore, let us assume that a0(G) = 2. Let {u,v} denote a 
minimal vertex covering set of G. Now we consider the following three cases. 

Case 1. If G contains no subgraph isomorphic to K3 or P 4 , then uv $• E(G), 
and each vertex of the independent set V(G) — {u, v} = {wx,..., wt} is adjacent 
to at most one vertex of {u,v}. Thus {{u,v}, {w1}J..., {iOt}} is clearly an 
iF-decomposition of G, and so 77(G) > |V(G)| — 1. The opposite inequality 
follows from Corollary 1. 

Case 2. If G contains a subgraph isomorphic to K3, then by Theorem 1, 
UJ(G) = 3 (because a0(G) = 2), and by Corollary 1, we get 77(G) = \V(G)\ -2. 

Case 3. If G contains a subgraph isomorphic to P 4 , then there exist edges xu, 
uv, vy in the graph G. Let Gt be the subgraph of G such that V(GX) = V(G) 
and E(GX) = {xu, uv, vy}. If a partition {Vv . . . , Vr} is an LT-decomposition of 
Gx, then the sets {u}, {v} cannot both belong to this partition. Thus, without 
loss of generality, let u 6 Vx and \VX\ > 2. It can be easily seen that {Vj — {u}, 
V2,...,Vr} is an If-decomposition of Gx — u, and so r\(G^) = r\(Gx — u) . 
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Since G is a subgraph of Gx and Oi0(G1 — u) -= 1, we have r)(G) < r}(Gx) = 
77(^7 - u) = \V(G) - {tx}| - 1 == |V(G)| - 2. The opposite inequality again 
follows from Corollary 1. D 

2. The Hadwiger number of the Zykov sum of graphs 

In general, the problem to determine rj(G) is difficult for a graph G when 
a0(G) > 2. Therefore, next we will study only graphs of some special types. 

Let G be a disconnected graph. If U C V(G) contains vertices from at least 
two components of G, then it can be easily seen that for each vertex w e V(G) 
the set U U {w} induces a connected subgraph of G. This fact can be useful for 
the determination of r)(G) . In this section, we determine the Hadwiger number 
for the complement of a disconnected graph. 

The Zykov sum (or join) Gx + G2 of disjoint graphs Gx and G2 is a graph 
obtained from Gx and G2 by joining each vertex of Gx with every vertex of G2 

by an edge. It is clear that G is disconnected if and only if G is the Zykov sum 
of some of its disjoint subgraphs. In [7], B. Z e 1 i n k a proved that 

V(G1 + G2) > V(GX) + V(G2) and v(Kn + G) = n + V(G). 

The following assertion implies these results. However, first we remark that for 
a set U of vertices in a graph G, we denote by (U) the subgraph of G induced 
by U. 

THEOREM 2. Let Gx and G2 be two disjoint graphs, and suppose that \V(Gt)\ 
-co(Gx)<\V(G2)\-u(G2). Then 

V(GX + G2) = \V(GX)\ + max{77«U-» : U C V(G2), 

\U\ = \V(G2)\-\V(G1)\+u(G1)}. 

P r o o f . Let P be a subset of V(O2) such that \P\ = \V(G2)\ - \V(GX)\ 
+ 0 ; ^ ) , V((P)) =k = max{j?((T)) : T C V(G2), \T\ = \P\}. Then there 
exists an H-decomposition {P1,...,Pk} of (P). Let U = {ul7...,ut} be a 
subset of V(GX) = {ux,...,up} such that t = w(Gx) and (U) is a clique of 
Gx. Since \V(G2) - P\ = \V(G2)\ - \P\ = \V(G,)\ - u(Gt) = \V(GX)\ - \U\ = 
\V(Gt)-U\, there exists a bijective mapping / : ( ^ ( O J - f / ) -> (V(G2)-P). If 
u 6 (V(Oi)—U) , then {u, f(u)} induces a connected subgraph of Ox+O2. Now, 
it is clear that {{ux},..., K } , K + 1 , / ( « t + i ) } , • • • »{"P>/(%)},Ex,- • • ,Pk} is 
an H-decomposition of Gx+G2, and hence 77(OX+O2) > P+k. Thus 77(O1+O2) 
> | V ( O 1 ) | + m a x { 7 ? ( ( T ) ) : T C V(O 2 ) , \T\ = \V(G2)\ - \V(GX)\ + u;(G,)}. 
Moreover, V(GX + G2) > \V(GX)\+UJ(G2) because \P\ > co(G2), which implies 
that r]((P)) is at least w(G2) . 
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For the proof of the opposite inequality, we define some invariants of an 
H-decomposition of G1 + G into r subsets, where r = rj(Gl + G2) and G is a 
subgraph of G2 (note that r](Gl+G) = r}(Gx +G2)). For an H-decomposition 
U = {Ux,..., Ur} of G! + G we put 

p (u ) = | { t € { l , . . . . , r } : Uif)V(G1)^(D}\, 

q(U) = \{iE {!,...,r}: P, C V(Gi) '} | , 

s(U) = \{veuin V(G2) : u, n V(GX) # 0}| . 

Now, let us assume that <S = {S1J..., Sr} is an ff-decomposition of Gx + G 
such that any ff-decomposition U = {Ux,..., Ur} of Gx + Gf, where G' is any 
subgraph of G2, satisfies exactly one of the following conditions 

(1) p(S)>p(U), 
(2) p ( 5 ) = p ( W ) a n d g ( 5 ) > 9 ( W ) , 
(3) p(S)=p(U), q(S) = q(U) and s(S) < s(U). 

Suppose some class of the ff-decomposition <S (e.g., Sx) contains at least 
two vertices of V(G1). Then at least 1 +UJ(G2) classes of S contain no vertex 
of Gx (because r = T](G1 + G2) > \V(GX)\ +u(G2)). Since the union of one 
element classes of an ff-decomposition induces a clique, there exists a class of 
<S (e.g., S2) which contains at least two vertices of G2 and no vertex of Gx. If 
u £ S1DV(G1) and v € S2, then it can be easily seen that St = {{ ,y}u(51~-{it}), 
{u}u(S2 — {v}), 5 3 , . . . , Sr} is an ff-decomposition of Gt+G. However p(S1) = 
p(S) + l, which contradicts our assumptions. Hence we conclude that any class of 
S contains at most one vertex of Gt, and so p(S) = |V(G 1 ) | . Therefore, without 
loss of generality we may assume that \Si fl V(G 1 ) | = l f o r l < i < p = p(S), 
Si C V(GX) for 1 < i < q = q(S), and 5- C V(G2) for p < i < r. 

Since Sx U S2 U • • • U S induces a clique of Gt of size r/, then q < cO(Gx). If 
q < w(Gx) = t , and the set U = {txx , . . . ,ut} C V(G1) = {ux,...,u } induces 
a clique of Gx , then <S2 = {{ux},..., {ut}, {ut+1} U ( 5 t + 1 n V(G2)),..., {up} U 

(Sp D V(G 2 ) ) , 5 p + 1 , . . . , Sr] is an ff-decomposition of G1 + (G- ((Sq+1 U . . . 
U St) fl V(G2))). However, q(S2) = u){Gx) > q(S) and p(S2) = p(S), which is a 
contradiction. Thus we deduce that q = UJ(GX), 

Suppose some class of the collection S+1,..., S (e.g., S ) contains at least 
two vertices of G2, and x € Sp fl V(G2). Then S3 = {S1}..., S ^ , 5 p - {x}, 

Sp+ii • • • 5 £ r } is evidently an ff-decomposition of Gx + (G — x). This is again a 
contradiction because p(S3) = p(S), q(S3) = q(S), and s(S3) = s(S) — 1. There
fore \Sir\V(G2)\ = 1 for each i = q + 1,... , p , and | 5 p + 1 U . . . U 5 r | < | V ( G 2 ) | -
( p - 9 ) = |F (G 2 ) | - ^ ( G ^ l + a ; ( G 1 ) . { 5 p + 1 , . . . , 5 r } is an ff-decomposition 
of the subgraph (SL+1 U • • • U 5 r ) of G 2 , and so r — p < max{r7((T)) : T C 
V (G 2 ) , |T | = \V(G2)\ - | V ( G 1 ) | + a ; ( O 1 ) } . Hence n(Gx + G2) < \V(G,)\ + 
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max{r7((T)) : T C V(G2), \T\ = \V(G2)\ - \V(G,)\ + *(<? . )} , which com-
pletes the proof. D 

The complete k-partite graph is a graph whose vertices can be partitioned into 
k classes Ux,... ,Uk such that two vertices are adjacent if and only if they belong 
to distinct classes. If \U{\ = ni for all i = 1 , . . . , k, then the complete fc-partite 
graph is denoted by K(nx,... ,nk). It can easily be seen that K(nx,... ,nk) = 
Kn +Kn H hi;-'nfc , and so the Hadwiger number of the complete multipartite 
graph can be determined by Theorem 2. Details are left to the reader (see also 
[2], where it is proved by Theorem 1). 

COROLLARY 3 . Let k > 2, and 1 < nx < ••• < nk be integers. Then the 
complete k-partite graph K(nx,... ,nk) satisfies: 

trr, x\ . f., k + n,-] h % 1 
rj(K(n1?..., nk)) = mm j 1 + nx + • • • + n ^ , ±—- -£- V . 

V. G. V i z i n g [5] suggested the study of the function \k(n) which denotes 
the maximal possible number of edges of a graph with n vertices and with 
the Hadwiger number k. A. A. Z y k o v [8] and B. Z e l i n k a [6] proved that 
Xk(n) = (k — l)n — (2) for k < 4, n > k. The following theorem extends this 
result. 

THEOREM 3 . Let n, k be two positive integers such that ^—-2 < fc < n . Then 

P r o o f . The assumption ^—^ < k < n implies 2(2(n — k) — l ) < n and 
n — k > 1. Let K denote the complete (2fc—n+l)-partite graph with 2(n — fc) — 1 
classes of cardinality 2 and n — 2(2(n — k) — l ) classes of cardinality 1. By 

Corollary 3, we have rj(K) = k. Also, \E(K)\ = 1 + 2k + n ( n ~ 5 ) , and hence 

A j b ( n ) > l + 2fc + 2 i ^ . 

On the other hand, we will show that there does not exist a graph G with 
more than 1 + 2rj(G) + ' ^ 2 edges. Proceeding by contradiction, 
suppose G to be a graph with the minimal possible number of vertices and 
simultaneously the maximal possible number of edges which has more than 
1 + 277(G) + iy(^)Kl^(G)l-5) edges. It is clear that G is not a complete graph, 
and so the minimum degree 6(G) is less than |V(G)| — 1. Let x, y be two 
non-adjacent vertices of G, where x has the degree 6(G). The graph G has 
the maximal number of edges, then the Hadwiger number of the graph Gx, 
which we obtain from G by adding the edge xy, is greater than r](G) = k. 
Therefore there exists an iJ-decomposition {Vx,..., V'A,_fl} of some component 
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of Gx. Without loss of generality, suppose x £ Vk+1. Evidently, {V1 , . . . ,V f c} 
is an PT-decomposition of a subgraph of G which does not contain the ver
tex x. Hence the Hadwiger number of G2 = G — x is at least k. G2 is a 
subgraph of G} and so ri(G2) = rj(G) = k. The graph G2 has fewer ver
tices than G, thus \E(G)\ - 6(G) = \E(G2)\ < 1 + 2k + \V(G2)\(\V(G2)\-5) _ 
i + 2k + \v(G)\(\v(G)\-5) _ Q ^ ( G ) | _ 3) m Therefore 6(G) is at least \V(G)\ - 2, 
and since G is not a complete graph, 6(G) = \V(G)\ — 2. This means that G is 
a complete multipartite graph every part of which has at most two vertices. Let 
r denote the number of parts of cardinality two. Then by Corollary 3, we have 
k = 77(G) = \V(G)\ - r§l and \E(G)\ = l T M i l M £ ) J ^ ) _ r < |V(G)|(|V(g)|-i) _ 

2[£] + 1 = iv(g)|(|v(g)|-s) + 2{vm - 2[r] + 1 = 1 + 2fc + \no)m(G)i-5) 

This is a contradiction to our assumption, which completes the proof. • 

3. The Hadwiger number of complements 
of graphs without short circuits 

For conciseness, we will denote by Q7 the family of graphs which contain no 
circuit of length less than 7. In this section, we determine the Hadwiger number 
of complements of graphs which belong to Q7. First, we prove the following 
assertion, which we shall use in the next. 

PROPOSITION 1. Suppose G e Q7. Let P be a set of vertices of G such that 
the distance between any pair of vertices of P is at most two. Then there exists 
a vertex w £ V(G) which is adjacent to each vertex of P — {w}. 

P r o o f . We prove the assertion by induction on the cardinality of P. For 
\P\ = 1 and |JP| = 2 the assertion is obvious. Assume \P\ > 3 . Let x, n , 
v be distinct vertices of P. By the induction hypothesis, there exists a vertex 
w £ V(G) which is adjacent to each vertex of (P — {x}) — {w}. As the distance 
between x and u (v) is at most two, there exists a vertex a (b) (a = u (b = v) 
is also allowed) such that the set {x ,a ,n} ({&,&, v}, respectively) induces a 
path. If x T~= w and x is not adjacent to w1 then the subgraph of G induced by 
{ty,ifc,a,x,6, v} contains a circuit, which contradicts G £ Q7. Therefore, either 
x = w or x is adjacent to w, which completes the proof. • 

ao(g) 
2 LEMMA 1. Suppose Geg7. Then 77(G) > \V(G)\ -

P r o o f . Proceeding by contradiction, let us assume that G € Q7 is a graph 
with the minimal possible vertex covering number, and the Hadwiger number 
of its complement less than \V(G)\ - l ^ 1 } - 1. Then a0(G) > 3 because 
ao(G) < [ £ ° M ] + 1, and by Corollary 1, we get 17(G) > \V(G)\ - a0(G) > 
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|V(G)| — \a°2 ' ] — 1, otherwise. Let P be a minimal vertex covering set of G, 
i.e., \P\ = aQ(G) > 3. If the distance between some pair of vertices u,v £ P 

is at least 3 in G, then {u,v} induces a connected subgraph of G, and for 
every vertex w E V(G) — {u,v} there exists an edge of G which joins w with 
u or v. Thus {{u, v}, Uv ..., Uk} is an PI-decomposition of G if {Uv . . . , Uk} 

is any i_"-decomposition of G — {u, v}. This implies TJ(G) > l+rj(G — {u,v}) . 

Evidently, the graph Gx = G — {u,v} € G7, aQ(Gx) = aQ(G) — 2 and G1 = 

G—{u,v}. Since G has the minimal vertex covering number, ^ ( G j > |Vr(G1)| — 
r ^ ] _ ! = | V ( G ) | _ [ £ f l ] _ 2 , and so n(G) > 1 + n(G,) > \V(G)\ -

|"£___i—) ~| _ im This contradicts our assumption, and thus the distance between 
any pair of vertices of P is at most two in G. 

Now, by Proposition 1, there exists a vertex w G V(G) which is adjacent to 
each vertex of P — {w}. Each vertex of V(G) — (P U {w}) is adjacent to at 
most one vertex of P , and so every nontrivial component of G2 = G — w is 
a star whose central vertex belongs to P. If P — {w} = P± U • • • U Pk, where 
£ ~ jj ~ i w / l j a n cJ |PJ > 2 for all i = 1 , . . . , fc, (evidently, such sets exist) and 
V(G)-(PU{w}) = {vv ..., vt}, then it is clear that {Pv ..., Pk, { v j , . . . , {vt}} 

is an i_"-decomposition of G2 = G — w. Therefore r)(G) > TJ(G2) > t + k = 

\V(G) - (PU{w})\ + [ | P ~j w >i j . If w belongs to P , then \V(G)- (PU{w})\ = 

\V(G)\ - \P\ = \V(G)\-aQ(G) and [^p^\ = [ ^ ^ " ^ J > [ ^ J - 1. 
If w is not an element of P , then \V(G) - (P U {w})| = \V(G)\ — |_P| — 1 = 
\V(G)\ - aQ(G) - 1 and [^=^\ = [ J f J = [ ^ J . Thus r,(G) > \V(G)\ -

aQ(G) + L ^ ^ J ™ 1 = \V(G)\ ~ f22^! - 1- T h i s i s a § a i n a contradiction to 
our assumption, which completes the proof. • 

Let k be a positive integer. We denote by Tk a graph (tree) with the vertex 
set {w}uli...,uk,vv...,vk} and the edge set {wuv ... ,wukluxvv ... ,ukvk}. 
The vertex w is called a central vertex of Tk. It can be easily seen that |V(_Tfc)| = 
2fc + l , aQ(Tk) = k, and thus, by Corollary 1 and Lemma 1, we have 2k- [ | ] < 
v(Tk)<2k-\l]+l. 

LEMMA 2. Let k>3 be an integer. Then rj(Tk) =2k- [ f ] . 

P r o o f . Let U = {Uv ..., Ut} (where t = f](Tk)) be an ^-decomposition 
of the complement of Tk. Without loss of generality, we may assume that 
w e Ux. If \UX\ = 1, then L7. - {uv..., uk} ^ 0 for all i = 1 , . . . , t, and so 
t < k + 1. This implies t < 2k + 1 - ff ] because k > 3 . If \UX\ > 1, then it can 
be easily seen that, {U1- {w}, U2,...,Ut} is an H-decomposition of Tk - w. 
By Corollary 1, we get t < rj(Tk - w) < 2k - [ | ] . 

The opposite inequality follows from Lemma 1. • 
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THEOREM 4. Suppose G e.G7 and k = aQ(G). If k is odd, then 

„ __ J \V(G)\ - [§] - 1 if 3 < k and Tk is a subgraph of G, 

^ ' ~~ I \V(G)\ - [§] otherwise. 

P r o o f . For k = 1, the assertion follows from Corollary 2. 
Suppose k > 3 and Tk is a subgraph of G. Then G is a subgraph of Kn+Tk, 

where n = \V(G)\ - 2k - 1. By Lemmas 1, 2__and Theorem 2, we get |V(G)| -
[ § 1 ^ 1 <r,(G) <v(Kn + Tk) =n + V(Tk) = | T / ( G ) | - [ § ] - l , a n d s o 

V(G) = \V(G)\-\I}~1. 

Suppose k > 3 and G contains no subgraph isomorphic to Tk . By Corollary 1 
and Lemma 1, we have \V(G)\ - [§] - 1 < 77(G) < \V(G)\ - [§] . Next, let 
us assume by way of contradiction that G is a graph with the minimal possible 
vertex covering number k, satisfying: G E G7,k is odd, k > 3 , 77(G) = 
\V(G)\ — [2] — 1, and G contains no subgraph isomorphic to Tk. Let P be a 
minimal vertex covering set of G, i.e., \P\ = k. Without loss of generality, we 
may assume that P contains a vertex x of degree one only if x is adjacent to a 
vertex also of degree one. Now suppose that A is a maximal subset of P such 
that the distance between any pair of its vertices is at most two in the graph G. 
By Proposition 1, there exists a vertex w E V(G) which is adjacent to each 
vertex of A — {w}. Moreover, each vertex of A is adjacent to some vertex from 
the set V(G) — (PU {w}) because A C P cannot contain a vertex of degree one 
by our assumption. Therefore G contains a subgraph isomorphic to Tt, where 
either t = \A\ (if w <£ A) or t = \A\ - 1 (if w € A). 

If \A\ = k, then t = \A\ — 1 = k — 1 because G contains no subgraph 
isomorphic to Tk. Thus w G A = P and each nontrivial component of G — w is 
a star. As in the proof of Lemma 1, the graph G — w has an if-decomposition 
into \V(G - w)\ - [ f*°(<^)] subsets. Since k is odd, [§] = 1 + [ ^ ] = 
1 + f £ o ( C ^ Therefore 77(G) > T?(G - w) > \V(G)\ - 1 - [ 2 2 ^ 1 ] = 
|V(G)| — [ 2 ] , which contradicts our choice of G. 

If \A\ < fc, then there exist vertices x E P — A and y £ A such that their 
distance is at least 3 . As in the proof of Lemma 1, we get 77(G) > 1 + 7 7 ( G 1 ) , 

where GX = G~- {x,y} and aQ(Gx) = k - 2. If T ? ^ ) = \V(GX)\ - \ ^ ^ \ , 

then 77(G) > 1 + \V(GX)\ - [ 2 2 ^ ] = 1 + \V(G)\ - 2 - [4=2] = \V(G)\ - [ § ] , 

a contradiction. If ^(G^) = |V(G?
1)| — [ a °^ ^ ] — 1 , then Gx contains a subgraph 

isomorphic to Tk_2 (fc—2 > 3) because G is a counter-example with the minimal 
vertex covering number. Hence \A\ = fe — 1 and w fi A. However, each nontrivial 
component of G2 = G — {.r, w} is a star, and as in the proof of Lemma 1, there 
exists an if-decomposition {Uv ..., Ur} of G 2 , where r = | V(Gf

2)| — [ 2 1 
and \Ui fl P\ is equal to either 0 or 2 for a l H = 1 , . . . , r . Since xw ^ E(G) and 
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the vertex x is adjacent to at most one vertex of A, {{#, w}, U±)..., Ur} is an 

^-decomposition of G. Therefore 77(G) > 1 + r = 1 + |V(G2) | - [ £ 2 ^ 1 ] = 

IV(G)| - 1 - [*f±] = \V(G)\ - [ § ] . This again contradicts our assumption. The 

proof is complete. • 

Let G be a graph, and P be a subset of its vertex set. By M(G, P) we will 
denote a graph with the vertex set P , and two vertices u , v are adjacent in 
M(G, P) if and only if either tx, v are adjacent in G, or there exists a vertex 
w E V(G) — P such that uw and wv are edges of G. Note that K3 (s > 3) in 
M(G} P) enforces a star Kx s with central vertex in V(G) — P or a circuit of 
length less than 7 in G. 

LEMMA 3 . Let G be a graph without A-circuits whose vertex covering number 
a0(G) is even. Then r}(G) = |V(G)| — ^ ' if and only if there exists a vertex 
covering set P such that \P\ = a0(G), and the complement of M(G,P) has a 
matching. 

P r o o f . Suppose r](G) = | V(G)| - ^ - ^ , and let {Uv ...,Ut} denote an 

FT-decomposition of G, where t = |V(G)| — 2 ' . Without loss of generality, 

we may assume that \U{\ > 2 for i = 1 , . . . , r , and \UA = 1 for j = r + 1 , . . . ,£, 

1 < r < t. As c7 r + 1 U • • • U Ut = Q induces a complete subgraph of G, Ux U 

• • • U Ur = P is a vertex covering set of G, and so \P\ > a0(G). Evidently 

r < L l , and the equality is true only if |£L| = 2 for all i = 1 , . . . , r . Therefore 

IPI + IQI - ^ = l^( G ) l - ^ = < = »• + (t - r) < -fl + |Q| . This implies 
|-P| < a 0 ( G ) . Since the opposite inequality is also true, we have \P\ = a0(G) 
and |(7J = 2 (i.e. t/̂  = { i ^ , v j ) for all i = 1 , . . . , r . As c7. and U{ U {w}, for 
every vertex w E Q — V(G) — P , induce connected subgraphs of G, u ^ is an 
edge in M(G, P ) . Thus {uxvv ..., ^ r ^ r } is a matching of M(G, P). 

On the other hand, let P be a vertex covering set of G such that \P\ — 
OL0(G) and M(GyP) has a matching {uxvt^... ,ukvk}. By the definition of 
M(G, P ) , it is clear that the sets {u{,v{} and {u^vvw-} (where {wx,... ,wt} = 
V(G) — P) induce connected subgraphs of G for all i = 1 , . . . , k and all 
j = ! , . . . , £ . Similarly, the set {u^v^u^v.} induces a connected subgraph 
of G for all i , j = l , . . . , f c , i ^ j , because G contains no 4-circuit. Thus 
{{uvvi}->- • • > {ufc>vA.}> {wi}-> - • - i{wt}} IS a n -^-decomposition of G, and so 

V(G) > k + t = J | l + |V(G) - P | = |V(G)| - ifl = |V(G)| - 2 2 ^ i . The 
opposite inequality follows from Corollary 1. • 

Let k > 4 be an even integer. Denote by: 
Ak the family of trees T , which contain a vertex w such that l+a0(T—w) = 

aQ(T) = fc, and each component of T — w is isomorphic to either K2 or T t , &tid 
moreover, in the second case, iO is adjacent to the central vertex of Tt in T\ 
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Bk the family of graphs which can be constructed from the complete bipartite 
graph Kt k_t (where t is an odd integer, 3 < £ < fc — 3) by replacing at least 
t(k — t) — 1 of its edges by paths of length two; 

Ck the family of graphs which are the union of Tl+k and a graph with the 

vertex covering number f — 1 and no circuit of length less than 7. 

Finally, let Vk = Ak U Bk U Ck U {TA._1}. By Lemma 3, it can be easily seen 

that if G G Vk, then V(G) = | F ( G ) | - l - f . 

THEOREM 5. Suppose G G G7 and k = cx0(G). If k is even, then 

1^(^)1 ~ f ~ ~ l if k = 2 and P4 is a subgraph of G, 
_ . or k > 4 and G contains a subgraph 

^ v / ~~ | which belongs to Vk, 

\V(G)\ ~ 2 otherwise. 

P r o o f . Since G G G7 is a graph with vertex covering number fc, then, by . 
Corollary 1 and Lemma 1, we have \V(G)\ - 1 - f < 77(G) < \V(G)\ - f. Let 
us assume that rj(G) = \V(G)\ - 1 - f, k > 4 and \P\ = fc, where P C F(G) 
is a vertex covering set of G such that P contains a vertex x of degree one only 
if x is adjacent to a vertex also of degree one. By Lemma 3, the complement of 
M(G, P) has no matching, and, by a well-known result of T u 11 e 's [4] (also [1]), 
there is a set S C P such that the number of odd components of M(G, P) — S 
exceeds \S\. 

If M(G, P) — S has at least 3 components, then they have the cardinality one 
(because G contains no short circuits), and there exists a vertex w G V(G) — P 
which is adjacent to each vertex of P — S. Now, it can be easily seen that G 
contains a subgraph G' isomorphic to T1+k , and a subgraph of G induced by 

V(G) — V(Gl) has the vertex covering number f — 1, i.e., G contains a subgraph 
which belongs to Ck. 

If M(G,P) - S has less than 3 components, then 5 = 0 and M(G,P) 
consists of two components with odd cardinalities t and \P\ — t. Evidently, if 
3 < t < \P\ — t, then G contains a subgraph which belongs to Bk, and if t = 1, 
then G contains a subgraph isomorphic to TA._1 or a subgraph which belongs 
to Ak. 

Other cases are obvious. D 

In [3], M. S t i e b i t z studied the function / ( n , k) which denotes the minimal 
possible Hadwiger number of the complement of a graph with n vertices and with 
Hadwiger number k. It was proved that / ( n , k) > ^j^-n — ^jp for 2 < k < 3 . 
By Theorems 4 and 5, we easily get: 
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COROLLARY 4. Let n, t, r be integers such that 4 < r < 7 , £ > 0 and 
n = At + r . Then 

/(n,2) = 3i + [^J and 
/(n,fc) = 2, for each k, n > k > St + [^J . 
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