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GROBNER BASES AND THE IMMERSION OF 
REAL FLAG MANIFOLDS IN EUCLIDEAN SPACE 

MIRIAN P E R C I A M E N D E S — ANTONIO C O N D E 

(Communicated by Julius Korbas) 

ABSTRACT. The purpose of this note is to t ry to answer some questions about 
the immersion problem of real flag manifolds in Euclidean spaces. 

1. Introduction 

Let Mm, Arn be compact connected differentiable manifolds without bound­
ary and let f:M -> Ar be a differentiable mapping. If T ( M ) , T(N) are 
their corresponding tangent bundles, / induces a bundle homomorphism df: 
T(M) -» T(N). The mapping / is called an immersion if df(x) is a monomor-
phism for each x in the manifold. In this case n > m. We call the integer number 
n — m the codimension of the immersion. 

The natural question then arises: 

Given manifolds M and Ar. is there an immersion of M in N ? 

The problem we are concerned with in our work is to find, for each real flag 
manifold F , the least integer i(F) such that F immerses in W^ . 

H i r s c h in [12] located the essential element related to each manifold that 
gives us the minimum codimension, namely, the minimal rank of a normal bundle 
of an immersion. He established the following result. 

THEOREM 1.1. Mm can be immersed in Rm+k if and only if there exists a 
bundle £ of dimension k such that TM&t; is isomorphic to (m-j-k)s. the trivial 
bundle of dimension m + k over M. 

So, we need to find the least k among the £k 's that satisfy T J F © £ = (m+k)e. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 57R42, 57R20, 57R22, 57R15. 
K e y w o r d s : immersion, real flag manifold, Euclidean space, differentiable mapping, bundle, 
homomorphism . 
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As the vanishing of some of the Stiefel-Whitney characteristic classes is a 
necessary condition for the immersion, we address our problem, now a problem of 
vector bundles, by dealing with these classes. The idea involved is quite standard 
in that the appropriate Stiefel-Whitney class of the normal bundle is nonzero. 
In this sense, they provide us with results of obstructions to the differentiable 
manifolds immersions. 

2. Preliminaries (Background of classical results) 

Let G be a compact Lie group of dimension n and FT be a closed subgroup 
of dimension h. 

Consider the H-principal bundle G —> G/H; the adjoint representation 
of G restricted to H, Ad\jj: H —•> O(n); the adjoint representation of H, 
AdH: H -> 0(h)] and the isotropic representation of H, i: H —> 0(n — h). 
All the above give us the decomposition Ad\fj — AdH © i. Here 0(n) is the 
orthogonal group (see [13], [21]). 

This decomposition and the mixing construction give us another decomposi­
tion: 

(Ad\H) = (AdH) ® (i), 

where (Ad\jj), (AdH) and (6) are corresponding vector bundles over G/H. 

Classical results show us that (Ad\fj) is trivial and that (t) is isomorphic 
to T(G/H) (see [5], [6], [10]). 

With this information, we conclude, by Theorem f.l. that (AdH) is a nor­
mal bundle of the homogeneous space G/H for some immersion of G/H in a 
Euclidean space. 

The following commutative diagram contains all the information we need. 

HcG—-— EG — ą - + BG 

P í Qн Q 

G/H C %н. (EG)/H = BH 

BO(h) 

Diagram 2.1. 

BAdH 
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Here EG —> BG is the G -principal bundle (known as the classifying bun­
dle of G, and, in this sense, the universal bundle of G) given by the Milnor 
construction; qH is the quotient map of the action of H on EG (since EG is 
contractible, qH is also a classifying map of H): p is the quotient map of the 
bundle we are dealing with; iH, j are inclusions; BAdH is the map induced 
by the adjoint representation of H: AdH: H -» 0(h); and q comes from the 
following fact: 

HCEGDG 

G/HcBH — - ^ BG 
Q 

Diagram 2.2. 

As H C G, we have two bundles, namely, a H-principal bundle and a 
G-bundle with fibre G/H. 

In addition, the composed map / = BAdH o iH is the classifying map of the 
normal bundle over G/H. 

3. The real flag manifolds 

The background information below can be found in [2], [14], [15], [16], [24]. 

DEFINITION 3 .1 . Let n 1 , . . . , n s be positive integers numbers. A real flag of 
type ( n l 7 . . . , ns) is an s-tuple (V11..., Vs). where each Vi is an n-subspace of 
the real Euclidean n-space Rn (n = n1 + • • • + ns) and the V- 's are mutually 
orthogonal. The space of all such flags, F(nx,..., ns), may be identified with the 
homogeneous space 0(^/(0^^ x • • • x 0(ns)), where 0(n): 0(nx),..., 0(ns) 
are appropriate orthogonal groups. 

With this identification, F = F ( n l 5 . . . , n s ) , becomes a compact connected 

differentiable manifold of dimension In2 — ^ n\ J / 2 . We call such a manifold 
a real flag manifold. l=1 

Thus, these manifolds F are spaces of type G/H where G = 0(n) is a 
compact Lie group and H = 0(nx) x • • • x 0(ns) is a closed subgroup of G. 
Then we can conclude that the normal bundle of F , 77(F), is given by (AdH). 

L a m in [16] proves the following result. 
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THEOREM 3.2. The real flag manifold F can be immersed in Euclidean space 
s 

with codimension h, where h = dimiJ = ]T C^)* provided this codimension is 
i = l 

nonzero. 

Remark 3.3. The fact that the codimension is zero tells us that we are dealing 
with F(l,..., 1) and this flag has a trivial tangent bundle. So, it immerses in 
codimension 1 (see [16], [24]). 

4. Some obstructions to the 
immersion of real flag manifolds 

Let D(n) be 0(1) x • • • x 0(1) (n-times). Then we have the inclusion map 
j : D(n) <-+ H and BD(n) = RP°° x • • • x RP°° (n-times). 

A part of Diagram 2.1 gives us the following diagram: 

E(i,...д) 

F(nlt...,nа 

C 
°D(n) 

C L 

BD(n) 

Bj 

вн 

BAdì D(n) 

BAd 

BD(Һ) 

r 

BO(h) 

Diagram 4.L 

where n is the canonical quotient map; BAd is induced by the adjoint repre­
sentation of H, Ad: H -> 0(h)\ BAd\j^rn\ is the induced of Ad\-Qf \\ q is 

the map induced by the inclusion D(h) ^ 0(h). 

Taking the cohomology, with coefficients in Z 2 , we have: 

H*(BD(Һ)) 

H*(BO(h)) 

BAd 
D(n) . H*(BD(n)) 

л 

(Bj)* 

BAd* , H*(BH) 

lD(n) __. яҷF(i,....i)) 

_ H*(F(Пì....,ns)) 

Diagram 4.2. 

w^here the vertical arrows are monomorphisms (see [4]). 
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Therefore, we can transform our study of BAd* and i* into the study of 
BAd\*ni/ , and i*nfrl]. \B(n) Din) 

The cohomology of BD(n) with coefficients in Z 2 is a polynomial ring 
in n variables x1,...,xn, i.e., H*(BD(n)) = rL2{x1,...,xn], where xi £ 
Hl{BD(n)). 

On the other hand q: BD(n) —r BO(n) induces the monomorphism q*: 
H*(BO(n)) —r H*(BD(n)) on the invariant elements for the symmetric group 
in n letters (see [23]). 

Then, 

q*:Z2[W1,...,Wn]^Z2[x1,...,xn] 

WkeHk(BO(n);Z2)^ak(x1,...,xn), 

where Wk is the kth Stiefel-Whitney class of the universal bundle of 0(n) 
and <Jk is the kth elementary symmetric polynomial in n variables x1,... ,xn 

(see [3]). 
The Lie algebra of 0(n) consists of matrices of the form: 

-b 12 

"12 

0 
""13 "23 

"13 
Ò23 

0 

V — f r l ^ — br,„ —bo„ 
\ In 2n ón 

ьln\ 
Ь2n 

Һn 

0 / 

So, the matrices of the Lie algebra of H are formed by skew-symmetric blocks 
of order n{, i — \,....s. 

Furthermore, as D(h) — 0(1) x ••• x 0(1) (/i-times), the number h — 
dim(H) = J2 O2 ) i s t n e number of generators of H* (BD(h)). 

Indexing such generators with the same format as the Lie algebra of 0(n) 
we obtain: 

*12 ••* tlni 

Ł n i + l n i + 2 . . . t 

^ n i + l n i + n г T n i + 2 n i + П 2 

Пl + 1 П1+П2 

0 

and then our BAd\*p(n)
 i s S i v e n b y : 
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BAd\* 
H*(BD(h)) £ > ( n ) . H*(BD(n)) 

^ 2 ^ 1 2 ' ' * • ' * l m ' * 2 3 ' - ' * >^2m> ** *>^rc-1J *" ^ 2 F l ? ' ' ' > Xn\ 

tij^BAd\*D(n)(tij) = xi + xj 

Diagram 4.3. 

The explanation for the formula t{- i-> xi -f a^ in the above diagram is as fol­
lows. First notice that for any m, the representation Ad: 0(m) -> 0((™)), 
when restricted to the diagonals, is the map -4d|̂ -w \: D(m) —> D ((™)) 
described on the diagonal matrices (with a{ = ±1 along the diagonal) by 
diag(a1,... ,am) t-> diag(ai • a^), 1 < i < j < m (due to the fact that on 
the orthogonal group Ad is the same as the second exterior power represen­
tation). Now, for the flag manifold, taking m to be successively n1,...,n3 

we find the same description for -4d| m ^ within each of the s blocks since 

H = 0(nx) x • • • x 0(n3). This same description applies to TT0 of these (finite 
discrete) spaces, which is the same as TT1 of the respective classifying spaces and 
again this is isomorphic to Hx of these classifying spaces under the Hurewicz ho-
momorphism. Dualizing this description to the Z2-cohomology gives the formula 
in the diagram. 

The bundle F(nx,..., n3) A BH 4 BO(n) induces H* (BO(n)) ^ H* (BH) 

4H*(F(n l 5 . . . ,nJ) . 
Moreover, i* is an epimorphism with kernel generated by ^ ( W J , . . . . q*(Wn). 

Using F ( l , . . . , 1) and D(n) in place of F = F(nx,..., n3) and H, we obtain: 

H*(BO(n)) ! I 1 _ H*(BD(n)) %D{n) , H*(F(1,... ,1)) 

III III III 
- y W i . - ' - . W g Z2[a:1 , . . . ,xJ Z2[ a .1 , . . . ,sJ / :-B 

Diagram 4.4. 

where the kernel of i*D^ny i.e. I n , is (o^,..., a n ) , the ideal of Z2[x1,...,xn] 
generated by the elementary symmetric polynomials a1,...,an in n variables 
x1,...,xn (see [3], [15]). 
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As BAd o i is the classifying map of 77(F), we can write i* o BAd*(Wk) ^ 
wk(rj(F)), where wk(rj(F)) is the kth Stiefel-Whitney class of 77(F). 

Combining all this information, we finally get the commutative diagram: 

BAd\* i* 

z2[ti2,••-,*„_!J ^L z2[xv...,xn] D(n) , z2[xv...,xnyIn 

7T* 

Z2[W.,...,WJ BAd* . H*(BH) *L_ #*(F(1,...,1)) 
Diagram 4.5. 

Here the kth Stiefel-Whitney class of the universal bundle of 0(h), i.e. Wk, 
is mapped on Tk, the kth elementary symmetric polynomial in variables t{- with 
i < j . So, we have: 

THEOREM 4.1. The kth Stiefel-Whitney class of the normal bundle of the real 
flag manifold F is zero if and only if the kth elementary symmetric polynomial 
rfc(̂ i2> - "> tn-in) evaluated on h elements x{ + x • of Z2[x1...., xn] belongs to 
the ideal 1 . 

n 

P r o o f . As 7r* is a monomorphism, then wk (77(F)) ----- 0 if and only if 
7T*(^(T7(F)) ) = 0, i.e., if and only if ir*(i*(BAd*(Wk))) = 0. 

On the other hand, from the commutativity of the Diagram 4.5 this is equiv-
zlent to BAd\*D{n)(Tk)eln. 

Observing that BAd\*p, \(rk) - rk(xi -f Xj) we arrive at the result. • 

With this Theorem the immersion problem leads to an algebraic problem. 
We need to know if the polynomial Tk ((xi + x •)) belongs to ln. 

The following is in [17]. 

PROPOSITION 4.2. Let Z2[a1,..., an] be the subring of Z2[x1,..., xn] gener-
ated by the elementary symmetric polynomials a1,...,an in variables x1,...,xn-
Then Z2[x1,..., xn] is a free Z2[a1,..., an] -module with standard base given by 
the monomials x^1 • • • xn

n , where 0 < ai <n — i, i = 1 , . . . , n. 
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By Proposition 4.2, every p in Z 2 [ x 1 ? . . . , x J can be written in a unique 
way as p = £ o ^ , . , ^ ^ 1 • • • < " , where aai...Qn = aai...an(av....an) e 

Q i - - - a n 

Z2[O~1,..., a n ] . So, with the notation above, we have: 

LEMMA 4 .3 . If p _Tn, then no coefficients aa .. can be equal to 1 € Z 2 . 

P r o o f . If p G l n , then p = Y_Pjaj^ w h e r e ^ £ Z2[.x15 . . . , x j , j = 
•7 = 1 

l , . . . , n . On the other hand, p̂ - = XI K^-a^T "' xnn w i t h p i r . Q B € 
Q i - - - a n 

Z2[r /1 , . . . ,cTn] . Then p = ]£ \% Pa1-an
aj)xil ''' xnn and we can conclude 

n 

that a„ . . . = V* pi, ...„ a- cannot be constant and we have the result. D 
t-*i" a-n ' -» exi • * CXTX J 

.7 = 1 

THEOREM 4.4 . Fne real flag manifold F ( 2 , . . . , 2) (s-times) can be immersed 
in Euclidean space with codimension s and this codimension is the best possible. 

P r o o f . As by Theorem 3.2, F(2,.... 2) can be immersed in Euclidean 
space with codimension s, we only have to show that TS = TS(X1 + x2,... 

'~iX2s-l +X2s) i X2s' I n Z2[xl»'--»a;n]» X2s = °1 + Xl + " ' " + X2s-1 a n d 

then rs = [(xx + x2) • • • (x2s_z + x2s_2)](a1+x1 + --- + x2s_2) = [(x1 + x2) • • • 

• • • ( ^ 2 5 - 3 + X 2 . s - 2 ) ] C r l + [iXl+X2)--'(X2s-3+X2s-2)](Xl + ' ' ' + X2s-2) ' T h e 

first term in the last sum belongs to T2s but the second term, by the Lemma 4.3, 
does not. D 

Remark 4 .5. This result wTas presented by C o n d e in [7] wTith a more elemen­
tary but much longer proof. The proof given here was communicated to us by 
Prof. Brasil T. Leme, whom we thank. 

5. Grobner bases and the algebraic problem 

All the information in this section can be found in [1] and [8]. 
The first aspect to be observed is that the division algorithm gives us the 

solution for our algebraic problem in the case of one variable. Thus, the wTay to 
solve this problem is to generalize the division algorithm to several variables. 

The key point is to fix a monomial ordering in the ring Z2[rr1 , . . . , xn]. 
To divide a polynomial p by a finite sequence of polynomials gx, • . . - gt means 

expressing p as p = q1g1 + • • • + qtgt + r with quotients q{ (i = 1, 1) and 
remainder r in this ring. For this, wTe must be careful in characterizing r . At 
this point, we need the monomial ordering. 
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If after the division of p by (gv .... gt) we get r = 0, then p E (gx,..., gt), 
the ideal of Z 2 [x 1 , . . . , xn] generated by g1,..., gt. 

Since r is not uniquely determined, the converse of the above mentioned is 
not true. 

In order to overcome this inconvenience, we need to find a "good" set of 
generators for the ideal, where the condition r = 0 is equivalent to rk ((xt + Xj)) 

tin-

The set of "good" generators for the ideal I is the Grobner basis. 

5.1. Grobner Bases . 

The set of "good" generators was introduced for the first time in the middle 
of the sixties by H. Hironaka and later by B. Buchberger in his PhD thesis. The 
name "Grobner bases" was created by Buchberger in honour of W . Grobner 
(1899-1980). 

The idea involved is that once one chooses a monomial ordering, each p E 
Z2[x1 , xn] has a unique leading term lt(p). 

Every nonzero polynomial p E Z2[x-_ , x j can be written as p = Xai + 

XQ2 + • • • + Xa-, where for each a . = (ah,..., ain) E Nn (i = l , . . . , r ) , 

Xai = x^1 .. .xai* and Xar < • • • < X a 2 < Xai. 

Under this condition. wre put lt(p) = \Xai and we call it leading term (the 
term of highest degree) of p. 

DEFINITION 5.1 . Fix a monomial order. A finite subset G = {gx,... ,gt} of 
an ideal I is a Grobner basis if ( l t (^ 1 ) , . . . ,lt(g^)) = (it ( I ) ) where It ( I ) is the 
set of leading terms of elements of X. 

One can show that every nonzero ideal X of Z2[o;1 , . . . ,xn] has a Grobner 
basis, wThich is a basis of X. 

In the seventies and eighties, Buchberger et al. devised an algorithm that 
calculates such bases. With this algorithm, Tk ((x{ + x •)) E Xn if and only if the 
remainder r , under the division of this polynomial by a Grobner basis G for our 
ideal, is zero. Under these conditions, wre call r the normal form of Tk related 
to G and we write normalf(rA:, G). 

Bearing this and the Theorem 4.1 in mind, we developed an algorithm, us­
ing the software Maple V Release 4 (Waterloo Maple Inc., June 1996) which 
produced the following table (see [18]): 
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n = n! H \-Пs 
F ^ F t n ! , . . . , ^ ) d i m F 

codimension 

of immersion 
(LAM) 

obstruction 

to immersion 

( w ^ o ) 

3 F ( l , 2 ) 2 1 w! 

4 F ( l , l , 2 ) 5 1 w! 

4 F(2,2) 4 2 w2 

4 F(l,3) 3 3 
w. = 0 , 

Vť = 1 , . . . , 3 

5 F(l, 1,1,2) 9 1 w! 

5 F(l,2,2) 8 2 w2 

5 F(l,l,3) 7 3 wз 

5 F(2,3) 6 4 ҷ4 

5 F(l,4) 4 6 w3 

6 Ғ ( l , l , l , l , 2 ) 14 1 w! 

6 F ( l , l , 2 , 2 ) 13 2 w2 

6 F(2,2,2) 12 3 w3 

6 F ( l , 1,1,3) 12 3 w3 

6 F ( l , 2 , 3 ) 11 4 W4 

6 F(3,3) 9 6 wб 

6 Ғ ( l , l , 4 ) 9 6 ^ 

6 F(2,4) 8 7 wб 

6 F ( l , 5 ) 5 10 w2 

7 F ( l , l , l , l , l , 2 ) 20 1 wx 

7 F ( l , 1,1,2,2) 19 2 w2 

7 F ( l , 2 , 2 , 2 ) 18 3 wз 

7 F(l,l,l,l,3) 18 3 wз 

7 Ғ ( l , 1,2,3) 17 4 w4 

7 F(2,2,3) 16 5 ^ 5 

7 Ғ ( l , 3 , 3 ) 15 6 wб 
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n = nг H Vns 
F = F(Пl,...,n8) d i m F 

codimension 
of immersion 

(LAM) 

obstruction 
to immeгsion 

(Щ*o) 

7 F(l, 1,1,4) 15 6 w6 

7 F(l,2,4) 14 7 w7 

7 F(3,4) 12 9 w9 

7 F(l,l,5) 11 10 wз 

7 F(2,5) 10 11 w4 

7 F(l,6) 6 15 wľ 

8 F(l,l,l,l,l,2) 27 1 wг 

8 F(l,l, 1,1,2,2) 26 2 w2 

8 F(l,l,2,2,2) 25 3 w3 

8 Ғ ( l , 1,1,1,1,3) 25 3 w3 

8 F(2,2,2,2) 24 4 wA 

8 Ғ ( l , l , l , 2 , 3 ) 24 4 щ 

8 F(l,2,2,3) 23 5 ^ 5 

8 Ғ ( l , 1,3,3) 22 6 wб 

8 F ( l , l , l , l , 4 ) 22 6 wб 

8 F(2,3,3 ) 21 7 w7 

8 F ( l , l , 2 , 4 ) 21 7 w7 

8 F(2,2,4) 20 8 w8 

8 F ( l , 3 , 4 ) 19 9 w9 

8 F ( l , l , l , 5 ) 18 10 w3 

8 F ( l , 2 , 5 ) 17 11 wA 

8 F(4,4) 16 12 ^ 1 2 

8 F(3,5) 15 13 • 

8 Ғ ( l , l , 6 ) 13 15 • 

8 F(2,6) 12 16 • 

8 F ( l , 7 ) 7 21 
w;=0, 

V ѓ = 1,. . . ,7 
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n = nx -j \-ns F = F ( n 1 ? . . . , n в ) d i m F 
codimension 
of immersion 

(LAM) 

obstruction 
to immersion 

(w^o) 

1 9 
F(l, 1,1,1,1,1,1, 2) 35 1 wг 

1 9 
F(l,l,l,l,l,2,2) 34 2 w2 

1 9 
F(l,l,l,2,2,2) 33 3 wз 

1 9 
F(l,l,l,l,l,l,3) 33 3 wз 

1 9 
F(l,2,2,2,2) 32 4 w4 

1 9 
F(l, 1,1,1,2,3) 32 4 w4 

1 9 
Ғ ( l , 1,2,2,3) 31 5 ҷ5 

1 9 
F(2,2,2,3) 30 6 w6 

1 9 
F(l, 1,1,3,3) 30 6 WQ 

1 9 
F(l, 1,1,1,1,4) 30 6 w6 

1 9 
F(l,2,3,3) 29 7 w7 

1 9 
F(l, 1,1,2,4) 29 7 w7 

1 9 
F(l,2,2,4) 28 8 w8 

1 9 
F(3,3,3) 27 9 ҷ9 

1 9 
F(l,l,3,4) 27 9 ҷ9 

1 9 
F(2,3,4) 26 10 ҷ10 

1 9 
F(l,l,l,l,5) 26 10 ҷ10 

1 " 9 
F(l,l,2,5) 25- 11 ^ l l 

1 9 
F(l,4,4) 24 12 ҷ12 

1 9 
F(2.2,5) 24 12 ҷ12 

1 9 
F(l,3,5) 23 13 ҷ13 

1 9 
F(1,1Л,6) 21 15 • 

1 9 
F(4,5) 20 16 ™16 

1 9 
F(l,2,6) 20 16 * 

9 F(3,6) 18 18 * 

1 9 
F(l,l,7) 15 21 • 
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П = n! H h Пs 
.F = .F(n1,...,nв) d i m F 

codimension 
of immersion 

(LAM) 

obstruction 
to immersion 

(Щ Ф 0) 

9 F(2,7) 14 22 • 

9 F(l,8) 8 28 w7 ф 0 

10 F(l, 1,1,1,1,1,1,1,2 ) 44 1 w! 

10 F(l, 1,1,1,1,1,2,2 ) 43 2 w2 

10 F(l,l,l,l,2,2,2) 42 3 w3 

10 F(l, 1,1,1,1,1,1,3) 42 3 wг 

10 Ғ ( l , l , 2 , 2 , 2 , 2 ) 41 4 w4 

10 F ( l , 1,1,1,1, 2,3) 41 4 w4 

10 F(2,2,2,2,2) 40 5 ҷ5 

10 Ғ ( l , l , l , 2 , 2 , 3 ) 40 5 ҷ5 

10 F ( l , 2 , 2 , 2 , 3 ) 39 6 w6 

10 F ( l , 1,1,1,3,3) 39 6 WQ 

10 F ( l , 1,1,1,1,1,4) 39 6 w6 

10 F ( l , l , 2 , 3 , 3 ) 38 7 w7 

10 F ( l , l , l , l , 2 , 4 ) 38 7 w7 

10 F(2,2,3,3 ) 37 8 w8 

10 F ( l , l , 2 , 2 , 4 ) 37 8 w8 

10 F ( l , 3,3,3) 36 9 w9 

10 F(2,2,2 ,4 ) 36 9 w9 

10 F ( l , l , l , 3 , 4 ) 36 9 w9 

10 F ( l , 2 , 3 , 4 ) 35 10 ^ 1 0 

10 F ( l , l , l , l , l , 5 ) 35 10 ^ 1 0 

10 F ( l , l , l , 2 , 5 ) 34 11 w n 

10 F(3,3,4) 33 12 w12 

10 F ( l , l , 4 , 4 ) 33 12 ^ 1 2 

10 F ( l , 2 , 2 , 5 ) 33 12 ^ 1 2 
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n = nľ-\ \-ns F = F(Пl,...ђns) dimF 
codimension 
of immersion 

(LAM) 

obstruction 
to immersion 

( ^ o ) 

10 F(2,4,4) 32 13 ™13 

10 F(l,l,3,5) 32 13 ™13 

10 F(2,3,5) 31 14 ™14 

10 F(l, 1,1,1,6) 30 15 • 

10 F(l,4,5) 29 16 ™16 

10 F(l,l,2,6) 29 16 • 

10 F(2,2,6) 28 17 • 

10 F(l,3,6) 27 18 • 

10 F(5,5) 25 20 w2Q 

10 F(4,6) 24 21 • 

10 F(l,l,l,7) 24 21 • 

10 F(l,2,7) 23 22 • 

10 F(3,7) 21 24 • 

10 F(l,l,8) 17 28 * 

10 F(2,8) 16 29 • 

10 F(l,9) 9 36 w6 

Since F(nv..., ns) is diffeomorphic to F(n{ , . . . , nis), where {ix,..., is} = 
{1,..., s}, we assume, without loss of generality, that nx < n2 < • • • < ns. 

Observe that the Lam estimation tends to be good when the nt are "small", 
but is useless when the n{ tend to be unbalanced with some of them relatively 
large. In these cases this codimension of immersion is much worse than n — 1, 
the codimension of immersion given by Whitney. 

The * on the last column of the table indicates that the software Maple 
and the Grobner package wrere unable, in their current scope, to check if all the 
Stiefel-Whitney classes wk = wk(rj(F)) are zero, or nonzero. In such cases, we 
obtained: 
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For n = 8: 

— F(3,5): w1 =w2 =w3 = 0, w4^0, w5 = 0, w12 = w13 = 0; 
— F(l,l,6): wl7£0, w2=w3 = w4 = 0, wu = • • • = w13 = 0; 
— F(2,6): w1 =0, w2 ^ 0, w3 = w4 = 0, wn = • • • = w12 = 0. 

For n = 9: 

— F ( l , l , l , 6 ) : wx^0, w2=w3=0, w4^0, w15 = 0; 
— F(l,2,6)^ ? 0,Jw2 ± 0,Jw3 = 0,Jw4 ^ 0,Jw16 = 0 ; 
— F(3,6): w1^0, w2^0, w3^0, w4^0, w17 = w18 = 0; 
— F(l,l,7): w1=0, w2^0, w3^0, w12 = • • • = w15 = 0; 
— F(2, 7): w1^0, w2^0, w3=0, w12 = ••• = w14 = 0. 

For n = 10: 

— F ( l , l , 1,1,6): w1^0, w2=w3=0, w4^0, w15=0; 
— F(l, 1,2,6): w1 7--O, w2^0, w3=0, w4^0, w16 = 0; 
— F(2,2,6): w1=0, w2^0, w3^0, w4^0, w17 = 0; 
— F(l,3,6):_wl7£0, w2±0, w3±0, w4£0, w18=0; 
— F(4,6): w1 = ••• = w3 = 0, w21 = 0; 
— F(l, 1,1,7): w1 =0, w2^0, w3^0, w21=0; 
— F(l,2,7):Jw1^0,Jw2^0,Jw3^0,Jw22 = 0; _ 
— F(3, 7): wx = 0, w2^0, w3 = 0, w19 = • • • = w21 = 0; 
— F(l,l,8): wx^0, w2^0, w3^0, w16 = • • • = w17 = 0; 
— F(2,8): w1 = --- = w3=0. 

In the process we employed a Pentium 133 MHz processor (32 MB RAM). 

In [22], S t o n g proved: 

THEOREM 5.2. If w = {nx,..., ns} can be partitioned as w = w1Uw2Uw3, 
where w1,w2 ^ $. and 

1) | E n- £ n |< l , 
n£wi n£w2 

2) m E w3 = > m < ]T n + zL ™ + 1; 
n£w\ n£w2 

then Lam's result is best possible for F(nx,..., ns). 

Remark 5.3. Using the same argument we can clearly extend this last The­
orem. So, we stated it as follows: 
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If w = { n l 3 . . . , n s } can be partitioned as w = wr U w2 U • • • U wr, where 
wl,w2^$, and 

i ) | E « - E " | < i . 

2) for i > 3, m e w{ => m < Yl n + ^ E n + 1 ; 
n&wi n£iui-i 

then Lam's result is best possible for F(nx,..., ns). 

We shall call the partition of n that satisfies conditions 1 and 2 above as 
Stong partition. 

Observing the table with n < 10. we put: 

CONJECTURE 5.4. If the hth Stiefel-Whitney class of a normal bundle o/F. 
wh(n(F)) =wh, is different from zero, where h = dimH", then the partition 
{nx,..., ns} of n is a Stong partition. 
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