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SEVERAL REMARKS TO THE RIESZ 

REPRESENTATION THEOREM 

JAROSLAV MOHAPL 

ABSTRACT . Given a linear functional T defined on a set Ti of bounded real 
functions may ask under what conditions if is possible to determine a measure 
m such that Tli = m(li) for h £ Ti . Necessary and sufficient conditions for 
uniqueness of m are established. 

1. The general representation theorem 

The general problem can be formulated in the following way: Let Ti be a non­
empty class of real-valued functions with the range of definition on an abstract 
non-empty set X . Let T be a functional on Ti with the property 

T(ah + (Iti) = aTh + /3Tti for all a, /? G ]-oo, oo[, h, ti G H 

(briefly a linear functional) and £ be the smallest ring with respect to which all 
h G TL are measurable. 

Under what additional conditions can we find a measure (X, £, m) with the 
property Th = m(h) for all h G Til If the measure (X,£,m) representing T 
exists, is it determined by T and TL uniquely? 

Note that the linearity property assumes that the values of T are known on 
all the functions of the form ah + flti, a,/3 G ]—oo,oc[, h, ti G Ti, although 
ah + /3ti itself ought not to be in TL. 

LEMMA 1.1. Let T be a bounded linear functional on TL and let TL consist 
of bounded functions. If S(TL) is the linear span of TL, then T has a unique 
extension to a linear functional with the range of definition on S(TL). 

P r o o f . Let Wo C H be the base for S(TL). Using the standard arguments 
of the Hahn-Banach theorem [12; sec. IV, §2] one can show that T has an 
extension to S(TL). Since T is uniquely defined on Tio its extension from Ti to 
S(TL) is also unique. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 28C05. 
K e y w o r d s : Linear functional, Measure, Real-valued function, Extension . 
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LEMMA 1.2. Under the assumptions of 1.1. T can be extended to a linear 
functional on the vector lattice containing 7i and the class {XE: E £ £} , where 
£ is the smallest ring with respect to which all h G 7i are measurable. 

The proof of 1.2. follows from 1.1. and from the Hahn-Banach extension 
theorem. Now we can say that our first problem has an affirmative solution: 

THEOREM 1.3. If T is a bounded linear functional on a non-empty class 7i 
of bounded real valued functions then there is a measure (X,£.m) representing 
T on H. 

To avoid a misunderstanding we note that the function / on X is bounded 
if the supremum norm || • || of / is finite. T is bounded if there is a recti constant 
7 G ]0,oo[ with the property | T / | < 7 | | / | for each function / on X. 

By a measure we understand a finite, real-valued, finitely additive s( t function 
m which is defined on a ring £ of subsets of X . If we want to be exact, we 
speak about the measure (X, £, m ) . Each measure can be written in the form 
m = m+ — m~ , where m"1" and m~ are the smallest among all the nonnegative 
measures on £ for which the decomposition of m holds. 

For arbitrary E C X we denote by XE the characteristic function of E. 
The system of all simple £ -measurable functions is denoted by s(£), i.e. s(£) = 
{s: s = X!a*YE,-5 where at G ] —oo,oo[, E{ G £ are pairwise disjoint and 
i = 1 ,2 , . . . ,n} . 

The integral m(s) of any simple £ measurable function s is defined by 
m(s) = ~y^atmEt, where s — ~V^ aj\Et G s(£) and we summarize over all 
i = l , 2 , . . . , n . If m is a nonnegative measure and / a bounded nonnega 
tive function, then / is said to be m-integrable if sup{7n(.b): 0 < s < / , 
s G $(£)} — inf{m(s): f < s, s G s(£)} . The number in the last equation 
is said to be the integral of / and it is denoted by m(f). The function / 
on X is said to be m-integrable if the positive and negative parts of / are 
m integrable. The integral m(f) is then defined by m(f) m ( / + ) — m(f~) 
Generally, if m is a signed mea ure and / a bounded function on X , then / 
is m-integrable if it is m + - and m~-integrable. The integral m(f) of / i now 
defined by m(f) = m+(f) — m~(f). 

The definition of the integral given al ove can be extended (u ing the m zero 
ets) to functions with infinite values, however, for our purpo es it is sufficient. 

The details related to the integiatkn th ory are in [2; 3; (r 9, 11; 13] 

P r o o f of t h e T h e o r e m 13. In v itue of 1.2. I can be extc nded 
to a 1 near functional on the vector lattice £(71.) which is gen r t d by H and 
by the la s {\E' E £} , win re £ is the sn die t n lg wit I iespcc to win h 
all h G l~i are me ur ble. Since T i a umc d to be 1 in 1 1 11 finic tic nal L 
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extending T from H to C(H) can be assumed also bounded. The set function 
m defined on £ by mE = LXE f° r a-- E & £ is a measure on £. Each h G H 
can be written in the form h = a\h\ +#2/12 » where a; G ]—oo,oo[ and hi G H, 
i = 1,2. L = Li — L2 - where Li and L2 are nonnegative bounded linear 
functionals on C(H). Of course, m = m\ + m,2 , where miE = L^E for all 
E £ £. Whence, for the verification of our theorem it is sufficient to show that 
Th = m(h) in the case when T and L are nonnegative and 0 < h < 1, h G H. 

Let L be nonnegative and h G H be chosen so that 0 < h < 1. For 

each natural k the sets G, = «lx: h(x) > —>, i = 1,2, ...,fc are in £. Put 

1 * 1 k 

s = -r^2(i- l)xG t-G,_i • Then s G s(£), s = - J2 XG, a r-d consequently, 
K i = \ K i = 1 

s < h < TXGO + s • Since 

- -LXGo + Lh < m(s) < m(h) < TTTIGO + m(s) < TLXG0 + Lh 

and k can tend to infinity, the relation Th = Lh = m(h) holds. 

It is impossible to obtain some results about the uniqueness of the extension 
in 1.3. without additional assumptions. The Theorem 1.4. leads to the following 
partial problem which was studied b y J . P . R . C h r i s t i e n s e n [4] and other 
authors. 

Let X, g be a separable metric space and Ba be the system of all balls 
B(x,r) = {y: g(x,y) < r } , where x G X, r is a rational number. If H is 
the class {xB(x,r): B(x, r) G Ba) and if T is a bounded monotone cr-additive 
linear functional on H, then we can consider the values mB(x,r) = TxB(x,r) 
as values of a nonnegative cr-additive set function m. Now there is a question 
what properties must X, g have in order that m has a unique extension to a 
Borel measure. More about this problem can be found in [4]. 

2. The uniqueness of the integral representation 

If T is a bounded monotone linear functional on a class H of nonnegative 
bounded functions on X and if 0 G H, then the relation T*f = sup{Tb: h < 
f, h EW} defines a bounded monotone functional T* on [0, 00] x . Moreover 

LEMMA 2.1. The subclass C* of [0,oo[ defined by 

C = {f:T,g = T,gAf + T.(g-f)+ for all g 6 [0,oo[* , | | / | | < 00} 
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is closed with respect to the operation of addition and T* restricted to C* is a 
bounded monotone additive functional. 

P r o o f . Of course we assume tha t C* ^ 0 . We fix g G [0, oo[' and 

/ i , / 2 G C 

9 A ( / i + / 2 ) A f\ = g A fu (gA (f\ + f2) - f\)+ = ((g - f\) A / 2 ) + 

whence by the definition of f\ and f2 

T.g A ( / , + / 2 ) - T,<? A / , + Tt(g - L)+ A / 2 

T„ (g - / , ) + = T„(ff - L)+ A / 2 + T.(g - ( L + / 2 ) ) + . 

Combining the last two equations with the definition of f\ we obta in 

T.g A ( / i + / - ) + T, (<7 - ( / , + / 2 ) ) + = T. f f , 

tha t is, / i + f2 G C* . The additivity of T* on d, is clear. 

Let f be a non-empty class of subsets of X containing 0 and £ be the 
algebra generated by T. If H = {XF- F G J7}, then it can be easily proved 
tha t { x E : E E £} C C* and T* defines a nonnegative measure on £. The 
Lemma 2.L so extends the idea of Caratheodory [3]. This fact was used in [11] 
and also our next considerations are based on it. 

Let us consider the axioms 

a) 0 < h < oo , 1 A h G H, ah G H for each a G [0, oo[, h G H 
b) bi V h2 , hi A h2 £ H for each h\,h2 £ H 
c) h\ + h2 £ H for each h\,h2 £ H 
d) h\ — h2 £ H whenever b! > b2 a r e in W. 

The class 7Y with properties a) , b) and c) is said to be a (0, V/ , A / ) convex cone. 
If H is a convex cone which satisfies d) , then H is said to be a (0, V/ , A / , \) 
convex cone. The bounded monotone functional T defined on a lattice H of 
nonnegative functions on X is said to be tight if 

i) T*(a\h\ + a 2 b2) — oc\Th\ + a2Th2 for a,- G [0,oo[, b, G W 
and 

ii) Th\ - Th2 = T*(h\ - h2) for h\ > h2 in H. 

T H E O R E M 2 . 2 . If H is a class of functions with properties a) , b) and if T is 
a tight functional on Hy then the class C* defined by 

C* = {f: Th = TJiAf + T*(h-f)+ for all h G « , | | / | | < oo} 
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is a (0, V / , A / , \ ) convex cone containing 1 and T* restricted to C* is a bounded, 
monotone, homogeneous and additive functional. 

P r o o f . Due to the t ightness condition H c C * . Clearly C* has the prop­
erty a) from the definition of a (0, V / , A / , \ ) convex cone. T h e i) pa r t of the 
t ightness condition implies tha t C* is identical with the same system denoted 
in Lemma 2.1. Therefore C* has the proper ty c). As for the proof of b) and d) 
we refer the reader to [11; pa r t I, §3]. 

A class Q of subsets of X is said to be a (0, U / , Cif) paving if 0 G Q and 
G\ U G2, G\G2 G Q whenever G\, C2 G Q . T h e set function mo : Q —» ]—00, oof 
is modula r if m 0 G i U G2 + m 0 Gi(?2 = rnoG\ + m0G?2 for all G\,G2 G £ . If 
moreover mo0 = 0 , then mo is an evaluation. B . J . P e t t i s [10; Theorem 
1.2.] proved 

T H E O R E M 2 . 3 . If £ is the ring generated by a ( 0 , U / , C\f) paving Q and if 
mo is an evaluation on Q, then mo has a unique extension to a measure on the 
ring £. If the evaluation mo is monotone on Q, then the measure extending 
mo is nonnegative. 

In the context of our main problem the Theorem 2.3. establishes tha t if 7i = 
{XG : G £ Q} a n d T\G = rnoG for G G Q, if Q and m 0 have the propert ies 
which are assumed in 2.3., then the problem has an affirmative solution . 

Let C* be the class of functions which was defined in 2 .2 . If C*~(C*) is 

the system of all norm bounded functions in the Vc closure of C* (i.e. / G 

£ + ( C * ) , if there is a sequence {/n} C C* for which / = V / n , fn T / a r -d 

11/11 < 00) , then £+(C*) is a (0, V / , A / ) convex cone . By Q(C*) we denote the 

class C7(C*) = {G: G = {x: f(x) > 0} , / G C*} . In vir tue of a) and b) Cy(C*) 

is a ( 0 , U / , n / ) paving and {XG: G G Q(C*)} C C+ (C*) (XG = lim 1 A nf if 
n—>-oo 

G = {x: f(x) > 0, f eC^}). The ring generated by £(C*) is denoted by £(C*) . 

By ^"(C*) we denote the class {F: F = {x: f(x) = 0} , f e C^} . 

We say tha t the function / G [0,co[ is continuous with respect to Q(C*) 

if f~l(U) G £(C*) for each open subset U of the real line with the usual 

topology . If Q(C*) is closed under the formation of countable unions (i.e. if 

£(C*) is a ( 0 , U c , n / ) paving), then the system C + ( K , £ ( C * ) ) of all bounded 

nonnegative (5(C*) continuous functions is a (0, V / , A / , \ ) convex cone . Since for 

each f eC^ and rat ional r {x: f(x) > r} = {x: (f - / A r)(x) > 0} G Q(C*), 

{x: f(x) < r) = {x: (r - f A r)(x) > 0} G £(C*) , all the functions in C* are 

Q(C*) continuous . 

T h e measure m on £(C*) is said to be regular if mE = s u p { m F : F C 

E, FG^(C*)}. 
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T H E O R E M 2 . 4 . Let 7i be a class of functions with the properties a) and b), 

T be a tight functional on H. Let T* be additive on £ + ( C * ) . Then there is a 

unique regular measure (A~, £(C*), m) representing T* 072 C* . 

P r o o f . In virtue of the additivity of T* on £ + (C*) and due to 2.3. m 0 

defined on £(C*) by 7770G = T * \ G is an evaluation defining a unique nonnega-
tive measure m on £(C*). Since each / G C* is continuous, the sets G = {x: 
f(x) > r] are in G(C*) for all rat ional r and we can prove as in 1.3. tha t 
T* / = m{f) for each / G C* . 

We prove tha t in is regular. We fix some G G G(C*) and £ > 0 . Then we 
choose f £ C*, f < XG for which mG < Tf + e. T is a bounded functional, 
whence there is a 7 G ]0,oo[ and a na tura l number k t ha t T* / < 7 | | / | | for 

all f e C^ and | < e. The et F defined by F = | x : / ( x ) > j \ is in 

^ (C*) , F C G and 

mG < T* / A i + T* ( 7 - i ) + + < ^ T * l A k/ + mF + - < m F + 2s. 

This pioves tha t m G - sup{?7iF: F C G, F G .F(C*)} . Now let G j , G 2 G 
£(C*), Gi D G2 . To the z > 0 we can choose F G F(C*) for which m G i < 
7/7F + e, F C Gi . Since 777G1 -G2 <mF-G2+e, F - G2 C Gj - G2 and 
F - G2 G ^ (C*) , mG\ -G2= s u p j m F : F C G\ - G2 , KG ^ ( C * ) } . The 
i c . t of this par t of proof follows easily from the fact tha t each E G £(C*) can 
be wri t ten as a union of a finite sequence of pairwi e di joint ets of the form 
G\ — G2 , where Gi D G2 are in (?(C*). 

Finally we have to p ro \e that m is the unique regular mea ure on £(C*) 

with the proper ty T*/ = m(f) for all f e C* . Suppose tha t there is another 

iegulai measure m , on £(C*) with the property T* / — m(f). It is ^asy to 

observe that mG < m G for each G G G(C*) . 1 G C* , thus T*l == mX = mX 

and m F < mF for all F G JF(C*). Now it is easy to show, u ing the regularity 

of m , tha t m = m on £(C*). 

COROLLARY 2 . 5 . Under the assumptions of 2.4. T determines a umq te mea­
sure (X,£(C*),m) representing T on 7i, which coincides on £(C*) mth a re­
gular measure. 

The proc f of 2 5 follows fiom 2.4 and from the fact tha t tl e smi l l st ring 
with respect to which all h G H are mea urable is in £(C*) . The ideas used in 
the proof of 2.4. are quite clo e to tha t u ed in [11; par t L, §3] Also the following 
idea can be found in [11]. 
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Let £/+(C*) be the Ac closure of C* . We say that C* has the uin between" 
property if to each u £ £/+(£*) and / £ £+(C*) for which u < I there is f € C* 
such that u < f < I. 

LEMMA 2.6. If C* has the "in between" property, then T* is additive on 
C+(C). 

P r o o f . Let h,h G C+(C„) and e > 0 be given. Choose f eC», f < h+h 

and / G c, with T / + £ > T^/j + / 2 ) , ( / - / 2 ) + < / < h • Now ( / - / ) + < /2 

and 

T*(/i +h)-e<Tf = T*fAf+ T , ( / - / ) + < T*/i + TJ2. 

This means that T*(/i + l2) < T*l\ + T+l2 . The reverse inequality holds as 
well, thus the lemma is proved. 

LEMMA 2.7. If T* is additive on £+(C*), then C* has the "in between" prop­
erty. 

P r o o f . Let us assume u £ £/+(C*) and / £ £+(C*) such that u < I. Of 
/ // / // 

course there are {/n} CC* and {/n} CC* such that / n | u a r-d / n | / . Put 
/ // / 

fn = V (/;' A fj) > gn = / n - i V / n for n = 1,2,.. . . {/n}, {#n} are contained 
j<n 

in C* and since 

/ • / // X / / " \ + 

0 < gn - fn = fn-l V fn- fn-1 V (fn * fn) < (fn ~ fn) 

for each n = 1,2.. . . Consequently / = \J fn = f\gn is a function with the 
property u < f < I. 

To prove that / £ C* note that for each h £ H. 

hKf = \J(hh /„), (h - /)+ = (h - f\gn)
+ = \f(h - gn)

+. 

h A fn,(h — gn)~*~ £ C* for all n = 1,2,... , which implies that h A / , 
(h - / )+ £ £+(C*). T* is additive on £+(C*) , thus 

Th = T*(hAf + (h- /)+) =T*hAf + TJh - /)+ 

and we can conclude that / £ C* . 
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T H E O R E M 2 . 8 . Let 7i be a class of functions with the properties a) and b), 
T be a tight functional on H. Then the evaluation mo defined on G(C*) by 
moG = T*XG determines the unique regular measure representing T* on C* if 
and only if C* has the "in between" property. 

P r o o f . In vir tue of 2.6. and 2.4. we know tha t the "in between" proper ty 
implies tha t mo determines the unique regular measure representing T* . 

Conversely if m is the regular measure representing T* on C* wi th the 
proper ty mG = m^G for all G G £(C*) , then each / G £ + ( C * ) is m-integrable 
and m( l ) = T*/. However, this means tha t T* is addit ive on £ + (C*) and in 
vi r tue of 2.7. C* has the "in between" property . 

COROLLARY 2 . 9 . If 7i is a ( 0 , V / , A / , \ ) convex cone and if T is a bounded 

monotone linear functional, then T* restricted to {xG : G G £/(C*)} determines 

the unique regular measure representation of T* on C* if and only if C* has the 

"in between" property. 

REFERENCES 

[1] B I R K I Ю F F , G . : Lattice Theory, Rhode Island, 1967. 

[2] BOURBAKI, N. : Elements de mathématique, Livre VI, InҺ qration, IІeгmann et Cie, 
Paris, 1952. 

[3] CARATHEODORY, C : Uber das lineare Mass von Punktmengen, Nachг. Akad. Wiчs. 
Göttingen Math.-Phys. Kl. II. 54 (1914), 404-426. 

[4] CHRISTIENSEN, J. P . R. : A survey of small ball theorems and problems: Measure tlieoгy 
Oberwolfach 1979, Lecture Notes in Mathematics, Spгingeг, Beгlin, 1980, pp. 21-30. 

[5] ENGELKING, R.: General Topology, PWN, Waгszawa, 1977. 

[6] HALMOS, P. R.: Measure Theory, D. Van Nostrand, New Yoгk, 1950. 

[7] KELLEY, J . L.: General Topology, D. Vaл Nostгand, New Yoгk, 1957. 

[8] LE-CAM, L.: Convergence in distribution of stochastic processes, Univ. Califoгnia Pub l. 
Statist. 2, 11 (1957), 207-236. 

[9] PARTHASARATHY, K. R. : Introduction to Probability and Measure, Russian tгansla-
tion, MIR, Moscow, 1983. 

[10] P E T T I S , B. J . : The extensгon of measures, Ann. of Math. 54 (1951), 186 197. 

[11] TOPSØE, F. : Topology and Measure, Lecture Notes in Mathematics 133, Springeг, Beгlin, 
1970. 

[12] YOSHIDA, K.: Functгonal Analysis, Spгingeг, Berlin, 1965. 

40 



SEVERAL REMARKS TO THE RIESZ REPRESENTATION THEOREM 

[13] YOSHIDA, K .—HEWITT , E.: Finitely additive measures, TYans. Amer. Math . Soc. 7] 
(1952), 46-66 . 

Received November 17, 1989 University of Waterloo 

Department of Statistics 

and Actuarial Science 

Waterloo, Ontario 

Canada N2L 3G1 

41 


		webmaster@dml.cz
	2012-08-01T07:13:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




