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ON THE EXTENSION OF POSITIVE
OPERATORS

MARTA VONKOMEROVA

There are many papers devoted to measures and integrals with values in ordered
spaces (e.g. [2], [4], [6], [11]). In some papers also group valued mappings are
considered (e.g. [5]. [7]. [8], [9]). P.Volauf in [9] proved an extension theorem
for lattice ordered group G-valued mappings where the measure extension
theorem and the Daniell integral extension theorem are special cases. He assumed
that G is complete. In this paper we assume that G is a o-complete and strongly
regular [-group., We use the construction from paper [3] by E. Fut4s.

Let us introduce some notations first. If X is a lattice, then by x vy, x A y we
shall denote lattice operations. The symbol x,,/x (x,\.x) will be written if

Ax=s).

n=1

Xo = X4t (Xa 2 X,41) for every n and V x, =x(
n=1

Definition 1. An [-group H is strongly regular if there holds:

ifa,aleHfori=1,2,....,k=1,2,...aresuchthatai,<afori=1,2,...,. k = 1,2,
...and ai\\0 (i—») for k =1, 2, ..., then there exists a countable set € = N~ (N is

the set of positive integers) such thatif be H, b= \7 > ag® for every @ € €, then

n=1k=1
b =0.

As example of a strongly regular [-group let us take the set R of all real numbers.
For all n and for each € >0 there exists i, in this case such that as=¢.

We form @,: N> N for n=1, 2, .... For this purpose let us put £=5}7 and we
take @,(k) such that

o < 1
[ =2k”

for k=1, 2, .... Then €={®,: n=1, 2, ...} is the countable set.
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If beR and if
for n=1, 2, ..., then

for n1, 2, ..., hence b=0.

Similarly we can prove that the set R, of all n-tuples of real numbers is a strongly
regular [-group.

Now let us present further examples.

Example 1. Every regular K-space is a strongly regular /-group. A regular
K-space (see 10 Th. VI.5.2) is a linear semiordered space which is relatively
complete and such that every sequence of convergent sequences has a common
regulator of convergence.

If ,\J0, then u >0 is a regular of convergence of {b.}.- iff to any number £ >0
there is n, such that b, <e u for every n=n,. Further, every regular K-space is

such that % u\0 for every u=0 (see 10 Th. IV. 1.5). Now let a\,0 (i— =) for

k=1, 2, ... and let u be the common regulator of convergence of all {ai}Z,,
k=1,2,.... Then for all k and every &€ >0 there exists i, € N such that a; = eu for
every i =i. It suffices to choose @,(k) such that
1
@, (k) <
agn = u
1 2X - n

fork=1,2,...andfor n=1, 2, ... we obtain the countable subset of the set N".

Let

for n=1, 2, .... Then

for n=1,2, ... and hence b =0.

Example 2. Let us have a set of all sequences of real numbers such that they
are non zero only on the finite number of coordinates. Since a,=a for every
i=1,2,...,k=1,2, ... and the sequence a = {a,}:-, is non zero only on the finite
number of coordinates we have the case R.,.
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Proposition. Every oO-complete I-group is a commutative group. (See
Birkhoff G. [1])

Let G be a o-complete and strongly regular [-group.
Let X be a conditionally o-complete lattice. On X define further two
operations + and —. Suppose that on X the following relations hold:

L If x., yo€X, x../' X, Yo'y (X.\uX, y.\iy), then
X AYa/XAY (Xa VY NX V Y).
2. If x,yeX, then x+y=y+x.
3.Ifx,y,zeX, xSy, then x+z=5y+z, x—z5y—z,
Z—XZx—Yy.
4. If xuy yn€X, X,/ %, Yo'y (x. X, ya\1y), then
Xty /X +Yy (Xatya X +y).
5. If x., yeX, x./x (x.\\x), then x,—y "x—y,
Y=XaNY =X (= yN\X—y, y—x. /'y —x).
6. If x, ye X, x=y then x=y+(x—y).
There exists an element 0 € X such that x —x =0 for every x € X.
8. If x, y, u, veX, x=y, u=v, then :
[(x+u)=(y+V)]v[(x=v)=(y-u)] = (x—y)+(u—v).
Now let A be a sublattice of X closed under the operations + and —. We also
assume that to any x € X there are a, b € A such that a=x=b.
Further let J: A— G be an operator satisfying the following axioms:
(D) If x,ye A, x=Zy, then Jo(x) = Jo(y),
(II) if x, ye A, then Jo(x v y)+Jo(x A y) = Jo(x)+Jo(y),
(III) if x, ye A, x=y, then Jo(x)=Jo(y) +Jo(x — y),
(IV) if x, ye A, then Jo(x +y) = Jo(x)+Jo(y),

(V) if x, €A, x,\O, then A Jo(x,)=0.
n=1

=

From 5, (V) and (III) we get:

V) ifx,/'x, x,, xe A(n=1,2,...), then Jo(x) = \7 Jo(xn),
n=1

if X, \X, X, x €A (n=1,2, ...), then Jo(x) = A Jo(x).
n=1

Definition 2. We put A,={xeX:3x. €A, x./x}, As = {yeX: Ay. €A,
y-\y} and we define J,: A, U As— G by the formulas

Ji(x)= \7 Jo(x,), where x, € A, x, /'x,
n=1

1u(y)= A Joly.), where yn € A, yu\y -
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Further we put Ays = {x€ X: 3x, € Ao, x.\x}, As, = {yeX: 3y, €A, 3./ v}
and we define J,: Aa U Aso— G by the formulas

J(x)= A Ji(x,), where x, € A,, X, \\ X,
n—1

Ja(y)= \_/l Ji(y), where y, € Ay, ¥ /.

Finally we put S ={x € X: Ay € Avo, 7€ As, y=x=z and J,(y)=J:(z)} and we
define J: S — G such that
J(x)=T:(y)=JxA2),

where y, z are the elements from the definition of S.
From 1, 4 ant the properties of the operations v, A we get that A,, As, As, A

are lattices closed under the operation +.
We have to prove that the definitions of J,, J, and J are correct.

Lemma 1- If X,./X~ yn/'y (xn\xv )’n\,V)’ X,,, _VnGA for II=1, 2‘ cce X é )'~

then
V30002 30 (A ter= A s
If x,/x, ya\\X, X., yo€A for n=1, 2, ..., then
V(o) = Adu(ra).
Proof. From 1, (I) and (V') we have x, Ay, " XuAYy=Xm, Jo(x,)=
\ZJ()(x-m AYa)= \2 Jo(y.) for all m, hence
v 5uxn)E V I3

If y, = x Z x,. then by 4 and 5 there holds y, — X. N0 and from (V), (ITI) we get

o=

Lemma?2. If ueA,, v€A,, then u—veAs, v—ueAs. There further holds
that if x € Ao. YEA, xZy, then J,(x) = Jo(y) + Ji(x—y).

Proof. There exist w,, v.€A, w,/u, va\v. Then w,—v, u—v, v,—
u,\v—u by 4 and 5, hence u—veA, v—ueA,. If xeA,, then thre exist

x, €A, x,/x. Further x, vy/xvy=x, x,—y/x—y and from (III) we have
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Jo(xa v y)=Jo(y) +Jo(x. vy = y)
for all n, hence
Ji(x)=Jo(y) +Ji(x — y).
Lemma 3. If x, x,€ A, forn=1, 2, ..., x, /'x, then x€ A, and

J.(x)=n\ZJ.'(x,.).

Proof. For every x, € A, there exist x, € A such that x; /x, (i— ). We put y,
=V Vxi. Then y. € A, yaSy,u, ya=x, for all n and x=\/ y,.
n=1

j=11=1

Since x, =x, x € A,, it follows from Lemma 1 that

Ji(x)=Ji(x), Ji(x.)ZJo(y.) foralln,

hence
V T(x) ST(x), Ti(x)= \7 Jo(y.) = \7 Ji(x)
and we have

Jl(x)=n\ZJl(x,.).

Lemmad. If x,, xe A,, x,\\x, then J,(x) = 7\].(x,,).

n=1

Proof. There exist x,, x€A,, x,\x and x., x" €A, x!/x,, x" /x. Then
X, —x" € Ag. X, —x"\0.

According to Lemma 2 for every n there holds
Jl(x,.):.fo(x")"i']](Xn _x"),

hence

;éljl(x.'n): \ZJ()(X")"F’Z\I Jl(x,. —x")=]l(x)+ /:\,J‘(x" _xn).

It suffices to prove that if z. € Ao, 2. \0, then 7\ Ji(z.)=0.
n=1
Let z, € A,, z.\0. For every z, there exist z. €A, 2,/ z,.
Let yi=z:v0. Then
yi/zv0=2z, yi20, Jo(ys)/Ji(z.) (i->»)forn=1,2, ..
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Let b= 7\].(1,.) and let @ be an arbitrary element of the set N¥. Then
n=1

Il/\

7_\ = Z\ =0, hence /Xy,?"":().
There holds

JO(Z\1 yr) 3"2 To(y2®) = ()] + Jo(y 2.
Since

AR Qo) = )=

we have

All(zn)=nZ\lll(zn)—”§1Jo(lZ\1 yf"")=
-l {fr=g e (or)

=V {1z = T o2 = szl - Ity =

=V X Uiz) = Jo(y2*)] = \7 S ap®,
m=1 k=1 m=1 k=1

With respect to the strong regularity of G we have

From the definition of J, we get /"\Jl(zn)go.
n=1

Hence

1 >s

Ji(z,)=0.

An analogous assertion to Lemma 3 and Lemma 4 holds also for the set A,.
We put
an=Ju(z.) = Jo(ys)-
Evidently
a. N0 (i—=), a.=J(z)forn=1,2,..,i=1,2, ...
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Lemma 5. If xe A,, y € As, x=y, then Ji(x) = Ji(y) + Ji(x—y).
Proof. There exist X., y. € A, x. /'x, y,"\\y. From Lemma 2 we have

Ji(x) =Jo(Xa A Ym) + Ji(x — X A ym) forall m, n.

For m— o we get x, A ym \uX. Ay € As. Then according to 5 and Lemma 2 there
holds (x —x, A yn)/(x —x. Ay)€ A, and from Lemma 3 it follows that

Ji(x)=J(xa Ay)+Ji(x—x. A Y).

For n— o and from 1, 5 and Lemma 2 we have x, Ay,/y, (x —x. Ay)\(x— ),
x—ye€As.Hence Ji(x)=Ji(y)+Ji(x—y) by Lemma 4.

The following lemma shows that the definition of J, is correct.
Lemma 6. If x, y€ Aws, X=Y, X., ya €Ay, X \X, Yo \Y, then 7\Jl(xn) =
: Aoy X A

Z\,J‘(y")‘ Ifx,y € Asos X=Y, Xn, Ya € As, X2 /"X, ya /'y, then \le(xn) = \Zlu(yn)-

If further x € Aos N Asos Xn € Ag, Xn \X, Ya € As, Yo /' X, then 7\ Ji(x,) = \7 Ji(yn)-
oo n=1 n=1

Proof. Analogous to that of Lemma 1. We shall use Lemma 1, Lemma 4 and
Lemma 5. ‘

Lemma7. If xe A,, y€eAs, x=Zy, then Ji(x) Z Ji(y). If further ue As,,
v € A, U=, then Jo(u) = Jy(v).

Proof. According to Lemma 5 and Lemma 1 we have Ji(x) = Ji(y)
+ Ji(x—y), Jilx—y) = 0. Hence J\(x) = Ji(y). Let u. € As, va € A,, u.u,
v \; then u, Su=sSv=v,, Ji(u,) = Ji(va) for all n, m and hence

Jy(u)= \/ T(w) = /\ Ji(vm) = ().

Lemma8. Let xe€S. We assume that u, y€ As, v, zZ€ Ao are such that
usx=v, ySx=zand J(u) = J(v), J:(y) = J(z). Then J(v) = Jy(2).
Proof. Evidently v A z€ A, v A z=x. According to Lemma 7 and Lemma 6
we have
Jo(u)=J:(v A 2) S Jo(v) =J5(u), hence (v A 2) =T2(v),
L(y)=T(v A 2) = Jx(2) = J,(y), hence Jo(v A 2) =T2(2),
and
J(2) = Ta(v).

The preceding lemma shows that the definition of J is correct.
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Lemma 9. IF u, v e As, then J,(u) + Ju(v) = J(uvv) + J(uAv) and if
X, Y € Ao, then Jo(x) + J(y) = J(xvy) + J(xAy).

Proof. From the definition of A; there exist w,, v, €A, u,\u, v, \v. Then
Un AUNUAD, U VU NV e byl and from (II) we have Jo(u.) + Jo(v.)

= Jo(tta V 0.) + Jo(ttn A v,) for every n. Hence

Ju(u)+J(v)=Ji(u v v)+J(uAv).

If Xu, yo € As, X /"X, Yo /'y, then x, vy, /X V ¥y, X, A Y./ x Ay by 1. Applying the
first assertion of this lemma and from the definition of J, we get the second
assertion.

Lemma 10. If u, veA,, then Ji(u+v) = Ji(u)+Ji(v). If x, y € Ass, then
Jz(x + y) = Jz(X) +Jz(y)

Proof. The first assertion follows from 4, (IV) and from the definitions of A,
and J,. If x, y € Ay, then there exist x,, y. € As, X.,/'X, ya/'y. By d, xa+y./x+
y. From the preceding there holds for every n

]1(xn + y'l)éjl(xn) +Jl(yn)7
hence ) .
L(x+y)=J(x)+J:(y).

Lemma 11. If x € Aos, y € Aso, then x —y € Ags. If X € Ass, y € Aso, X2y, then
J(x) = Jay) +Ta(x = y).

Proof. We have x,€A,, ¥» € As, X. \X, Y, /'y and X, Zy., X, —ya € As. By
4 and 5 there holds x,—y.,\x—y. Hence x—y e Ac. From Lemma 5 and the
definition of J, we get

Jo(x) =Ja(y) + a(x — y).
Lemma 12. If x, € As, X./'X, then x € As, and J(x) = n\/=llz(x,,).

Proof. We put y, =\7 \n/xf' where x| € As, x; / x;(i—*). Then y, € As, ya = x,,

j=1i=1

~¥./'x, hence x € As,.

From Lemma 6 we get

Ji(y») é";z(xn)éjz(X) for every n.

Since Jx(x)= \7 Ji(y.), we have
n=1

T(x) = \/ (%)
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Theorem. The operator J: S— G is an extension of J, such that J satisfies the
properties (I)—(V). If L: S— G is an extension of J, satisfying (I)—(V), then
L=J. If x e X and there exist y, z € S such that y=x=z, J(y)=J(z), then xe S
and S is a conditionally o-complete lattice.

Proof. The properties (I)—(IV), the uniqueness of J and the completeness of S
can be proved easily by aplling Lemmas 6, 7, 9, 10 and 11. The methods of this
proof are analogous to the methods used in the proofs of Theorems 1, 2, 3, 4, 6 and
7 in paper [3].

We shall prove that:

If x,€S, x.=x,+1 and there exist a € X such that x,=a for all n, then

x=\”/xneS and J(x) = \7](x,.).
n=1 n=1
We may suppose that ae A.
Let r. € Aws, 2.€Aso, 2SXa Sty Jo(2.) = Jo(1), 2.520n1, 2../2 for n=
1,2, ..

From Lemma 12 it follows that
2€ A, Jo(2) = v B(z)= VI (x).

Evidently z=x.
We put y.=r. Aa. Then x, S y.=rn.

By Lemma 7 and Lemma 6
J(z.) = J2(y.) = J(x.) holds.

Denote
yi=rinaand ai=J(ys)—J(y.) Where r, € Ag, ra\ita.
Then
an=Jo(a) = J(z1), an\O (i—>»)forn=1,2, ...
By the strong regularity of G there exists the sequence @, @,, ... of elements from

N~ such that if b=V D a® for n=1,2, ..., then B=0. We put u, =
m=1 k=1

\7 yier®, u= 7\ u,. Then u= \7 x. and u € Ass. Applying Lemma 6 and

k=1 n=1 k=1

Lemma 3 we get

To(u) = Jo(2) ETu(u) = Jo(2) = ](\71 V y,;’"‘“’) _

~ ()= Y (V y2) -V Iz) =
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) )=
= '\:/ [Z Ji(ye-®) - 2 Jo(yi) = Jaolyr ] = \7 ag-®

= r=1 k=1
for every n, and hence J,(u)=J(z2).

We have

r r r=1
d ‘(V yf"("’) =3 1) =3 (v
k=1 k=1 k=1
By Lemma 7 we have

]z(u)gjz(z.) .
From the preceding it follows that

x €S and J(x)=Jy(z)= \:/lJ(x,.).

An analogous assertion holds foy Xn N\ X.

Corollary 1. Let ¥ be the system of all subsets of a set M with the set-theoretical
operations N, U and —. Let + be identical with U. Let s{ be a non-empty algebra
of subsets of M on which we define a G-valued measure ; i.e. u: s{— G is the set
function fulfilling the following conditions: -

(1) u(A)=0 for every Ae sl (0 is a zero element of G),
(i) u is finitely additive: i.e. if Aie oA,
i=1,2, ..., n,and Ain A;=0 for i#j, then
(UA)=3 ),
(1) p is continuous from above at , i.e.
if Aied, i=1,2, ..., AN\, then n(A:)\0.
Put Jo= . Then the assumptions of the Theorem hold, and we have the measure
extension theorem.
Proof. It is evident that # fulfils the relations 1—8. We need to prove that u
fulfils the axioms (I)—(V). If A, Be &4, A < B, then B= A U(B—A). By (ii)
u(B) = u(A) + u(B— A), and we have (III). Since u(A) =0 for every A € « and

by (III) there holds u(B) = u(A), which is (I). The axioms (II) and (IV) follow
from the following

w(AuB)+u(AnB)=u[(A-B)u(B—A)u(AnB)|+u(AnB)=
=u(A-B)+u(B-—A)+ u(AnB)+u(AnB)=
=ul(A=B)u(AnB)|+u[(B-A)u(AnB)|=u(A)+u(B). .

The property (V) holds by the definition of the G-valued measure.

260



Corollary 2. Let X be system of all G-valued mappings defined on a set M with
the operations +, — defined as usually and the operations v, A where u=xv'y
(v=xnYy) iff for all te M we have u(t) = x(t)v y(t) (v(t) = x(t) A y(t)).

Let A be such a sublattice of X that to any f: X— G there are h, g € A with
h=f=g. Let Jo,: A— G be a mapping satisfying the conditions:

(1) Jo(f+9)=Juo(f)+Jo(g) for all f, ge A,
(ii) if f, ge A, f=g, then Jo(f)<Jo(9),
(iii) iff.e A (n=1,2,...), f.\\0 (where 0 is the mapping which 0(t)=0 for all
te M), then Jo(f.)\O.

Then the assumptions of the Theorem hold, and we have the Daniell integral
extension theorem.

Proof. Itis easy to show that every o-complete [-group G fulfils the properties
1—38. Then the system X fulfils 1—8 too. We see that the conditions (I), (IV), (V)
are evident. By (i) we have Jo(f+g) = Jo(fvg+fag) = Jo(fvg) + Jo(fAg)
and Jo(f) = Jo[g +(f—9)] = Jo(g) + Jo(f —g) forall f, g € A, hence (II) and (III)
hold too.
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O PACHHUPEHMHW MOHOTOHHbBIX OITEPATOPOB
Mapra Bonkomeposa

Pesiome

CraTbs nocssiLieHa Npo6JeMaM pacliMpeHHsi ONepaTopoB, ONpefesieHne KOTOPbIX AAeTcs Ha omn-
peaeneHHbIX MOACTPYKTYPAX CO 3HAYEHUSMH B YACTMUHO ynopsnodeHHoi rpynne G, obGnajaiouwed
CBOWCTBOM CHJIbHOW perynsipHocTd. CrieuManbHO NoyqatoTces paclumMpeHne Mepbl, ONpeeNeHHON Ha
anreGpe MOJMHOXECTB JAHHOTO MHOXECTBA, W PACIUMPEHHE MHTErpana, Onpefe/eHHOro NpoCThIMU
YHKUMAMM, NPUUEM 3HAUEHUS MEPbI M MHTCTPANa UMEIOTCS B CHIILHO PETYJISPHOM, YACTHYHO yno-
pSNOUEHHON Tpynne.
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