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BINOMIAL MATRICES
MIROSLAV FIEDLER

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday

Introduction

In [1], a class of matrices has been introduced defined as follows:

hidn . . . e .
If A= (‘ e ") is a 2X2 matrix and k is a positive integer then Ay is the

(> d>>

(h + 1) %X (k + 1) matrix defined by the identity

Ap(xt, xi 7 a2, X177x3, o, x3)T= (1
=(((l||)€| + (h:X:)“, (allxl + a;zXz)k—'(aZ.x, + (h-,x,), s (aﬂxl + llsz:)k)T.

The matrix Ay has been called Kronecker power of the matrix A.

The purpose of the present note is to show a relation of this class to the class of
Hankel matrices, to introduce a closely related class of binomial matrices and to
find some of its properties including its additive version.

We shall denote here by %, the class of all Kronecker k-th powers of complex
2 X2 matrices.

1. Hankel matrices and Kronecker powers

As is well known [3], Hankel matrices of order n are square matrices of the form

(p+1), i, k=0, ..., n—1 where pq, p\, ..., p2.-2 are (in general complex) numbers.
The following lemma is obvious:

(1.1) Lemma. The matrix

H)=(""), i,k=0,..,n-1 )
as well as
0...00
H-=10.00 3)
0..01
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are Hankel matrices with rank one. Conversely, any Hankel matrix with rank one is
a non-zero multiple of H.. or of H(t) for some t.

(1.2) Theorem. The set 7, of all complex Hankel matrices of order n forms
a linear subspace in the n’-dimensional space of all complex square matrices of
order n. The dimension of %, is 2n—1 and one of its bases is H(¢"), k=1, ...,

2n—1 where e =exp (n 'mi). Moreover, the 2n matrices H(¢'), s=0,1, ...,
2n — 1 satisty the relation

2n—1

AZﬂgkﬂ(s‘)=o €))

and any Hankel matrix H=(p;..) can be expressed as

2n—1

H=ﬁ > pe “H(e). (5)

A O

Proof. The first assertion is obvious. The second follows from (4) and (5) which
are easy consequences of (2).

(1.3) Remark. The matrices H(¢')P, s=0, 2, ..., 2n —2 form a basis for the
linear space of the so called circulant matrices [4]. Here, P is the permutation
matrix (8., 1-1), i, k=0, ..., n—1, §, being the Kronecker symbol.

In the following main theorem of this section, the superscript T means trans-
position.

(1.4) Theorem. Let n=2 be an integer, let B be a complex nXn matrix. Then
the following are equivalent:

(l) BE%[,, 15
(ii) BHB" € %, for any matrix He %,.
Proof. We can assume that n>2. (i) = (ii). Let Be %,,.-,;. For any x,

BH(x)BT = BXX"B" = (BX)(BX)"

with
X=(1,x,x% .., x""Y; (6)
however, BX=cY where Y=1, y, ..., y" ") for some y of the form (az + a,x).
.(a“ +012X)_1, or BX= C’e,,, €n =(0, veey 0, 1)T
Consequently,

BH(x)B" = c’H(y)

for some y, or BH(x)B" = c'’H... The assertion follows since, by (5), each matrix
He #, is a linear combination of matrices of the form (2) and ¥, is a linear space
by Lemma (1.1).

(i1))=> (i): Let B=(bu), i, k=0, ..., n—1 and let BHB" € %, for each He ¥, . In

particular, BH(x)B" € #, for any x. Since this matrix has rank one, we have by
Theorem (1.2) either
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BH(x)B" = yH(y), (7

or

BH(X)BT = Y()Hao. (8)
Define the polynomials f;, j=0, ..., n—1 by
n—1
fi(z)= ,\Z)b,-kz“.
In terms of these polynomials,

BH(x)B" = (BX)(BX)"=UU",
® U=(fo(x), fi(x), --es fa-i(x))".

Therefore, both (7) and (8) imply that for any x,
fie(X)fin(x)=Ffi(x), i=1,...,n-2. 9)
It is easy to prove by induction with respect to n the following:

(1.5) Lemma. Let n=2 and let fo, ..., f.-, be non-zero polynomials such that (9)
is identically satisfied. Then there exist relatively prime polynomials ¢, g, and
a non-zero polynomial d such that

fi=d gi”' ™ gt, k=0,..,n—1. (10)

Applying this lemma to our case, we obtain that d is a constant, go, g, are
polynomials of degree at most one (and at least one of them has degree exactly
one). Consequently, B e %By,-;.

2. Binomial matrices and their properties

In the sequel, we shall denote by R", C" respectively the linear space of real
(complex) column vectors with n coordinates. In such spaces, we denote by ((X, Y))
the inner product of the vectors

X=(xr s %) Y= s ) e ((x,y))=’2x;)7,»

(y is the complex conjugate number to y, the superscript T means transposition,
the superscript * transposition and complex conjugation).

We denote by R™", C™" respectively the set of all mxn real (complex)
matrices. ’

(2.1) Definition. For a positive integer m and x =(x,, x.)" € C?, we denote by
x'"! the vector
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12 12 1
Il om 'n) mo1 m) mo22 m 1
X —(Xx,(l X X1,<2 X x»,....x»)eC
and call it the m-binomial vector to X.
(2.2) Remark. The including of the binomial coefficients in the definition of
"l is justified by the following

(", y" ) = ((x. )" (1)

(2.3) Definition. For Ae C** and m positive integer, A" is the matrix from
C"* "' for which, whenever xe R?,

x!

(Ax)lml=Al"'|x|”'|' a (12)

We shall denote by B%"!, B! respectively the set of all real (complex) matrices
obtained as A" for Ae R**(A e C*?); we shall call A" the m-binomial matrix
corresponding to A.

(2.4) Remark. The classes 3" are closely related to the class 9., of m-th

12
Kronecker powers of 2X2 matrices mentioned above. Indeed, if D = diag ( (T) )

k=0, ..., m, then Pe 3" if and only if D 'PD € %B,,.,.
(2.5) Example. Clearly Al''=A. If

A:(“" (l]:)
dx dzx>
then
ai, V2 ana, ar»
A= V2 4y a0, aiyan + aas, V2 aian ) . (13)
“51, \/E a Az, (lgz

The following theorem comprises several elementary properties of m-binomial
matrices. We denote by | the identity matrix; if its size should be emphasized, 1, is
the nXn identity matrix.

(2.6) Theorem. We have
(a) L"'=1,..;
(b) for A,Be C*?, (AB)"'=Al"1B";
(c) If A, Be C** commute then A", B""' commute as well;
(d) if Ae C*’ is nonsingular then A" is nonsingular and (A") '=(A ")
(e) (A")' =AD" for Ae C?;
() (A"N)*=(A*)"! for Ae C*?;
(g) if Ae C** is lower triangular (upper triangular, diagonal) then so is A"';
moreover, if a,,, a.» are diagonal entries of A then

22
1 2 2 »
atly, aty 'as, aty ‘as., .., a%

22y
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are, in this order, the diagonal entries of A" in each case;
(h) if Ae C*? is symmetric (Hermitian, orthogonal, unitary, normal) then A" s
symmetric (Hermitian, orthogonal, unitary, normal).

Proof. All these properties follow in a standard way [2] from (2) and (1). We
shall prove (b), (g) and a part of (h) only:

(b): Let A,Be C*?, xe C?, let y=Bx, z=ABx.

Then

z[ml — (Ay)lml — Almly[ml — AI"'IBIH.leml.
On the other hand,

zlml= (AB)ImlxhnI
so that
(AB)lmlxlml — AlmlB[m|x|m]. (l4)

It is easily seen that R™*' possesses a basis of the form

() ) ()

(if t,, ..., t,.1 are mutually distinct since the determinant of the coordinates of these
vectors is essentially the Vandermonde determinant). Consequently, (14) implies
(b).

To prove (g), observe that for A lower triangular, the k-the coordinate of (Ax)""!
contains x, in the power at most k — 1 and the coefficient at

12
m . —k+1 k-1
(k 1) xrln k+lx12\ 1 is a:nl k+ ass",

To prove the first assertion of (h), observe that A=A" is equivalent to
((Ax, y)) = ((x, Ay)) for all x, ye R’ so that by (11),

((A[mlx[m]’ ylml)) — ((xlml’ Almly[ml))‘
The same reasoning as above yields that then
((A"X, Y))=((X, A"'Y)) forall X,YeR™*'

so that A"'=(A")" A similar argument proves (e) and (f).
(2.6) Remark. In the class %), the properties (e), (f) are not satisfied in
general.

(2.7) Theorem. The classes B!, BY" are closed under multiplication, the
nonsingular matrices of both classes forming a group (with respect to multip-
lication). If the upper-left-corner entry of a matrix P e BY" or B! is different
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from scro then P—A"'B" tor some lower triangular matrix Ae R™ ™ (or C* ) and
some upper triangular matrix Be B™". Any matrix Qe A" is equal to

Q=U "y (15)

where U is a unitary and T an upper triangular matrix from C .

Proof. The first two assertions are corollaries of Theorem (2.4). The remaining
assertions follow from similar assertions for 2X2 matrices.

(2.8) Theorem. If «,, «. arc cigenvalues of Ae C™7 and m is a positive integer
then af', af' ‘oo, af' Cas, ..., at are all eigenvalues of A" In the case that A has
lincar clementary divisors, all elementary divisors of A" are lincar as well. In the
case that A has once quadratic elementary divisor then tor A nonsingular, A" has
a single clementary divisor of degree m+ 1, for A singular, A" has one quadratic
clementary divisor, all m— 1 remaining ones being linear.

In the first case, eigenvectors of A" corresponding to o', a)' 'as, ..., ' can be
chosen as columns of the matrix X" where X is a matrix whose columns are some
two lincarly independent eigenvectors of A.

Proof. Follows casily from the Jordan theorem since A=TJaT ', Ja being

. . . . a1y . .
cither diagonal or of the form (() ) implies
a

AI/HI — TIMIJIAml(Tlml) ! :

Ja being always upper triangular, (g) of Theorem (2.5) applies. The asserted
propertics of elementary divisors of A" are easily checked.
For Ja diagonal and X a matrix described above, AX=XJa implies

Al = xim J[‘(MI

and JY" being again diagonal, the assertion tollows.
Since the determinant is the product of all eigenvalues, we have:
(2.9) Corollary. For AeC’*
det A1 = (det A)F).

(2.10) Corollary. The rank of a matrix in 3™, mZ 1, iscitherm + 1, or 1, or (.

(2.11) Theorem. If A is positive secmidefinite (positive definite) then so is A" .
Proof. In such case there exists a unitary matrix U and a diagonal matrix D with
nonnegative (positive) diagonal entries such that

A=UDU*. (16)
Therefore,
Al =yl (g (17)
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where U is unitary and D" diagonal with nonnegative (positive) diagonal entries.
The assertion follows.

(2.12) Theorem. For any positive definite P e B\, its positive definite square
root, commuting with P, is in B! as well.

Proof. Let Pe B satisfy P = A" for Ae C*>. Since P=P*, A = A* as well and
(16) holds with D having positive diagonal entries. Define B=UD'?U* where the
diagonal entries of D'’? are positive square roots of the diagonal entries of D. Since

=A, AB=BA,

the matrix Q =B'" satisfies Q>=P, PQ=QP and is positive definite by Theorem
@2.11).

3. Additive binomial matrices

(3.1) Definition. Let A€ C*?, m positive integer and k integer, 0= k=m. The

generalized m-binomial matrices A'™*! are defined as coefficient matrices in
1+ A

(1+ A" =S AL (18)
k=0

In particular, the matrix A" ' will be called additive m-binomial matrix of A.

(3.2) Theorem. For a fixed A and fixed m, all the matrices A" ! k=0, ..., m
commute with each other; A" "'=1, A" "= Al"!_If A has eigenvalues a,, a, then
all eigenvalues of A" *) are f,,, fi1, ..., fum Where the numbers fi, are coefficients of
the polynomials

A +ta)" (L +tay) =fo, + fist + ...+ fut " (=£(8)), s=0, ..., m.
Proof. By (c) of Theorem (2.5), the matrices D, t*A"™*! (for varying r)
k=0

commute with each other. Therefore, any two matrices of the form ) y A" !
k=0
commute.

If A is diagonizable, T™'AT = (‘8' 3 ) for some nonsingular T. Consequently,
2

(T‘"'l)"(l+tA)lmlTlm|=<1+ta, 0 )lml=

0 1+ ta,
= diag (1 + ta)™, (1 + ta)" (1 + taz), ..., (1 + ta-2)") =
=diag (fo(t), fi(T), ..., fm(1)).
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It follows casily that the cigenvalues of > v A" " are equal to fu(y). fi(y)s -
A0

[..(y) where symbolically

L) = foyot [yt o4 LY.
The same is true if A is not diagonalizable.
In the following theorem we shall summarize properties of the additive binomial
matrices.
(3.3) Theorem. For A,Be C"',
(A+B)|m l(:Alm,ll +_B|m I|. (l())

. d a .
rAa=(""" ) has cigenvalues «,, «» then:
oy s>
(a) A" ' is tridiagonal with the entries
A =(m = KNay + kas, k=0, ..., m,

A =a V(k+ D(m—k), k=0, ....m—1,

A=V + D) (m—k). k=0, ....m—1,
A" ""=0 in all other cases;
(b) the cigenvalues of A" " are (m—s)a,+sax, s =0, ..., m;
(¢) if A is positive semidefinite (positive definite), the same is true of A" ',

Piroof. (19) follows from the definition, (a) by direct computation, (b) is
a corollary of Theorem (3.2) and (c¢) follows from the commutativity property and
(17).

(3.4) Remark. In Theorem (3.3), (b) means, of course, that the eigenvalues of
A" 'Lcorrespond in the complex plane to m + | equidistant points on the segment
joining the points ma, and ma-.

(3.5) Remark. The matrix A" ' being nonderogatory [4], it follows from
Theorem (3.2) that the matrices A" *! A =2, ..., m are polynomials in A" '!. For
instance, the matrix A" from (13) can be expressed as

(dCt A)I - lw(ll]| + (133) All . + E(A‘: II)‘.

Several other properties of binomial matrices follow from analogous properties
of matrices in C™°. An example is the following:

(3.6) Theorem. If A€ R’ is (clementwisc) nonnegative then all matrices A",
k=0.....m (and thus A"") arc nonnegative as well. If A is positive. A" is
positive.
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BUHOMWAIJIBHBIE MATPUILIbI
Miroslav Fiedler
Peslome
B cBa3u ¢ knaccoM By, KpOHEKepoBckux creneHei [1] matpuu nopsjka 2 goka3biBacTes, 4To
HEBBIPOXK/CHHAs MAaTpUuUa TOpSAKa n NpUHApnexut %, \y TOTAa M TONLKO TOTAa, Koijla BHB'
sasasieTcs MaTpuuen [ankens ans Bcex matpuil [Nankens H. Bo BTropo#n uyactu Mojpucpunmpyercs

onpefenenue knacca %y, U M3yyaeTcs noayyeHHbli knace B! T.Ha3. GUHOMHanbHBIX MaTpull. Takxe
M3yyaeTcs aUIMTHBHAS BepCcUsi GMHOMHUANILHBIX MATPHIL.
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