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STOCHASTIC PROCESSES IN NUCLEAR SPACES: 
QUASI-MARTINGALES AND DECOMPOSITIONS 

J. K. B R O O K S * D. CANDELORO** — A. MARTELLOTTI** 

(Communicated by Gejza Wimmer) 

ABSTRACT. We prove a Radon-Nikodym theorem for measures ranging in a 
special class of locally convex vector spaces, and deduce from it several decom­
positions for quasi martingales taking values in the same class of spaces. 

1. Introduction 

The modern approach to Stochastic integration follows the lines of the Theory 
of vector integration, as outlined in [2], [9], [10]. Indeed, given a "good" process 
A" taking values in a Banach space E, its stochastic measure Ix is a Ll

E -valued 
cr-additive measure, defined in the predictable cr-field V; thus, integrating any 
process Y with respect to X reduces to integrate Y (in a bilinear sense, in 
general) against the measure Ix. 

Of course, a number of questions arises in this respect: 
For instance, when does a process X have a stochastic measure Ix on the whole 
predictable a-field T9? 

Another question is: 
Can a "good" process X be decomposed into "nice" processes in such a way 
that the integration with respect to X becomes "easier" ? 

A further investigation concerns the possibility of extending the results to 
processes ranging in a locally convex space, in particular nuclear-valued ones. 

In the case of Banach-valued processes X , there are basic results in [1], [2], 
[3], though the space E is often assumed containing no copies of c0 . Other useful 
results concerning the existence of decompositions are found in [5], where the 
weak (namely Pettis) integral is involved. 

As to nuclear-valued processes, some interesting results are due to U s t u n e 1 
[12], and to B r o o k s [3]. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 28B05, 46A04, Secondary 60G48. 
K e y w o r d s : stochastic process, nuclear space, weak quasi-martingale, Riesz decomposition. 
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The purpose of this paper is to extend some of the results of [5] to the 
locally convex case, and then to deduce the decompositions for some kind of 
nuclear-valued processes. To this aim, a basic role is played by a Radon-Nikodym 
theorem, already established in [4], and here adapted. 

In the next section, we define the basic class of processes we are interested 
in, namely the weak Quasi-Martingales (w.q.MG), and give a characterization 
for them in terms of their Doleans measure, in a fashion similar to that of [9]. 

In the third section, we establish some Radon-Nikodym theorems, and deduce 
from them a Riesz-type decomposition for a general w.q.MG. In the subsequent 
sections we restrict our attention to nuclear-valued stochastic processes, obtain­
ing for them a number of "strong" results, and some decomposition theorems. 

2. Generalities 

We shall denote by E any quasi-complete locally convex Hausdorff linear 
space, and by (fi, Jr

1 P) any probability space. 
We refer to the books [1] for the notations concerning locally convex spaces, 

and [9] for definitions and notations relative to stochastic processes. 
Let X: f.!x]0, +oo[ —J> E be any stochastic process, adapted to some filtration 

l ^ ) t > o ' Ft C J7. 
We shall assume that Xt = X(-,t) is Pettis integrable with respect to P 

(namely there exists a P -continuous measure ipt: Tt —r E satisfying 

•{vM)) = jx\xt)áP 

for every A £ Tt and for every x* £ E*: in this case we write (pt(A) := 

~JXtdP). 
A 

Throughout this paper the symbol J will denote the Pettis integral. 
Finally, we require that X^ = 0. 

DEFINITION 2 .1 . We say that X is a weak Quasi-Martingale (w.q.MG) if, for 
any neighbourhood U of 0 in E, there exists a constant H = H(U) > 0 such 
that 

Yl\\E(x^Xn+,-Xu)\fu)\l < H (D 
?;=i 

whenever x* belongs to the polar U° of U, and for every decomposition of 
]0,+oo[, say 0 < tx < ••• < tn < +oo. 
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DEFINITION 2.2. Let TZ denote the set of all predictable rectangles. Set 

ßx(]s,t]xF)=J(Xt-Xs)dP 

for all s, t G ]0, +00], and F G Ts. It is well known that [ix extends uniquely to 
the predictable algebra U generated by 1Z, thus becoming an E -valued finitely 
additive measure: the Doleans measure of X. 

In particular, px(]t, +00] x F) = - f Xt dP for all F G Tt and t > 0. 
F 

In case px = 0, then X will be said to be a weak martingale (w.MG). 

Our first result allows us to characterize weak Quasi-Martingales in terms of 
their Doleans measures. 

THEOREM 2.3 . The following are equivalent: 

1. X is a w.q.MG. 
2. jix is bounded on U. 

Furthermore, if 1. or 2. occur, for every neighbourhood U of 0 in E such that 
U = U°°, we have: 

s u p j p ^ x ) : x G jix(U)} < H(U) < 4sup{pu(x) : x G VX(U)} , 

(Here, HX(U) denotes the range of \ix, and pv is the Minkowski functional 
ofU). 

P r o o f . First, we prove the implication 1. => 2. n 

Let us denote by R any element of ZY, and set R = [j j s ^ t j x F{1 where 
F- eTSi for all i. i=1 

Without loss of generality, we shall assume that the rectangles ] ^ , £ j x Fi 

are pairwise disjoint. Now, let us denote by 1E(0) the set of all neighbourhoods 
UofO'mE satisfying U = U00. If X is any w.q.MG, for any U G 1E(0) we 
find 

\^^x(R))\ = \T,fx^Xu--Xsi)dP 

Fi 

= \^TfE(x*(Xti-XSi)\fSi)dP 
Fi 

<j:\\E(x%Xti-XSi)\^Si)\\1<H(U) 

for every x* G U°. Hence p<x(R) G H(U)U00 for each R G U, and so fix(U) C 
H(U)U. This shows that \ix is bounded, and pv(x) < H(U) for all x G VX(U). 
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We now turn to the converse implication. 

Let U G 1E(0) be fixed. Then, there exists K eR+ such that V>X(U) c KU. 
Fix x* G U°, and let 0 < t0 < tx < • • • < tn_1 < tn be a fixed decomposition 
of M+ . For any index i, we have 

Si •= \\E(x*(Xti+i - Xti)\Tti)l < 2sup{ \fx'(Xu+i - Xti) dP | : F € ?t) 
F 

= 2sup{ |x*( / i x ( ] t i ) < i + 1 ] x F ) ) | : F e f ( | } 

< 2 K , 

as x* e f/°. So, if we fix e > 0, there exists Fs- € JF such that 

Si<2\x*{»x{]ti,ti+1]xFi))\ + l 

and thus 

n n 

Esi^Eli*KOti-fi+i]><J7i))l+E 

Z = l 2 = 1 

= 2 ^ x * ( M x ( ] t t , t i + 1 ] x F J ) ) - 2 ^ x * ( M x ( ] i , , f j + 1 ] x F J ) ) + £ , 
z6J iGJ' 

where J is the set of all indexes i, such that ^ ( ^ x O ^ ' ^ + i l x ^i)) ls Positive, 
and J' is the set of remaining indexes. Setting 

G1 = U(l*i'*i+il x Fi)' G2 = U (]'i.*i+il x Fi)' 

we find 
n 

Y,SZ< 2\x* (MG.)) I + 2|x* (^(G2)) | < 4K + e . 
Z = l 

n 
Since £ is arbitrary, we get ^ ^i < 4If for all x* G L7° , where K satisfies 
Lix(U )CKU. i=1 

Therefore H(U) < 4K, whenever K > snp{pu(x) : x G MxC^O} > a n ^ s o 

H(U) < 4sup{pc /(x) : x G lxx(W)} • 

This shows that X is a w.q.MG, and the last inequality of the assertion. • 
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3. Riesz decomposition 

In this section we shall find a Riesz-type decomposition theorem for an 
E-valued w.q.MG X. 

PROPOSITION 3 .1 . Assume that E is weakly sequentially complete, and let 
X be a w.q.MG taking values in E. Then there exists a finitely additive measure 

H*: \Jfs^E, 
5>0 

such that: 

1. lim /J,x(]t, oo] x F) = ii*(F) weakly in E for any F e\JTs; 

2. 1^*1^ is a -additive for each s > 0, and P -continuous in the weak sense. 

P r o of . Let us fix F G |J Ts, and let r > 0 be such that F eTT. As X 
s>0 

is a w.q.MG, for each x* G E* the mapping 

t^\x*(fix)\(]t,+oo]xF) 

is Cauchy, as t —r +oo. Then the limit 

lim x*(fix)(]t,+oo]xF) =a(x*,F) 

exists in R. 

Since E is weakly sequentially complete, this yields a map \i*: TT -> E such 
that: 

a(x*,F) = x*(n*(F)) for all x* G E* , and F G TT . 

As r is arbitrary, this shows the first part of the assertion. The second part 
follows from the Vitali-Hahn-Saks theorem, when one restricts to any a -field Ts, 

because fJ>*(F) = lim (— f X dP), in the weak sense, for all F G T' . • 
n—>oo \ p / 

In order to get a Riesz-type decomposition, we shall obtain a density of //* \jr 

with respect to P for all s > 0. An existence theorem for such densities can be 
found, strengthening the hypotheses on E. 

DEFINITION 3.2. We shall say that the space E enjoys property (SP)* if, for 
every bounded set B C E, the space E£(B°) is separable (see [11] for notations). 

Beyond (SP)* we shall also require that E is semireflexive, a condition 
stronger than the weak sequential completeness. 
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THEOREM 3.3 ( R A D O N - N I K O D Y M ) . Let us assume that E is semireflexive, 
and enjoys property (SP)*. Let A: A —» [0,+oo[ be any a-additive measure on 
some a-algebra A, and let /a: A —» E denote any E-valued measure, weakly 
absolutely continuous with respect to A. A sufficient condition for the existence 
of a Pettis-type derivative ^ is that there exists an increasing sequence (Qn)n

<)_1 

of elements in A such that A(fi \ - \ ) | 0. and the sets 

^n = { ^ : A( .4)>0, . 4 c f i n , AeA} 

are bounded in E for all n. 

P r o o f . In view of the hypotheses concerning A(fin), it will suffice to prove 
the theorem just restricting A and /i to each iln. In other words, without loss 
of generality we can assume that 

S:={MA): W>O, A en, A^A} 

is bounded. Set U = S°. Then, U is a neighbourhood of 0 in E*h . By (SP)*, we 
deduce that E*(U) is separable, and it is the dual space of (Eu0.pu0). From 
the definition of S we deduce 

Puo{fx(A))<X(A) 

for all A G A, and therefore ji <C A in the space (Eu0)pu0). We can then 
apply [6; Proposition 3.2] and deduce the existence of a Gel'fand derivative 

ft.n-* (£S(tn)\ 
Now, if z G (Eu0,pu0), z can be viewed as a linear functional on E* by 

putting z(x*) = z([x*]) for all x* e E*, because [x*] = {y G E* : pu(x* - y*) 

= 0}. 
We claim that z G (E*)*. Indeed, we have 

\z(x*)\ = \z{[x*])\<\\z\\Pu(x*)<\\z\\ 

for all x* G U. Hence, z is bounded on c7, and therefore it is continuous in the 
strong topology of E*. As E* is semireflexive, then z G E. Thus, ^ ranges 
in E, which implies the assertion. • 

THEOREM 3.4. Let us assume that E is semireflexive, and enjoys property 
(SP)* . Let X be any E-valued w.q.MG satisfying the following condition: 

(2) For every s > 0 there exists an increasing sequence (Qn)n^=1 in T such 
that P(Vt \ ftn) | 0. and such that the random variables Xt, t > s, aie 
uniformly bounded in each Qn. 
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Then, there exists a weak martingale (Yt) taking values in E, such that 

lim (Xt-Yt)dP = 0 
c—> + oo / 

F 

weakly in E. for every F G |J Tt. 
t>o 

P r o o f . By Proposition 3.1, the limit 

lim - fxtdP = i_i*(A) 
t—t + OO J 

A 

exists in the weak sense for every 4 G |J Tt. Furthermore, we have also 
t>o 

/ t* | ^ <C P\Ts for all s > 0. Let s > 0 be fixed, and let ( f t j ~ = 1 be the 
sequence given by (2). For every integer n , choose A C fin, A G Ts, with 
P(A) > 0 . We have 

//*(A) = lim - [xtdP. 
t—> + oo J 

Now, if [/ G ^ ( 0 ) , let i\~ > 0 be any integer satisfying Xt(uj) G KU for all 
l > s, w G f i n . Then 

- í Xt dP Є P(Л)ÄT/ 

л 

as [/ is closed and convex. 

Therefore, p(Al £ iff/. As 4̂ is arbitrary, we find that the hypotheses of 

Theorem 3.3 are satisfied by the measures M*|jr a n d P\:Fi a n d so there exists 

a Pettis-type derivative Ys — — dpi for all s > 0. Of course, the process Y 

satisfies the condition nY(F) — 0 whenever F G W , and therefore it is a (weak) 

martingale (and also a w.q.MG, thanks to Theorem 2.3). Finally, if F G TT we 

have 

, 1 ^ f(Xt - Yt) dP = -»*(F) - J Yt dP = -,S(F) + v*(F) = 0, 
F F 

and this concludes the proof. • 

The last theorem can be viewed as a Riesz decomposition theorem, by using 
the next definition. 
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DEFINITION 3.5. A w.q.MG (Vt) is said to be a weak Quasi-Potential (w.Q-P) 
if 

J 
F 

holds in the weak sense, for all F G \J Ts. 

lim / V dP = 0 
t—>-oo 

s > 0 

If (Vt) is simultaneously a weak Quasi-Potential and a weak Martingale, then 
the process (x*(Vt)) is equal to 0, up to modifications, for all x* £ E*. This is 
easily seen, and will be used in the next result. 

COROLLARY 3.6 (RlESZ DECOMPOSITION). In the same hypotheses as in 
Theorem 3.4. there exist a w.MG Y and a w.Q-P V such that 

Xt = Yt + Vt 

for all t. Moreover, Y and V are unique, up to modifications. 

P r o o f . Let Y be the process found in the proof of Theorem 3.4, and set 
Vt = Xt — Yt. Then, (Vt) is a w.q.MG, since it is the difference of two w.q.MG's, 
and, again by Theorem 3.4, it is a w.Q-P. 

Y and V are unique, because of (2): indeed, if Y' and V give another 
decomposition of X, then Y' — Y is a w.Q-P and a w.MG, hence for each t and 
n there exists a P-null set N G Tt such that x*(Yt) = x*(Yt) for each x* in a 
countable dense subset of Bn (where Bn is some bounded set in E, containing 
the range of the variables XT\n for all r > t.) Hence, Yt = Yt a.e. in fin, and 
hence Yt = Yt a.e. in fi. This also shows that Vt = Vt a.e., and the theorem is 
proved. • 

4. The dual-nuclear case 

The previous results can be strongly improved if the space E is of nuclear 
type. This is really important, because many useful processes take their values 
in spaces of distributions. 

We shall assume that E is quasi-complete and dual-nuclear (namely, E^ is 
nuclear). Under these hypotheses, E is automatically semi-reflexive, and enjoys 
property (SP)*. 

LEMMA 4 .1. Assume that E is quasi-complete and dual-nuclear. Let S be 
any algebra on Vt, and P: S —> [0,+oo[ any finitely additive measure. Assume 
also that m: S -> E is any bounded finitely additive measure, weakly absolutely 
continuous with respect to P. Then, the absolute continuity holds in the strong 
sense, too. 
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P r o o f . Fix any neighbourhood U G IE(0). As E£ is a Montel space 
(see [11]), U° is compact. Now, for any x* G U° there exists S = S(x*) > 0 
such that P(H) < S =-> \x*(m)\(H) < \. 

If we denote by R the (bounded) range of m, then the family 

{int(.-* + - f ) : x*£U0} 

is an open covering of U° (where by int(A) we denote the interior of A). 
There exist hence some points x\, x*,, • • •, x*k G U° such that 

u°c(jы(x; + ą-). 
i=l 

Setting S0 = min{ S(x*) : 1 < i < k} , and choosing any i G S , with P(A) < S0, 
for each x* G U° we get \x*(m)\(A) < 1, hence m(A) C U00 = U. As U is 
arbitrary, this shows that m is strongly absolutely continuous with respect to P. 

• 
In view of this Lemma, and of [4; Theorem 6], one easily deduces the following 

results. 

THEOREM 4.2. Assume that E is quasi-complete and dual-nuclear. If (fi, J7, P) 
is any a-additive measure space, and m: T —r E is any measure weakly ab­
solutely continuous with respect to P, then there exists a Bochner-integrable 
function f:Cl-+E satisfying: 

/ • 

f dP = m(A) 

for all A G T. A 

COROLLARY 4.3. Let E and (Q.T.P) be chosen as in Theorem 4.2. If 
X: Q —r E is a Pettis-integrable function, then there exists a Bochner-integrable 
function Y: ft —> E such that 

(үàP= í X dP, 

for all Fєf. 

THEOREM 4.4 (RlESZ DECOMPOSITION). Let E be as in Theorem 4.2, 
and let X be a w.q.MG. Then there exist a Bochner integrable martingale 
M = (Mt), and a quasi-potential V = (Vt), such that 

Xt = Mt + Vt 

for all t. 
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5. Further decompositions 

In this section, wTe shall deduce, for a general w.q.MG, decomposition the­
orems similar to those in [5], [9]. We need some preliminary results. 

DEFINITION 5.1 . Given an J5-valued w.q.MG X on ft, we say that .Y is 
(weakly) of class D if the set 

{XT : T is a finite stopping time} 

is (weakly) uniformly integrable. 
X is a weak local martingale if there exists an increasing sequence of stop­

ping times (T ) ^ : 1 with lim T (UJ) = +oo and such that the stopped pre cess 
n—>oc 

(see [9]) XTn is a weak martingale for each n. 

THEOREM 5.2. Assume that /ix is s-bounded. Then / i Y is a-additive if an I 
only if X is weakly of class D. 

P r o o f . We shall denote by T the set of all finite stopping times. Let us 
assume that /IY is cr-additive. Then X*(/JLX) is cr-additive for all x* E E*. Bv 
[9; p. 92], it follows that x*(X) is of class D, hence 

{x*(XT) : TeT} 
is uniformly integrable for all x*. Therefore, {XT : T E T } is weakly uniformh 
integrable. 

On the converse, assume that X is weakly of class D. Then x*(jux K 
cr-additive, and so fix is weakly cr-additive. As E is quasi-complete, JJ,X is 
cr-additive also in the strong sense. • 

THEOREM 5.3. If [ix is purely finitely additive and admits a Rybakou control 
namely an equivalent scalar finitely additive measure of the form \X*JJX | for some 
x* E X*, then X is a weak local martingale. 

P r o o f . Choose x* E E* in such a way that \x*(ftx)\ is a control for // x . 
Then X*(JJ,X) is purely finitely additive, hence there exists a sequence (Tn)^° { of 
stopping times, Tn t oo, such that x*(Tn) is a (uniformly integrable) martingale 
for all n. 

Let us consider the cr-algebra V of predictable sets: jix is purelv finiteh 
additive on V, and equivalent to x*(fix). Let T denote any stopping time o ' 
the sequence Tn, and set 

VT = {AH]0,T] : AeV}. 

Then VT is a cr-algebra on ]0,T] and x*(fix) is null on it. 

As fix <C x*(fix), HX\VT is also null, and therefore XT is a martingale. It 

follows then that .Y is a local martingale. • 
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COROLLARY 5.4. If E satisfies the hypotheses of Theorem 4.2. and if fix is 
purely finitely additive, then X is a local martingale. 

P r o o f . As / i x is bounded, it follows from [4; Corollary 1] that \±x admits 
a Rybakov control, and therefore the assertion follows from Theorem 5.3. D 

THEOREM 5.5. In the same hypotheses of Theorem 3.4, there exists a decom­
position 

X = u + z 
where U is a w.q.MG weakly of class D, and Z is a (weak) local martingale. 

P r o o f . Let /Ix = //1 + /I2 be the Yosida-Hewitt decomposition of /I x . So, 
//j is cr-additive, /z2 is purely finitely additive, /x1 <C fix, /i2 <C [ix. By the 
Radon-Nikodym theorem, there are two processes, U and Z , such that 

X = U + Z , ^ = (iu , ii2= nz. 

The properties of U and Z follow from Theorem 5.2 and Theorem 5.3. D 

THEOREM 5.6 (DOOB-MEYER DECOMPOSITION). In the same hypothe­
ses of Theorem 3.4. let U be any process whose Doleans measure iijj is a -addi­
tive. Then there exist two processes, Y and V, such that 

U = Y + V, 

Y is a martingale weakly uniformly integrable, and weakly right continuous; 

V is a process with weakly integrable variation. 

P r o o f . Let us apply to U the Riesz decomposition (namely Corollary 3.6): 
U = Y + V. Thanks to [9; p. 91, 9.12], it follows that x*(Y) is uniformly 
integrable, and right-continuous, for all x* G E*. Moreover, by the same result, 
.r*(V) is a process with integrable variation. D 

THEOREM 5.7 (FINAL DECOMPOSITION). In the same hypotheses as in 
Theorem 5.6, if X is a w.q.MG, there exist four processes, Y, V, M, W such 
that X =Y + V + M + W and 

a) Y is a weakly uniformly integrable and weakly right-continuous martingale; 
b) V is a process with weakly integrable variation; 
c) M is a martingale, whose Doleans measure is purely finitely additive; 
d) TV is a Quasi-Potential and a local martingale. 

P r o o f . It suffices to decompose X — U + Z according to Theorem 5.5, 
U — Y + V according to Theorem 5.6, and Z — M + W in the Riesz sense. D 
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