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SOME ANALOGUES FOR HIGHER MONOTONICITY
OF THE SONIN—BUTLEWSKI—POLYA THEOREM

MILOS HACIK

1. Sonin’s theorem (see [5] pg. 168) states that if z(x) is a solution of
y"+ f(x)y =0, where f(x) is positive continuous function, then the successive
maxima of [z(x)]? form a decreasing or increasing sequence according to whether
f(x) is increasing or decreasing. An extension, due independently to Butlewski
([2] Théoréme I, pg. 42) and to G. Polya ([6] footnote, pg. 166) concerns the
more general equation

(1.1) (gy') +fy=0,

with f(x) and g(x) continuous. Their result says that if z(x) is a solution of (1.1),
the relative maxima of [z(x)]’ form an increasing or decreasing sequence according
to whether f(x)g(x) is decreasing or increasing when f(x)>0, g(x)>0.

In [4] L. Lorch, M. E. Muldoon and P. Szego give a partial extension to
a higher monotonicity corresponding to the hypothesis of f(x)g(x) increasing
(Theorems 4.1 and 4.3) and to the assumption that f(x)g(x) is decreasing
(Theorem 4.2).

In the present paper there is given a partial generalization of ([4] Theorems 4.1
and 4.2) by means of the well-known Kummer’s transformation (see e.g. [8]) and
results approached by the author [3] and R. Blasko [1].

2. Definitions and notations

A function ¢(x) is said to be n-times monotonic (or monotonic of order n) onan
interval I if

2.1) (-D'e®(x)Z0 i=0,1,...,n; xel.

For such a function we write ¢(x) € M,(I) or @(x) € M, (a, b) in the case when I is
an open interval (a, b). In the case when the strict inequality holds throughout
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(2.1) we write @(x)e Mi(I) or p(x)e M%{a, b). We say that ¢(x) is completely
monotonic on I if (2 1) holds for n =,

A sequence { ) x-1, denoted simply by {u.}, is said to be n-times monotonic if
(2.2) (-D)A'wm =0 i=0,1,...n; k=1,2,....

Here Apy = Jtis1 — M, A’ = A(Auy) ete. For such a sequence we write {ux} € M,.

In the case when the strict inequality holds throughout (2.2) we write {u.} € M.
{wu} is called completely monotonic if (2.2) holds for n = o,

As usual, we write [a, b) to denote the interval {x|a=x<b}. @(x)e C.(I)
means that ¢(x) has continuous derivatives including the n-th order.

D,[@(x)] denotes the first derivatives z( x)

3. New results

Consider a differential cquatlon (1.1) with f(x) and g(x) continuous, g(x)>0
fora<x <o,

Lemma 3.1. Let z(x) be a solution of (1.1) for x € (a, ). Suppose that z(x) has

consecutive zeros at x,, x, ... Let f(x) and g(x) be differentiable and
‘D.A((gy’) + fy)yg] integrable on (a, ®) for a covenient function ¥ (x)>0,
Y(x)e Cy(a, »). Then

[9C) P (X)) 2" (s ) = [g ()W () 2" ()] =
(3.1

x4 2
- L [zjr(();))] D.[((gy") + fy)y’g] dx.
Proof. The change of the variable

* du . . -
(32) EZLW’WP‘” w(x) € Cala, ),

where the integral is assumed convergent, transforms (1.1) into

'n

(3.3) §?+ @(E)n =0,

where n(E)zz}((’;)) and @(&)=((gy") + fy)y’g (see e.g. [8] pg. 597). For this
equation (3.3) there holds Wiman’s formula ([9] pg. 125):

§k*l
(3.4) (0GP = '@ = [ IEPDel o (8] dE,

&k
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where &,, &, ... are zeros of 7(§) = s((i)) corresponding to zeros xi, X,, ... of z(x).

Now
) = g1 = P = [/ () = 20w (g 0)
and

Delo(8)]= Dx[m(fé)]

Since x,, x,, ... are zeros of z(x), the assertion of lemma is obvious.

Theorem 3.1. Let y(x) and z(x) be linearly independent solutions of (1.1) on
(a, »). Let thcre hold on (a, ®)

(3.5) 0<lim [((g(x)y" (1))’ + )Y ()Y’ (X)g(x)]= e,

x|>a, x,Za for some n =0 and a convenient function y(x)>0, ¥(x) e Cia, »).
Furthermore Iet there hold that g(x)y?*(x) and D,[((gy')’ + fy)y’g] are positive
and belong to M,(a, ©). If x, = a, let the hypotheses of Lemma 3.1 hold on [a, x,).
Then,

(3.6) {[9 e )W (e ) 2" (e )P = [9(x )9 () 2" (2]} € M,

and if y(x) is continuous at xi, then
@ (irew] R e IR

Proof. For n 21, Lemma 3.1 asserts that (3.1) holds. Hence, (3.6) follows from
([3] Theorem 2.1) with y(x)=2z(x), A=2 and W(x) = g(x)y’(x)D.[((gy’)
+ fy)y’gl. Abel’s formula for the Wronskian shows that

(3.8) y(x)z'(x)—y (x)z(x)—q(x)

where ¢ is a non-zero constant. Multiplying (3.8) by y(x) and remembering that
z(xx)=0for k=1, 2, ..., we obtain that

[9(x) v (x)z" (x)] = c* [l;)((;:))]z

and (3.7) follows from (3.6).
If n=0, the result can be reduced to Makai’s ([5], pg. 168) or Watson’s

versions ([7], pg. 518) of Sonin’s theorem by applying a transformation of the
type (3.2) to the equation (3.11).
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Remark 1. Results (4.4) and (4.5) of ([4] Theorem 4.1) can be obtained if we

choose in Theorem 3.1 y(x)=1.
Example 1. The Bessel function y = €. (x) satisfies the differential equation

(3.9) (xy’)’+(x2—v2)%y=() x€(0, ).

This equation does not fulfil the hypotheses of ([4] Theorem 4.1). But for

l the hypotheses of Theorem 3.1 of the present paper are fulfilled for

V()=

[v] él and n = o, Therefore

{[Vewn €U )l = [Veu i(ca)) € Mz,

where c,,, ¢, ... are consecutive zeros of 6,(x) and

”\fc" Q;V(cv.“.)]z— [\/x_ év(cvk)]z} e M=

where 9,(x) is a solution of (3.9) linearly independent on %, (x).
Theorem 3.1 is useful even for the differential equation of the Jacobi type as

follows.
Example 2. Consider a differential equation

Y4 =v)y=0 a#0.

We have not had any information about higher monotonicity properties of its

solution for the time being. On choosing ¥ (x)=exp (—% azx) we find that the

2
a

hypotheses of Theorem 3.1 arc fulfilled for |v|> 7 °n (=, ©) and n = .

Lemma 3.2. Let z(x) be a solution of (1.1) for x € (a, ©). Suppose that z'(x) has
.. Let both f(x) and g(x) be positive and differenti-

p.[((F) %]
integrable for x € (a, ©). Then
[2(xi )Y (xin ) = 2y (x )] =

LS () ) e

consecutive zeros at xi, x5, ..
able for x € (a, ») and

(3.10)
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Proof. By a direct calculation one can obtain that if y(x) and z(x) are solutions
of (1.1) with f(x)>0, g(x)>0, f(x), g(x) continuous on (a, ), then g(x)y'(x),
g(x)z'(x) are solutions of the differential equation

1 ! 1
3.11 (—u) +—— u=0.
G- ") Yam
If we apply the proof of Lemma 3.1 to the differential equation (3.11) we obtain
(3.10).

Theorem 3.2. Let y(x), z(x) be linearly independent solutions of (1.1) on
(a, ©), where
0<lim [((i) i’) v ]éoo.
S \Ur f

e [((F) %]
——= and D, —) +=) =
f(x) f g/ f
be positive and belong to M,(a, ), for some n=0 and function y(x)>0,
Y(x)e Ca, ©), x,>a and x> a.

Then

(3.12) {[z(xke )W (i) P — [2(x) Y (x D'} € ME.

Proof of this theorem is similar to the one of Theorem 3.1 by using Lemma 3.2
and applying [1] Theorem 2.1.

Remark 2. If we choose (x)=1, we obtain the result (4.9) of [4]
Theorem 4.2.

Example 3. Consider a differential equation

Let

1 ! 3
) +x’y=0.
(xz—_vzy) *y=0
2

4 7] 1
If we choose y(x =\/J_r, then —= e M%(0, »),
Y(x) ; \/? (0, »)

and

D.(p(E) =11 +2Y  M2(0, ).

Thus, (3.12) holds for any real v and n= .
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HEKOTOPBIE AHAJIOTMU COHUH-BYTIEBCKH-IOJS TEOPEMbI
151 BBICILEM MOHOTOHHOCTH

Munow MNauunk
Pesome

B 5T0# cTaThe ACYUMPOBAHBI JOCTATOUHbIC YCIOBUS AN TOTO, Y4TOObLI NOCACAOBATEABHOCTH
{Alg(r)w )z (0PI
, ny2y yx)”
(aievearys {a Y]]
MR y(x) i
rae z(x), y(x) AMHEAHO He3aBUCHMbIEC peluenns AndhEpEeHIMANbLHOTO YPaBHEHUS
(gv")' +fy=0,

X, X, ... — MOCJEAOBATCIBHOCTb HYJAEBbIX TOUCK pelueHus z{(x),

X1{, X3, ... — NOCNEAOBATCABHOCTb HYNEBbIX TOYEK dyHKUMH Z'(x)

n A — nepsas auddepeHums, 06:1a1anyu cBOKCTBOM MOHOTOHHOCTH Bbiclero nopsaka. MccaegoBavue
6bUI0 caenaHo npu nomoiuu TpaHchopmauun Kymmepa ans nuHedHbIx auddepeHimanbHbIX ypaB-
HEHMH BTOPOTO NOPsaKa.
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