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BINOMIAL MATRICES 

MIROSLAV FIEDLER 

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday 

Introduction 

In [l], a class of matrices has been introduced defined as follows: 

If A = ( " j is a 2 x 2 matrix and k is a positive integer then A[M is the 
^ {'21 {'22' 

(k + l ) x ( k + l) matrix defined by the identity 

A.ч(*î vk-\ v- fc-2 2 
X\ JC2, x l JC2, x\)J = 

= ( ( Í / M ^ I + ^12*2)^ , (a\\X{ + 012*2)* l(a2iXi + ^ 2 2 x 2 ) , . - . , ( a 2 i x i + a22x2)
k)T. 

( i ) 

The matrix AiM has been called Kronecker power of the matrix A. 
The purpose of the present note is to show a relation of this class to the class of 

Hankel matrices, to introduce a closely related class of binomial matrices and to 
find some of its properties including its additive version. 

We shall denote here by Sftm the class of all Kronecker k-th powers of complex 
2x2 matrices. 

1. Hankel matrices and Kronecker powers 

As is well known [3], Hankel matrices of order n are square matrices of the form 
(p,+k), /, k = 0 , ..., n — 1 where p(), p , , ..., p2fl-2 are (in general complex) numbers. 
The following lemma is obvious: 

(1.1) Lemma. The matrix 

H(t) = ( t '^) , 1, fc=0- ..., n-\ 

as well as 

њ = 

0...0 0 

0...0 0 
0...0 1 

(2) 

(3) 
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are Hankel matrices with rank one. Conversely, any Hankel matrix with rank one is 
a non-zero multiple of H^ or of H(t) for some t. 

(1.2) Theorem. The set df£n of all complex Hankel matrices of order n forms 
a linear subspace in the n2-dimensional space of all complex square matrices of 
order n. The dimension of df£n is 2n — \ and one of its bases is H(ek), k = \, ..., 
2n — 1 where e = exp(n 'jti). Moreover, the 2n matrices H(es), ;v=0, 1, . . . , 
2n — \ satisfy the relation 

"5VH(^) = 0 (4) 

and any Hankel matrix H = (pi+k) can be expressed as 

H = ̂ -2'f. P,e lkH(e"). (5) 
-"-ft ,. k 0 

Proof. The first assertion is obvious. The second follows from (4) and (5) which 
are easy consequences of (2). 

(1.3) R e m a r k . The matrices H(es)P, 5 = 0,2, ..., 2 M - 2 form a basis for the 
linear space of the so called circulant matrices [4]. Here, P is the permutation 
matrix (6, „ \-k), i, k=0, ..., n — \, <5„ being the Kronecker symbol. 

In the following main theorem of this section, the superscript T means trans­
position. 

(1.4) Theorem. Let n^2 be an integer, let B be a complex nXn matrix. Then 
the following are equivalent: 

(i) B G 8 | ( 1 „; 

(ii) BHBTe Wn for any matrix H e l „ . 
Proof. We can assume that n>2. (i) => (ii). Let BeSft[n-i\. For any x, 

BH(x)BT = BXXTBT = (BX)(BX)T 

with 
X = (\,x,x2, . . . ,x " - ' ) T ; (6) 

however, BX=cY where Y= 1, y, ..., yn_1)T for some y of the form (a2X + a22x). 
.(an + al2x)-1, or BX= c'en, en = (0, . . . , 0 , 1)T. 

Consequently, 
BH(x)BT = c2H(y) 

for some y, or BH(JC)BT = c'2Hoc. The assertion follows since, by (5), each matrix 
H e 3€n is a linear combination of matrices of the form (2) and Wn is a linear space 
by Lemma (1.1). 

(ii)-^>(i): Let B = (fc,0- i, k =0, ..., n - \ and let BHBTe Mn for each H e Wn. In 
particular, BH(x)BTe$£? for any x. Since this matrix has rank one, we have by 
Theorem (1.2) either 
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or 

BH(*)BT=yH(y), (7) 

BH(x)BT = y„H„. (8) 

Define the polynomials fh / = 0, ..., n — 1 by 

Л ( z ) = 2 > м z ' . 

In terms of these polynomials, 

BH(JC)BT = (BX)(BX)T = UUT, 
$ U = (/o(x),/,(jc),...,/ I_,(jc))T. 

Therefore, both (7) and (8) imply that for any x, 

/-.(*)/+.(*) = /2(jt), / = l , . . . , n - 2 . (9) 

It is easy to prove by induction with respect to n the following: 

(1.5) Lemma. Lef n ^ 2 and /er/0, ..., /„_, be non-zero polynomials such that (9) 
is identically satisfied. Then there exist relatively prime polynomials go, g. and 
a non-zero polynomial d such that 

h = dgirx~kgk, k = 0, ..., n-1. (10) 

Applying this lemma to our case, we obtain that d is a constant, go, g. are 
polynomials of degree at most one (and at least one of them has degree exactly 
one). Consequently, BeS&r,,-,],. 

2. Binomial matrices and their properties 

In the sequel, we shall denote by R", C" respectively the linear space of real 
(complex) column vectors with n coordinates. In such spaces, we denote by ((x, y)) 
the inner product of the vectors 

X = (JC„ ...,x„)T, y = (y«, ...,y„)T, i.e. ((x, y)) = J>,y, 

(y is the complex conjugate number to y, the superscript T means transposition, 
the superscript * transposition and complex conjugation). 

We denote by R W , B , C " " respectively the set of all mxn real (complex) 
matrices. 

(2.1) Definition. For a positive integer m and x = (*,, x2)
T e C 2, we denote by 

x1'"1 the vector 
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x ' " ' = ( * r . ( 7 V 2 ~ r ' x s , ( ^ ) , J * r v : xrfec 

and call it the m-binomial vector to x. 

(2.2) R e m a r k . The including of the binomial coefficients in the definition of 
x1'"1 is justified by the following 

((x|M|.y""l)) = ((x,y)r. (11) 
(2.3) Definition. For AeC22 and m positive integer, A1'"1 /s the matrix from 

C", + l ", + l for which, whenever xeR2, 

(Ax)"" , = A,",,x['"[. d (12) 

We shall denote by SSR"1, $[m] respectively the set of all real (complex) matrices 
obtained as A""1 for A e R2 2(A e C2 2 ) ; we shall call A""1 the m-binomial matrix 
corresponding to A. 

(2.4) R e m a r k . The classes $)""' are closely related to the class 98l#„, of m-th 

Kronecker powers of 2 x 2 matrices mentioned above. Indeed, if D = diag ( ( ) J, 

k=0, ..., m, then P e ^ " " 1 if and only if D P D e 
(2.5) E x a m p l e . Clearly A [ , | = A. If 

'*[„,]. 

A = ( " " " 1 2 ) 
XCl2\ Cl22 ' 

then 

On, V2 « n a 1 2 , tl2\2 

A 2 = V2 «,,fl2|- Cl\\Cl22 + «12«21, V2 «l2a22 

O2 1, v 2 «21«22, «22 

(13) 

The following theorem comprises several elementary properties of m-binomial 
matrices. We denote by I the identity matr ix; if its size should be emphasized, l„ is 
the nXn identity matrix. 

(2.6) Theorem. We have 

(a) r 1 = -,„+,; 
(b) for A,BeC22, (AB)[m] = A[m]B{m]; 

(c) If A, BeC22 commute then A""1, B""1 commute as well; 
(d) if AeC22 is nonsingular then A""1 is nonsingular and (A""1) ' = (A l)1 '"1; 
(e) (A ,"")1 = (AT)""1 for AeC22; 
(f) (A"' , ,)* = (A*)""1 for AeC22; 
(g) if AeC22 is lower triangular (upper triangular, diagonal) then so is A""1; 

moreover, if an, a22 are diagonal entries of A then 

a"\, a"\ 'ÍÍ22, ciT\ 2ci2-, .., a" 
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are, in this order, the diagonal entries of A'"'1 in each case; 
(h) if Ae C2 2 is symmetric (Hermitian, orthogonal, unitary, normal) then A1"'1 is 

symmetric (Hermitian, orthogonal, unitary, normal). 

Proof . All these properties follow in a standard way [2] from (2) and (1). We 
shall prove (b), (g) and a part of (h) only: 

(b): Let A, B e C 2 2 , x e C 2 , let y = Bx, z = ABx. 
Then 

zl"-l _ (Ay)!'"! — A'^'y1'"1 _ A'^'B^X1"'1 

On the other hand, 

z |ml = (AB),m|x""1 

so that 
(AB) |mlx[m| = Al'"1B|mlxIH. (14) 

It is easily seen that Rm + I possesses a basis of the form 

'l\[m] / l \[m] / 1 V"'1 

U ' U '•••'L+./ 
(if ti, ..., t„, + i are mutually distinct since the determinant of the coordinates of these 
vectors is essentially the Vandermonde determinant). Consequently, (14) implies 
(b). 

To prove (g), observe that for A lower triangular, the k-the coordinate of (Ax)1"'1 

contains x2 in the power at most k — \ and the coefficient at 

( * - , ) 

1/2 
m k + l k 1 • m-k + \ k - \ 

X\ X2 1S Cl\\ (X22 . 

To prove the first assertion of (h), observe that A = AT is equivalent to 
((Ax, y)) = ((x, Ay)) for all x, y e R2 so that by (11), 

( ( A M X ! ^ yI-l)) = ( (X l - I9 A ' - V " " ) ) . 

The same reasoning as above yields that then 

((A,W|X, Y)) = ((X, A[""Y)) for all X, Ye R"1 + 1 

so that AI",| = (A['",)T. A similar argument proves (e) and (f). 
(2.6) R e m a r k . In the class 38[*|, the properties (e), (f) are not satisfied in 

general. 

(2.7) Theorem. The classes £ft[R], ffl[c] are closed under multiplication, the 
nonsingular matrices of both classes forming a group (with respect to multip­
lication). If the upper-left-corner entry of a matrix P e SQiT1 or %[c] is different 
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/><>/JI /cio then p —A""1B""1 tor some lowci ttinngulnr mnttix A e R (or C ) nnd 

some upper ttinngulnt mnttix BeB . Any matrix Qe.j?""1 is cqunl to 

Q = U""T1""(U*)1"1 (15) 

wheic U is n unitnty nnd T an upper trinngulnt matrix from C . 

P r o o f . The first two assertions are corollaries of Theorem (2.4). The remaining 

assertions follow from similar assertions for 2 x 2 matrices. 

(2.8) Theorem. //' a,, a^ arc cigenvnlucs of A e C 2 nnd m is n positive integer 

then a,", a'," ' a : , a," ' « : , ..., a"' nrc nil cigenvnlucs of A1'"1. In the case thnt A hns 

lincnr clcmcntnty divisors, nil elementnry divisors of A""1 nrc linear as well. In the 

ense thnt A hns one quadratic elementnry divisor then tor A nonsingular, A1'"1 hns 

n single clcmcntnty divisor of degree m + V for A singular, A1'"1 has one quadratic 

clcmcntnty divisor, nil m — 1 remaining ones being linear. 

In the first case, cigenxectors of A""1 corresponding to a"\ a"' 'a-., ..., a" can he 

chosen as columns of the matrix X""1 where X is a matrix whose columns are some 

two linearly independent eigenvectors of A. 

Pi oof . Follows easily from the Jordan theorem since A = TJAT ', JA being 

either diagonal or of the form (,. ), implies 
M) a ' 

A1""-T1""JA""(T""1) ' ; 

JA being always upper triangular, (g) of Theorem (2.5) applies. The asserted 

properties of elementary divisors of A1'"1 are easily checked. 

For JA diagonal and X a matrix described above, AX = XJA implies 

A I »„ X I « . | = X|„.J|JM1 

and J1^"1 being again diagonal, the assertion follows. 

Since the determinant is the product of all eigenvalues, we have: 

(2.9) Corollary. For A e C 

d e t A [ w , = ( d e t A ) ( T ) . 

(2.10) Corollary. The rank of a matrix in J81'"1, m^\, is cither m + I, or 1, or 0. 

(2.11) Theorem. //' A is positive scmidefinitc (positive definite) then so is A"" . 
P r o o f . In such case there exists a unitary matrix U and a diagonal matrix D with 

nonnegative (positive) diagonal entries such that 

A = UDU* (16) 
Therefore, 

A""1-U I""D ,""(U""1)* (17) 
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where U,w| is unitary and D |wl diagonal with nonnegative (positive) diagonal entries. 
The assertion follows. 

(2.12) Theorem. For any positive definite Pe S8l
c
wl, its positive definite square 

root, commuting with P, is in 2ft[m] as we\\. 
Proof. Let P e m[

c"
] satisfy P = A|wl for A e C22. Since P = P*, A = A* as well and 

(16) holds with D having positive diagonal entries. Define B = UD,/2U* where the 
diagonal entries of D , /2 are positive square roots of the diagonal entries of D. Since 

B2 = A, AB = BA, 

the matrix Q = B ,w | satisfies Q2 = P, PQ = QP and is positive definite by Theorem 
(2.11). 

3. Additive binomial matrices 

(3.1) Definition. Let Ae C2 2, m positive integer and k integer, 0 ^ k = m. The 
generalized m-binomia\ matrices A[w M are defined as coefficient matrices in 
(l + tA)[wl: 

m 

(l + /A) l " , | =X t"A | m M . (18) 
k=U 

In particular, the matrix A,w' ' will be called additive m-binomial matrix of A. 

(3.2) Theorem. For a fixed A and fixed m, a\l the matrices A[w*k], k = 0 , ..., m, 
commute with each other; A[w 01= I, A[w wl = A[wl. If A has eigenvalues a,, a2 then 
all eigenvalues of A[w M are fkih /*,, ..., fkm where the numbers fks are coefficients of 
the polynomials 

(1 + f a , r - ' ( l + ta2y=U+fut + ..-+fmstm(=fs(t)y s = 0, ..., m. 
m 

Proof. By (c) of Theorem (2.5), the matrices ^ t k A [ w fcl (for varying t) 
k=0 

m 

commute with each other. Therefore, any two matrices of the form ^ykA
[m'k] 

k=U 

commute. 

If A is diagonizable, T _ , AT= I ' J for some nonsingular T, Consequently, 

(T""')-'(l + fA)""T""'= (* +
0

a ' j + ° t o 2 ) ' "" = 

= diag((l + tat)
m,(l+tai)

m-l(l + ta2),...,(l+ta-2)m) = 

= d i a g ( / „ ( 0 , / i ( T ) , - . / » ( 0 ) . 
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It follows easily that the eigenvalues of ^y^A 1 ' " M arc equal to /„(y), / , (y) 
A (I 

/,.,(y) where symbolically 

/;(y) = /.KV«. + /^y. + ... + /^y».. 

The same is true it A is not diagonalizable. 

In the following theorem we shall summarize properties of the additive binomial 

matrices. 

(3.3) Theorem. For A, B E C , 

(A + B)1 = A " " " f B1'" ". (19) 

// A = ( " ) /Ï;IS cigenvalucs (Xi, Í Ь thcn: 

(a) A1'" M is tridiagonal with the entries 

Aft " = ( / H - A ) < / M + /«/V- k=i) nu 

Al/Vl

1 = a,V(k + l ) ( ш - k ) , k=() ш - V 

Aft ,", = (/>,V(k + l ) ( t / / - k ) , k=() m- 1, 

A!,'" " = () in nil other cases; 

(b) the eigenvalues of A1'" M are (/// — s)(t\ + >s«:, :s = 0 , ..., m ; 

(c) if A is positive scmidefinite (positive definite), the same is true of A1'" ". 

Pi oof. (19) follows from the definition, (a) by direct computat ion, (b) is 

a corollary of Theorem (3.2) and (c) follows from the commutativity property and 

( . 7 ) . 

(3.4) R e m a r k . In Theorem (3.3), (b) means, of course, that the eigenvalues of 

A1'" M correspond in the complex plane to m + 1 equidistant points on the segment 

joining the points ma.\ and ma-. 

(3.5) R e m a r k . The matrix A1'" M being nonderogatory [4], it follows from 

Theorem (3.2) that the matrices A1'" M, k =2 /// are polynomials in A1'" ". For 

instance, the matrix A | : I from (13) can be expressed as 

(det A)l - l(,i,, + (h2) A12' " + HA , :- " ) \ 

Several other properties of binomial matrices follow from analogous properties 

of matrices in C \ An example is the following: 

(3.6) Theorem. // A e R2 is (elcmentwise) nonncgative then nil matrices A1" M, 

k=() m (and thus A1'"1) are nonncgntive as well. If A is pos/f/ve. A1"1 is 

positive. 
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Miìtcnшtický ústíìv ČSЛV 

Žitná25, 115 67 Pпihu 

БИНОМИАЛЬНЫЕ МАТРИЦЫ 

Мшк.ау ПеоЧег 

Резюме 

В связи с классом $[к] кронекеровских степеней [1] матриц порядка 2 доказывается, что 
невырожденная матрица порядка п принадлежит $й[п ,, тогда и только тогда, когда ВНВ1 

является матрицей Ганкеля для всех матриц Ганкеля Н. Во второй части модифицируется 
определение класса $]к] и изучается полученный класс ^ 1 м т.наз. биномиальных матриц. Также 
изучается аддитивная версия биномиальных матриц. 

237 


		webmaster@dml.cz
	2012-08-01T00:48:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




