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ON A CERTAIN TYPE OF 
FUNCTIONAL DIFFERENTIAL EQUATIONS 

MICHAL FECKAN 

(Communicated by Milan Medved') 

A B S T R A C T . Certain types of advanced functional-differential equations are 
studied by means of a simple fixed point theorem . 

1. In troduct ion 

The purpose of this paper is to give an approach to solve certain functional 
differential equations similar to the following 

u'(x) = f(u(u(x))), 

u(0) = 0, ' 

where / G C ^ R . R ) . Hence we shall study equations containing the term 
u(u(x)) . 

To show the existence of solutions of (1.1) we can apply the Leray-Schauder 
degree theory. But we would like to obtain more. We are interested in the exis­
tence of a Picard iteration method for (1.1). Then such a technique will enable us 
to approximate a solution of (1.1). The difficulty in the derivation of a Lipschitz 
like inequality for (1.1) is the term u(u(x)) . Since to obtain this inequality in 
C° -norm we have to use C 1 -norm of u. Thus it is impossible to apply the 
classical implicit function theorem to (1.1). To overcome this difficulty we use a 
simple fixed point theorem. 

Similarly, we study the equation 

l 

u(x)= IG(x,t)-f(u(u(t)))dt (1.2) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34C23. Secondary 34K10. 
K e y w o r d s : Advanced functional-differential equations, Bifurcations. 
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and the bifurcation problem 

-u"(x) = \.f(u(l + u(x)))+u 

u(0) = U(TT) = 0 

with / (0 ) = 0, / ' (0 ) 7- 0, A E R is near to 0. 

A related problem is studied in [1]. There is also explained a motivation of 
the investigation of such advanced differential equations. We refer the paper [2] 
for a philosophical background. 

2. A simple fixed point theorem 

Let X C C°([0,1],R) be a closed nonempty subset. Consider an operator 
T : X -^ X such that 

i) T is continuous, 

ii) T(X)CC1([0,1},R). 

Hi) | |T( U l ) - T(U 2 ) | | < a (max{ |K | | , | | U 2 | | } ) • | |U l - U 3 | | 

for t i | , « j 6 C 1 ( [ 0 , l ] , R ) . 

iv) | | (T (u ) ) ' | | < / J ( | | u ' | | ) , 

for a, /3 continuous functions. Here || • || is the C° -norm. 

THEOREM 2 . 1 . If there is r > 0 such that /?(*) < r and a(t) < 1 for each 
0 < t < r, then there is a u satisfying u = T(u). Moreover, un —> u in 
C° -norm for un = Tn(0). This convergence is geometrical. 

P r o o f . We take 

Y={ueX, | | t i ' | | < r } . 

Then T(Y) C Y and 

| | T ( U , ) - T ( U 2 ) | | < 7 - | I « > - « 2 | | 

for each i/i, u<i G Y with 7 = max a . We know that 7 < 1. Hence T is a 
[o,r] 

contraction and the proof is finished. 

R e m a r k 2.2. In our applications usually /?(•) = /? is constant and a is 
increasing. Then the assumptions of this theorem have the form a((3) < 1. 
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3 . Results 

First of all, we need the following estimate for u\, u2 £ Cl([0,1], [0,1]) 

|ui(ui(x)) - u 2 ( u 2 ( x ) ) | 

< |u i (u x (x ) ) - u i ( u 2 ( x ) ) | + |ui(u2(x)) - u 2 ( u 2 ( x ) ) | 

< I K | | - | | U I - U 2 | | + | |UI-U2 | | ( 3 J ) 

= (l + IKll)-|K-«a||. 
Now we shall study the problem (1.1). 

THEOREM 3 .1 . Let | / (0) | < 1. Then there is c > 0 such that (1.1) has a 
solution u £ Cl([—c,c],[—c,c]) and un -+ u uniformly on [—c,c] for 

t 

u0 = 0 , u n +i (* )= f(un(un(s)))ds, te[-c,c]. 

o 

P r o o f . Since | / (0) | < 1, there is c > 0 such that 

1/(01 < - (3-2) 
for 1*1 < c . We take 

X = o°([-c,c],[-c,c]), 

t 

T(u) = jf(u(u(s)))ds. 
0 

By (3.2) T(X) C X. If c is sufficiently small, then Remark 2.2 holds and the 
proof is finished. 

Further, we investigate the equation (1.2) under the following assumptions: 
G > 0 and it is C 1 -smooth, / : [0,1] —• [0,oo) is continuous, Lipschitz with the 
constant M. We put 

m = maxf(t), 
[oA] J y n 

A' = max [ G(x,t)dt, 
[o,i] J V ; 

o 
ì 

/

r\ 

-z-G{x,t)At. 
дx v ; 
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T H E O R E M 3.2 . If 

M • K • (1 + m • A') < 1, 

m-K<l, 

then (2.1) has a solution u: [0,1] —• [0,1] and un —> u uniformly on [0,1] for 

UQ = 0 , 

l 

ti„+i(*) = / G(x,t) • /(ti„(i*„(t))) dt, x e [0,1]. 
o 

P r o o f . We take the space X = C°([0,1], [0,1]) and 

l 

Tu= fG(;t)-f(u(u(t)))dt. 
o 

Since m • K < 1, we have T(X) C -Y. The first assumption of this theorem 
ensures the validity of the condition iii) of Section 2. Indeed, by (3.1) we have 

||T«, - Tti-H <M-K-(1 + |K||) • |K - ti-H . 

Moreover, it is clear that 
| | ( T « ) ' | | < K - m . 

Hence we can choose 

a(t) = m-K-(l + t), 

/3(t) = K-m. 

Since a(m • K) < 1 the proof is finished. 

Finally we shall solve the bifurcation problem (1.3). 
We take w = v + c • sinf, where c is small and 

v € X = L € C°([0 ,7r] , [ - l /2 , l /2] ) , fy(t)-sintdt = o l . 

o 
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We decompose (1.3) in the following way 

v = A • K • Qf(v(\ + v + c- sint) + c • sin(l + v + c • sin*)) , (3.3) 

0 = Pf(v(l + v + c- sinr) + c - sin(l + v + c • sint)) , (3.4) 

where K is the "inverse" of u —• — u" — u, u(0) = u(n) = 0, Q = Id — P and 

Pu = ^ f u(t) • sint dt • sint. 
o 

For c small we can solve (3.3) by applying Theorem 2.1 to obtain a solution 
v(A,c) £ .X. Using the standard arguments we see that v depends on A, c 
continuously and v(0, c) = 0. We put this solution into (3.4) and have 

Q(A, c) = P/(u(A, c)(l + v(A, c) + c • sint) + c - sin(l + v(A, c) + c - sin*)) = 0. 

it 

Hence Q(0, c) = £ / f(c • sin(l + c • sin*)) dt. We have 
o 

Q(0,0) = 0 , ^ Q ( 0 , 0 ) = 2 / ' ( 0 ) s i n l # 0 . 

This implies the existence of a small solution c of Q(A,c) = 0 for each A 
small. Summing up we obtain 

THEOREM 3.3 . Under the above conditions the problem (1.3) has a small 
nontrivial solution bifurcating from UQ = 0. 

Of course, a similar approach can be applied to the following problem: 

-u" = f(u'(u(x)))9 

u(0) = tx(l) = 0. 
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