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TWO-RADIALLY MAXIMAL 
GRAPHS WITH SPECIAL CENTERS 

FERDINAND GLIVIAK* MARTIN KNOR** EUBOMIR SOLTES*** 

ABSTRACT. A graph G is two-radially maximal if G is noncomplete and for 
each pair (u, v) of its nodes with distance two the addition of the new edge uv 
to G decreases its radius. We prove tha t the central subgraph of any two-radially 
maximal graph contains an edge and show tha t those of them tha t have a star as 
the central subgraph are sequential joins of complete graphs. 

1. Introduction 

The concept of radius of a graph is frequently used in graph theory. It reflects 
properties that are interesting in applications and it also plays an important role 
in the theory. In this paper, graphs having extremal properties with respect to 
radius are studied. 

The terminology is based on [1]. Our graphs are undirected, without loops 
and multiple edges, but they may have an infinite number of nodes. Let G be 
a graph. By V(G) is denoted the node set of G. By the distance do(u,v) or 
d(u, v) of the nodes u and v, we mean the length of a shortest path joining u 
and v (the (u—^;)-geodetic). The eccentricity ec(v) or e(v) of a node v equals 
max{d(v,u) : u G V(G)}, and the radius r(G) equals min{e(i;) : v G V(G)}. 
The nodes with the minimum eccentricity are called central and they induce the 
center C(G) of the graph G. 

A survey on centers can be found in B u c k l e y - H a r a r y [1], It is known 
that the center of a tree is either K\ or K^ • Further, there are only seven graphs 
admissible as centers for maximal outerplanar graphs [7]. Centers of chordal 
graphs are studied in [6] and those of line graphs in [4] and [5]. In [5], it is shown 
that any connected i-iterated line graph is a center of some i-iterated line graph 
for i G {0,1,2}, which generalizes a result of B u c k l e y , M i l l e r , and 
S l a t e r [2]. Here we deal with centers of graphs that possess some properties 
related to their radius. Moreover, we give a condition that secures that the center 
of a graph contains an edge. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C12. 
K e y w o r d s : maxima l graph, radius, center. 
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A graph G is radially maximal if G is noncomplete, and the addition of any 
new edge to G decreases its radius. In [3], it is shown that any graph can be 
an induced subgraph of some regular radially maximal graph with a prescribed 
radius r > 3, and hence the class of these graphs is rich in a sense. Here we 
show that the result is different if we search for radially maximal graphs with a 
prescribed center. Note that the cycle C2k is radially maximal for k > 2, and 
C(C2k) — C2k. Hence, the class of centers of radially maximal graphs is infinite. 

Here we slightly weaken the notion of radially maximal graphs. A graph G is 
two-radially maximal if G is noncomplete and for each pair (H, v) of its nodes 
such that d(u,v) = 2 we have r(G + uv) < r(G). Clearly, each radially maximal 
graph is two-radially maximal. On the other hand, each noncomplete path on 
even number of nodes is two-radially maximal but not radially maximal. We 
will prove that the center of any two-radially maximal graph contains an edge. 
Moreover, we present a class of graphs that are not the center of any two-radially 
maximal graph. 

By the sequential join G1 + G2 + • • • + Gn of graphs Gly G2l.. ., Gn, we 
mean a graph G such that V(G) = V(G1) U V(G2) U • • • U V(Gn), and two 
nodes x G V(Gi) and y £ V(Gj) are adjacent if either i = j and xy is an edge 
of Gf, or \i — j \ = 1 (see [1; pp. 26]). Let Kl be a complete graph, 1 < i < 2t 
and t > 0. Then for each n > 2 and cY, 1 < a < n — 1, the sequential join 

K1 + K1+K2 + ... + Kt + Ka + Kn_a + Kt+1 + Kt+2 + • • • + K2t + Kx, 

is a two-radially maximal graph with center Kn. Main Theorem deals with 
other two-radially maximal graphs with centers of radius one. We remark that, 
if W C V(G), then (W) denotes the subgraph of G induced by W. A node s 
is called universal if it is adjacent to all other nodes, i.e., e(s) = 1. 

MAIN THEOREM. Let G be a graph. 

1. If u and v are nodes of G such that d(u, v) = 2 and r(G + uv) < r(G). 
then C(G) contains an edge. 

2. Let a graph H contain a universal node, and let G be two-radially maximal 
with center consisting of H and possibly some isolated nodes. Then C(G) = H. 
and for some subset W C V(H) the graphs (W) and (V(H) — W) are complete, 
and each node from V(H) — W is adjacent to some node from W. 

3. / / G is two-radially maximal and C(G) is a star (i.e., a complete bipartite 
graph KliS, s > 1), then C(G) = K2 and 

G r= Kx + K1 + ... + Kl + Kx + Kx + Kt+1 + -.. + K2t + K1, (1) 

where Kl are complete graphs for i = 1, 2 , . . . , 2t and t = r(G) — 2 > 0. 
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If one replaces ud(u,v) = 2" with ud(u,v) = k", k > 3 , in P2irt 1, then the 
result does not hold. (Let G be a path on 2k + 3 nodes. Let u be a neighbor 
of the central node, and let v be the node of degree two such tli2tt d(u,v) = k. 
Then r(G + uv) = k < k + 1 = r(G), but the center of G contains no edges.) 
Joining the two nodes with the greatest distance in some graph of type (1) we 
obtain a new graph of the same radius. Hence, the original graph is not radially 
maximal and the following Corollary holds. 

COROLLARY. A center of any radially maximal graph contains at least two 
edges. 

The graph Hn in Fig. 1 is radially maximal with radius n + 5 , and the center 
of Hn contains three edges, namely the thick ones. (By Pn is denoted a path 
on n nodes, n > 1.) But the following problem is still open. 

PROBLEM. Are there radially maximal graphs whose centers contain just two 
edges? 

Hn 

Figure 1. 

Further, it can be interesting to characterize graphs that are centers of some 
radially maximal graph (two-radially maximal graph). 

2. P roofs 

A node y is eccentric to c if d(c, y) = e(c). First we introduce a certain 
distance related concept. Let c be a node in a connected graph G. By nut(c), 
we mean the set of nodes x in G such that for every node y eccentric to c we 
have 

e(c) = d(c, y) = d(c, x) + d(x, y) (2) 

(hence x lies on some (c—y)-geodetic for every node y eccentric to c). Note 
that, if a node z lies in nut(c), then any node that lies on some (c—z)-geodetic 
lies in nut(c), and hence the graph (nut(c)) is connected. 
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LEMMA 1. Let x and c be two adjacent nodes in a connected graph G, c be 
a central node and x G nut(c). Then x is a central node, too. 

P r o o f . For each node y eccentric to c we have d(x, y) = e(c) — d(c, x) = 
e(c) — 1 by (2) since x G nut(c). Further, for any node z not eccentric to c we 
have d(x, z) < d(x, c) + d(c, z) < 1 + e(c) — 1 = e(c). Hence e(x) < e(c) and x 
is a central node. • 

LEMMA 2. Let G be a connected graph, and let u, v G V(G) such that d(u, v) 
= 2. Then r(G + uv) < r(G) if and only if there is a central node c such that 
c is not an isolated node in C(G), {u,v} G nut(c). and \d(u,c) — d(v,c)\ = 2. 

P r o o f . First suppose that for the nodes u and v in G with d(u, v) = 2 
there is a central node c such that {u, v} G nut(c) and \d(u,c) — d(v,c)\ = 2. 
Then r(G+uv) < eG+uv(c) = ec(c) —1 = r(G) — l, and hence r(G+uv) < r(G). 

Now assume r(G + uv) < r(G) for the nodes u and v with d(u,v) = 2. 
Then we have r(G+uv) = r(G) — l. Since eG+uv(z) G {ec(z) — 1, CG(Z)} for any 
z G V(G), C(G+uv) is a subgraph of C(G). Let c G V(C(G+uv)) C V(C(G)). 
Since eG+uv(c) < CG(C) , we have 2 < \dc(c, v) — dc(c, u)\ < d(u,v) = 2, say 
dc(c,v) — dc(c,u) = 2. Let y be any node eccentric to c in G, and let P be a 
(c—y)-geodetic in G+uv. Clearly, P contains the edge uv since dG+uv(c,y) < 
CG+UV(C) < CG(C) = dc(c,y). Let x G V(G) such that xu,xv G E(G). Now, if 
the edge uv in P is replaced by the path uxv, we obtain a (u—U)-geodetic in 
G that contains u and v. Hence {u,v} G nut(c). 

Finally, since nut(c) ^ {c} and nut(c) induces a connected subgraph, there 
is y G nut(c) that is adjacent to c in G. By Lemma 1, y G V(C(G)) , and hence 
c is not an isolated node in C(G). • 

LEMMA 3. Let s be a universal node in a graph H. and let G be a two-
radially maximal graph with center consisting of H and possibly some isolated 
nodes. Then for any two nodes u, v G V(G) — V(H) we have 

d(u,v) = 2 => \d(s,u)-d(s,v)\ = 2. (3) 

Further, for any node w with d(s,w) = 2, the nodes of H adjacent to w induce 
a complete graph. 

P r o o f . Let u,v G V(G) - V(H) and d(u, v) = 2. By Lemma 2, there 
is a node c G V(C(G)) nonisolated in C(G), hence c G V(H), such that 
\d(c, u) — d(c, v) | = 2, say 

d(c,u) - d(c,v) = 2. (4) 
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If c = s, then (3) holds. Let c 7- s. If s lies on some (c—v)-geodetic, and 
hence on some (c—u)-geodetic, we have d(c, v) = d(c, s) + d(s, v) and d(c, u) = 
d(c, s) + d(s, u). Now (4) implies (3). 

We have u,v £ V(H), and hence c ^ v. Assume s does not lie on any 
(c—v)-geodetic, and let P = ca.. .v (it may be a = v) be some (c—v)-geodetic 
Since v G nut(c), we have a G nut(c), and Lemma 1 yields a G V(C(G)) . Hence 
a G V(H), and s is adjacent to both c and a. Now we prove d(s,v) = d(c,v) 
and d(s, u) = d(c, u), which will imply (3). We prove only d(s, v) = d(c, v) since 
the proof of the second equality is very similar. 

We have d(s,v) > d(c,v) since d(c,v) < d(c,s) +d(s,v) = 1 + d(s,v). On 
the other hand, d(s, v) < d(s, a) + d(a, v) = 1 + d(c, v) — 1 = d(c, v), and hence 
d(s,v) = d(c,v). Hence (3) is proved. 

Now we prove that for any node w with d(s,w) = 2, the nodes adjacent 
to w in H induce a complete graph. Assume to the contrary that there are 
two nonadjacent nodes p, q G V(H), both adjacent to w. Then d(p,q) = 2, 
and Lemma 2 yields that there is a central node c G V(H) such that \d(c,p) — 
d(c, q)\ = 2 and p, q G nut(c) . Since max{d(c,p), d(c, g)} < d(H) < 2, we have 
c £ {P?q}> s a v c = p. (We remark that by d(H) is denoted the diameter of 
H.) Then q G nut(p), and since w lies on a (p — r/)-geodetic, w G nut(p) . By 
Lemma 1, we have w G V(C(G)), which contradicts d(s,w) = 2 . • 

P r o o f of M a i n T h e o r e m . 
Part 1 is implied by Lemma 2. 
Part 2. Let G be two-radially maximal, and let C(G) consist of a graph H 

(with a universal node s) and possibly some isolated nodes. Denote Ni(G) = 
\w G V(G) - V(H) : d(s,w) = i}, i > 0. The graphs (Ni(G) U Ni+1(G)) are 
unions of complete graphs since they do not contain nodes with distance two 
by (3). Now we construct a graph F, whose nodes are those of H together 
with cliques of (Ni(G)), i > 1. Two nodes of F are adjacent if and only if 
the corresponding nodes or cliques of G are adjacent by an edge. Using (3) 
one can verify that, if two cliques, say Fi and F2, are adjacent, then every 
x G V(Fi) and z G V(F2) are adjacent in G. Since G is noncomplete, we have 
C(F) = C(G). Moreover, F is two-radially maximal since joining two nodes 
with distance two in F by an edge corresponds to joining at least two nodes 
with distance two in G. 

Further, note that (Ni(F)UNi+i(F)) (i > 0) is a collection of isolated edges 
and nodes. Hence (V(F) — V(H)) is a union of paths. We remark that N\(F) 
contains at most one node by (3). 

Let y be a node eccentric to s and let saw... y be an (s—y)-geodetic Let 
W be the set of nodes from V(H) adjacent to w. Then (W) is complete by 
Lemma 3. In what follows, we prove that (V(H) — W) is complete and each 
node g G V(C(G)) — W is adjacent to some node of W. The w lies on each 
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(g-y)-geodetic since (V(F) — V(H)) is the union of paths. Thus, d(g,y) = 
d(g, w) + d(w, y) = d(a, w) + r(G) — 2 < T(G), and since d(g, w) > 2, we have 
d(g, w) = 2. Let t be the common neighbor of g and w. Then either t G TV or 
t E Ni (F), according to the structure of F and hence G. We show that we can 
assume that t G W. 

Suppose that t G N\(F) and distinguish two cases: 

Case 1. Let w G nut(s) . Then stw is an (s—w)-geodetic, and hence t G 
nut(s) . Thus t G C(F) = C(G) by Lemma 1, which is a contradiction. 

Case 2. Let w $_ nut(s) . Then there exists a node y' ^ y such that d(s, y') = 
r(G), and w does not lie on any (s—y')-geodetic. Let H/ be the node of N2(F) 
which lies on some (s-y')-geodetic. Then w' y^ w, and w and H/ are nonadja-
cent (it follows from the definition of F). Note that t and w' are not adjacent 
since otherwise d(w,w') = 2 and (3) yields \d(s,w) — d(s,w')\ = 2, a contra­
diction. Now we can interchange w with w' and y with y', and we have t G TV 
since N\(F) contains at most one node as mentioned above. 

Thus, each node g G V(C(G)) — W is adjacent to some node of TV, and 
hence C(G) = H. 

Finally, we prove that (V(H) — TV) is complete. Assume to the contrary that 
there are two nonadjacent nodes u and v in (V(H)—TV). Then d(u,v) = 2, 
and we have \d(c,u) — d(c,v)\ = 2 for some c G V(H) by Lemma 2. Since 
d(H) < 2, we have c G {i t ,^}, say c = u. Then t> G nut(tx). Since y is eccentric 
to both u and v, we have r(F) = dp(u,y) = dp(u,v) + dp(v,y) = 2 + r ( F ) , a 
contradiction. Hence, the graph (V(H) — TV) is complete. 

Part 3. Let H be a star. Then H contains a universal node, and hence 
C(G) = K2 = C(F) by Part 2. (In the case C(G) = if1>2, we have s G 
V(H) — TV, and hence TV consists of one node. Thus, there is a node from 
V(H) — TV not adjacent to some node from TV.) It is easy to verify that F is 
a path, and hence G is the sequential join of complete graphs. Clearly, the first 
one and the last one are K\ since G is two-radially maximal. • 
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