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SOLUTION OF A PROBLEM OF M. KAZT CONCERNING
THE OPTIMIZATION OF A FUNCTIONAL

DANA MIKLISOVA

I. The Theorem

In the paper presented we give a solution to a problem of M. Katz formulated in
[1].

Denote by & the class of functions f: (0,1)— (0, 1) generalized in the
following way: There is a subset A(f) = (0, 1) of the Lebesgue measure zero such
that f is singlevalued function on (0, 1) except for A(f) and f is a multi-function on
the set A(f). Also we use convention

f(x) dx=0.

AN

We say that f € F is symmetric when the graph of f is symmetric with respect to
the axis y=ux.
For me (0, 1) let F(m) be the class of all measurable functions of F with

J:f(x) dx=m.

For every fe #(m) let

g(x) =meas {y, f(y)Zx} 1)
and

L) = fx)atx) ax

1
b() = [ (P +9°() dx
The problem consists in finding the supremum over %(m) on the furictional

I(a, f) = aL(f) + L(f) 2

where a@>0 [1, problem (a)]. In the present paper we construct explicitly the
function solving this problem..



Theorem. For every f(x) € #(m) and a>0 we have

2m—1+(1-m)*? if m=1/2
< .
I(a, )=h(m, a) { m*? otherwise, G)
where
ma+1)+1 <l—-m
h(m,a)={ T+am—n? T 0<eS7, @)
a+?2 otherwise
and the bounds in (3) are attained by the functions (5), (6):
_ 1 0=x<1-(1-m)"”
u(x)= {1 -1-m)"? otherwise ©)
ifm=1/2
m'? 0=x<m'?
v(x)= { 0 otherwise. (6)
if m=1/2.

As a consequence of this theorem we obtain the recent result of M. Katz for
a =2 (see [1]). The proof of this theorem is given in a few steps.

v]

A

Fig. 1

Remark. Let us note that our notation differs somewhat from that of [1]. It can
be easily verified that Katz’s results from [1], [2] apply also for functions
generalized in the above sense. So we can use them in sequel without any further
remarks.
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I1. The Proof

Let %.(m) be the set of all nonincreasing step functions in F(m).

For fe #(m) we define a symmetric function @(x) (similarly as in [1]) as
follows:

Let xo be the least upper bound of those x >0 for which f(x) + g(x) =2x (clearly
x0>0) and put y(x)=(f(x) + g(x))/2 for x € (0, xo). Now for x € (0, xo) define
@(x)=y(x) if ¢ is continuous at x and let

¢(x) = (Y(x.), Y(x-)),
#(0)=(v(0.),1),
@(x0) = (x0, Y(x0-)), otherwise,

where (x.) denotes lim ¥(?) and similarly for y(x-). Finally let @ be the unique
symmetric function with @(x)= @(x) for
x€ {0, xo). @)

We prove now this

Lemma. For every f(x) € %(m) we have

I(a, f)<h(m, a)- L ' @i(x) dx )

where @(x), h(m, a) are defined by (7), (4), respectively.
Proof. We use induction relative to the number of nonzero values of
f(x) € #.(m). Let f(x) have exactly one nonzero value. Then

b a if 0=x=b
f(x)= {0 g9(x)= {O otherwise.

Let b = a. (We shall omit the detailed analysis of the case b > a, since it leads to the
same formulas up to (9) with b replaced by a.) According to (7) we have (see
Figure 1)

if 0=x<a
otherwise,

((a+0b)/2,1) x=0

(a+b)/2 0<x<b

_ (b,(a+b)/2) x=b
ex)= 4 b<x<(a+b)/2
(0, b) x=(a+b)2

0 (a+b)2<x=1.

Then
I(a, f)=ab*+ a’b + aab®

( , |
J’ @*(x) dx=b(a+ b)"/4 + b*(a — b)/2.
o
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1
Denote F(b, ¥, m)=I(a, f)/j @’(x) dx. Then we have
0

a+1)b’>+m
F(b, @, my=am 0 ©
where
m=b=m'">. (10)

Now we find the supremum of F(b, a, m) over b for fixed a>0, 0<m<1. We
use the substitution b= x. Then

(a+1)x+m 2
m*+4mx —x*’

3
IA
=
lIA
3

G(x, a, m)=4m (11)

By differentiation of (11) we obtain

(a+D)x*+2mx+(a—3)m*

G'(x, @ m)= (m*+4mx — x*)*

We can see that the function (11) can have at most one stationary point in
(m*, m), namely

x=m[-1+(-a’+2a+4)"?)/(a+1)

and (11) attains its minimum at this point. Therefore the points of supremum can
be the boundary points of the interval (/m”, m) only. If we compare the two values

G(m,a,m)=a+2

(a+1)m+1

2 -
G(m’, a, m)=4 1+4m—m’

we can see that the point of the maximum depends on a and this dependence is
expressed exactly by the function A(m, a) from (4). Then it is easy to verify that
the lemma is true for f(x) e % (m) with one nonzero value.

Let (8) be true for every fe %(m) having k nonzero values. Let fe &,(m) be
a function with k +1 nonzero values. Denote

X )= 1)+ af(0g(x) + (D) .
Then we can write
I(a, =1I(a, )+ I(a, )+ I(a, f) (1)

where a, c are the first and the last point of discontinuity of f, respectively. Then
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Xa, N=[ 10~ aF +(g-ay+a(/-a)g—al +

+Lc(a+2)a(f+g—a)

where f—a, g — a on (a, c) are the functions with k — nonzero values. They have

the same geometrical interpretation as f, g on (0, 1). By the hypothesis the
following inequality holds

X N<hlm @)-[(9-ar+(@+da [G+e-a) 19

If @=2(1—-m)/(1+ m), then

aI(a,f)<(a+2)£ [lp2—2a<p+a2+a(f+g)—a2]=(a+2)r¢2. (16)
Otherwise, we have

4m(1+a!+1>a+2

1+4m—-—m*=
and

‘ m(l+a)+1 (¢,
J(a, f)<a T+ dm—ni ). " 17)

Relations (14), (16), (17) imply (8) for every f(x) € Z.(m).

Corollary. For every f(x) € %,(m) the inequality (3) holds.
Proof. The function @(x)e %,(m) is symmetric. According to [2, p. 64] the
following inequality holds:

! 2m—1+(1—m)*?, =1/2

I’

and the only functions which have attained the right- hand bounds are, respective-
ly u(x), v(x) defined by (5) and (6). Then (3) is the consequence of (8) and (18).
Remark. We extend result (3) to the entire set %() similarly asin [1, p. 166].

REFERENCES

[1] KATZ, M.: Optimization of functionals containing functions and their inverses, J. of Math.
Analysis and Applications, 59, 1977, 163—168.
[2] KATZ, M.: Rearrangements of (0-1) matrices, Isr. J. Math., 9, No. 1, 1971, 53—72.

Received October 4, 1980 Kukorelliho 15/11
949 01 Nitra

13



PEIIEHUME ITPOBJIEMBI M. KALIA,
KACAIOIEVICS OITTUMATIU3ALIUUA ¢ YHKIIMOHAJTIA

Dana Miklisovd
Pesome
Tycte F(m)— MHOXECTBO BCeX W3MEpMMbIX (DyHKIWI, oToGpaxkalomx orpe3ok (0,1) B cebs.
Kaxnoit ¢ynxumm f crasurcst B cooTBeTcTBre ByHKIMS g no popmyne (1).
IMpo6nema M. Kana cocTouT B cneayiomeM: HaiTH cynmpeMyM ¢yHKkIMoHana (2), rne a —

NONOXHTeNLHOE Yucno. B pabore Hajo peleHue 3T0# Npo6GIeMbl, CIEACTBHEM KOTOPOTo SBIAETCS
u pesynsTat Kana pas a =2 (cmorpu [1]).
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