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THE FUNDAMENTAL THEOREM FOR THE ^-INTEGRAL 

ON MORE GENERAL SETS AND A CORRESPONDING 

DIVERGENCE THEOREM WITH SINGULARITIES 

W . B . JURKAT, D . J . F . NONNENMACHER, Ulm 

(Received October 30, 1992) 

INTRODUCTION 

The authors have recently introduced an axiomatic theory of non-absolutely con­
vergent integrals in Rn which was specialized to v\-integrals on intervals, cf. [Ju-No 
1], [Ju-No 2]. The v\ -theory is relatively elementary and yielded a strong form of the 
divergence theorem with respect to the analytic assumptions on the vector function 
v involved. 

On one hand we allowed certain exceptional points where v is not differentiable, 
but still bounded, and on the other hand we were able to treat certain singularities, 
where v is not bounded, the latter being the essential progress. At these singularities 
v was assumed to be of Lipschitz-type with a negative exponent /? > 1 — n. 

Countably many types (3 were allowed and singularities of type /3 were restricted 
to lie on sets of finite outer a- dimensional Hausdorff measure with a = ft + n — 1. 
Similar singularities were discussed before by [Pf 1], but here they were restricted 
to lie on hyperplanes. Also [Jar-Ku 3] discussed singularities, but only at isolated 
points. 

Of course, one would like to have results of this generality also for vector functions 
on more general sets, not just intervals. Such results exist including exceptional 
points but no singularities, cf. [Jar-Ku 1-2], [Pf 2], [Ju], [No]. The goal of this 
paper is to treat singularities of the type mentioned on relatively general sets. It is 
remarkable that this can be done using our v\ -integral which was originally restricted 
to intervals. 

There is another aspect of more theoretical interest: Our integral is related to 
interval functions and corresponding interval derivatives, and the divergence theorem 
can be seen to be a special case of a fundamental theorem which gives sufficient 
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conditions for the interval derivative to be integrable to the expected value. Such 
fundamental theorems were given in [Ju], [No] and could have been formulated also 
for the v\-integral on intervals. Here we give a general result of this sort and obtain 
our general form of the divergence theorem as a simple consequence. Moreover, this 
arrangement makes the proof particularly lucid. 

0. PRELIMINARIES 

The set of all real numbers is denoted by IR, and throughout this paper n is a 
n 

fixed positive integer. We work in Rn with the usual inner product x • y = J2 xiVi 
i=i 

(x = (xi)i^i^n, y — (yi)i^i<:n E Rn) and the associated norm || • ||. 
If x e Rn and r > 0 we set B(x, r) = {y G Rn: \\y - x\\ ^ r} , and for E C Rn we 

denote by E°,dE and d(E) the interior, boundary and diameter of E. 
For A, B C Rn we denote the set difference by A — B and the complement of A in 

Rn by Ac. 
By | • | s (0 ^ s ^ n) we denote the s-dimensional normalized outer Hausdorff 

measure in Rn which coincides for integral s on Rs (C LRn) with the s-dimensional 
outer Lebesgue measure (| • |o being the counting measure). Instead of | • | n_i we also 
write J^(-), and the term almost everywhere (a.e.) will always refer to the Lebesgue 
measure | • |n . A set E C Rn is called Ovfinite if it can be represented as a countable 
union of sets with finite s-dimensional outer Hausdorff measure, and E is called an 
s-null set if \E\S = 0. 

An interval I in IRn is always assumed to be compact and non-degenerate, and 
finitely many intervals are said to be non-overlapping if they have pairwise disjoint 
interiors. 

1. T H E /Vi-INTEGRAL ON GENERAL SETS AND THE FORMULATION 

OF THE FUNDAMENTAL THEOREM 

We begin this section by extending the definition of the v'l-integral (see [Ju-No 2]) 
to relatively general sets A, and we then discuss local Lipschitz conditions for an 
interval function relative to such a set A. Next will be the formulation of the Funda­
mental Theorem which essentially says that these Lipschitz conditions are sufficient 
for the .vi-integrability on A of the derivative of an a.e. differentiable additive interval 
function to the excepted value. 

By srf we denote the system of all compact sets A C Rn such that |<9A|n_i is finite. 
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If A G £/ and if the real-valued function / is defined at least (almost everywhere) 

on A, we define the function / A : Kn -> U by / A ( # ) = f(x) if x G A and by / A ( ^ ) = 0 

else. 

Given a set A G &/ and a function / : A —•> R we call / *vi -integrable on A iff there 

exists an interval I containing A such that }A is 1/1 -integrable on I, and in that case 

we write 

.1 JI 
fл 

R e m a r k 1.1. Note that UJA f is independent of the interval I. For, if J denotes 

an interval containing I we can express J as a finite non-overlapping union of intervals 

Ik and the interval I. Obviously /A = 0 a.e. on Ik and therefore VJ3 JA — VJi JA since 

the v\ -integral is an extension of the Lebesgue integral and because of its additivity 

property (see [Ju-No 2, Prop. 1.1]). 

By an interval function (on IRn) we mean a function F which associates with each 

interval I C Rn a real number F(I). 

Such an interval function is called additive if for any interval I and any decom­

position {Ik} of I (i.e. a finite sequence of non-overlapping intervals I*; whose union 

is I) the equality F(I) = £K(I/c) holds. 

An interval function F is said to be differentiable at a point x G Un if F is derivable 
in the ordinary sense at x according to [Saks], and in that case F(x) denotes the 
ordinary derivative of F at x. 

Let F be an additive interval function and assume that there is an interval I 

such that F(J) = 0 for each interval J C Un — I°. Then, using the argument of 

Remark 1.1, the real number F(I) does not depend on the choice of I, and this 

unique number will be denoted by F(R n ) . 

Let A G £/, x G A and let F be an interval function. We now introduce Lipschitz 
conditions (relative to A) for F at x, and in what follows the limit process I —» x 
means that I is any interval containing x with d(I) -> 0. 

By definition F satisfies at x the condition 

(An) if F(I) = 0(l)d(ACM)\d(Anl)\n-1 (I^x and d(I)n = 0 ( | I | n ) ) , 

more precisely this requires 

3 A" > 0 VA > 03(5 > 0 such that |F(I) | ^ K'd(A n I)\d(A n I)|n_i 
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holds for each interval I with x G I, d(I) < 6 and d(I)n ^ K\I\n. (Note that K' 

depends only on F, A and x.) 

(Ap) (n — 1 < ft < n) if in the same sense 

F(I) = 0(l)d(A n I)^-n\d(A n I)|n_i (I->x and d(I) n = 0 ( | I | n ) ) , 

(A/3) (n — 1 < /3 < n) if similarly 

F(/) = o(l)d(A n /)^+1-"|5(A n /)|n_i (/ -> x and d(I)n = o(|/|„)), 

(Л„_l) if F ( / ) = o ( l ) | _ ( A П / ) | n _ i (I->x), 

(A„_i) if F ( / ) = о ( l ) | Ә ( Л П / ) U _ 1 (I -> * ) , 

Ш (0 < /? < n - 1) if F(/) = o(l)_(/l П/)<» (I -41), 
(A/5) (0 <. ß < n - 1) if F( / ) = о(l)_(Л П I)P ( / - > _ ) . 

For reasons of simplicity we set An = An. 

R e m a r k 1.2. The reader should pay attention to the fact that the Lipschitz 

conditions defined above heavily depend on the set A. But since there will be no 

danger of misunderstanding we simply write A^ and \p. 

T h e o r e m 1.1 (Fundamental Theorem). Let A G srf, D C A and let F be an 

additive interval function on Un such that F(I) = 0 for each interval I C Ac. 

Furthermore, assume A — D to be an n-null set represented as the disjoint countable 

union of aai-finite sets M. and cti-null sets iV_ with 0 ^ oti ^ n (i G H). 

If in addition F is differentiate on D, and if F satisfies the Lipschitz condition 

Xai resp. Aai (relative to A) at each point of M{ resp. Ni as well as the Lipschitz 

condition An__ (relative to A) at each point of A — (J (M. U TV;) then F is 
a,-^n—1 

vi-integrable on A and 

F(Rn) = / F. 

2. PROOF OF THE FUNDAMENTAL THEOREM 

Note that if E is an (n — l)-null set, and if e > 0 is arbitrary there exists an 

open set G containing E such that \G n 9_4|n-i < £• For, as is well-known, we can 

determine an (n — l)-null set G' containing E and being the countable intersection 

of monotone decreasing open sets Gj. Consequently a standard argument yields 

0 = \G' n <9_4|n-i = lim \Gj n a A | n - i . 
j—yoo 

Set F = 0 on A - D, and to prove z/i-integrability of F on A we choose an 

interval I containing A in its interior. We will show that FA is /Vi-integrable on I, 

72 



and by definition we only have to find a suitable division E, (Ei,Ci)i£\ of I (i.e. I 
is the disjoint union of all the sets E and Ei, E C I°, \I — E\n = 0; the Ci are 
admissible control conditions, and each set Ei is related to Ci) and to check the 
validity of corresponding null conditions for the interval function F restricted to the 
subintervals of I, see [Ju-No 2, Sec 1]. Further explanations occur later in the proof. 

Then, again by definition, we have F(Rn) = F(I) = vJl FA = UJA F, as desired. 
Since |Mj | a . = 0 if at- = n and since An = An we may assume Mt- = 0 for those i. 

Without loss of generality we also assume |Mt-|at. to be finite (i E N), and in addition 
we assume the C-constant K(x) occuring in the definition of Aai to be bounded on 
Ni by Ki > 0 (i E N). 

Now our division of I is given by 

E = Du(I°-A), (3I ,C*), (MuC^)ai<n, (Ni,C^)ieN 

with the understanding that C%{ = C n if at- = n. 
We proceed by proving that F satisfies the null condition corresponding to C%{ 

on N{, in short that F satisfies .yV(C^, Nz), if o^ = n: 
Let e > 0, K > 0 be given. Since F satisfies An on Ni we can determine for x E Nz-

a S(x) > 0 such that 
\F(l)\^Kid(Anl)\d(Anl)\n-1 

holds for each interval I containing x with d(I) < 5(x) and d(I)n ^ I-'lIln-
Because of |N t |n = 0 there is an open set G D Ni with \G\n < e/AnKKi, and we 

may assume B(x, S(x)) C G for x E Ni as well as 6(-) ^ Si = s/2(l + Ki\dA\n-i) on 

Nz. 

Now let {(xk, h)} be a (Ni, o^-fine sequence (i.e. a finite sequence of pairs (xk,h) 
with Xk E h n N,, d (4 ) < <$(#*:) and the h being non-overlapping subintervals 
of I) with {h} E C£(IO (i.e. d(h)n ^ If|4|n for all k). Then, reminding that 
d(A n 4 ) C (J° n dA) U 9 4 , we get: 

^^(IOKIv-^^nI^^I^na^u.i + iaI.in-i) 
^ I^t ^ |4° n dA|n_! + Iv-t- 53 2nd(/*)n 

< | + 2nIv-iK|C|n ^ s. 

Similarly (even simpler) one shows that F satisfies -yK(C^*, Ni) if n — 1 < a^ < n, 
and a glance shows that F also satisfies ^(C^ , Ni) if 0 ^ at- < n - 1. We prove 
that P also satisfies ^(C^, Ni) if at- = rc — 1: 

Let again e > 0 and If > 0 be given. For x E Ni we can find a <J(:r) > 0 such that 

| F ( I ) K K i | a ( A n I ) | n _ ! 
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for each interval I containing x and having diameter less than S(x). We may assume 
B(x, S(x)) C A° if x G Ni n A°. Since |jY, n <9A|n_i = 0 we can determine an open 
set Gi D Ni n cM with \G{ n <9A|n_i < s/2K, by the note at the beginning of the 
proof. We assume that B(x,S(x)) C d if x G Ni n <9A, and we set A = e/4nIiz-. 
Given a (N;,£)-fine sequence {(xk,h)} with ^^(Ik)71""1 ^ A we conclude 

Y \F(h)\ ^ Ki YWk n ̂ U - i + 2n -(J*)"-1) 
^ Ki\Gi n cU|n_i + 2nK,A ^ e. 

Next we prove that F satisfies Jf(Cai, M{) if n - 1 < a, < n: Given e > 0, K > 0 
and x € Mi we choose a ($(x) > 0 such that 

\F(I)\ ^ 6id(A n I)°*+l~n\d(A n I)|n_i, £ i = e/(2nK + |aA |n_i) 

holds for any interval I containing x with d(I) < S(x) and <i(I)n ^ K|I|n- We 
may assume S(x) ^ 1, and if {(xk,h)} denotes a (Mf,<5)-fine sequence with {h} G 
C?'(K) (i.e. 2 X 4 ) " ' <- K and d(h)n ^ K\h\n for all Jfc) we conclude 

£|F(I,)| ^eiYd(AnI*r+1-n(|4°naA|n_i + 2nd(iky-1) 

^ Si Y \Ik n 3-4|n-i + 2n£, ^ d ( 4 ) a i ^ etddAln-x + 2nIv") = e. 

Similarly one shows that F satisfies jV(C*{, Mi) if 0 ^ ai ^ n — 1, and that F 
satisfies JY(C* ,A — (J (M; U Ni)) what completes the proof. D 

Qi ^n—1 

3. T H E DIVERGENCE THEOREM 

In [Ju-No 2] a strong form of the divergence theorem for vector functions v defined 
on an n-dimensional interval was proved by using the v\-integral. Here we will 
generalize the geometric aspect of this theorem by allowing any set A G srf for the 
domain of v. 

Assume A € &/, x e A, l - n ^ / 3 ^ 1 and let a vector function v\ A -> Rn be 
given. We say that v satisfies at x the condition 

(£i) if there exists a real n by n matrix M such that 

v(y) - v(x) -M-(y-x)= o(l)\\y - x\\ (y -> x,y G A), 

(lp) (P ± 1) if v(y) - v(x) = o(l)\\y - xf (y - • x, y ± x, y G A), 

(Lp) if v(y) - v(x) = 0(1)112/ - s f (y - • x, y ? x, y G A) . 
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If x E A° and v = ( f i ) i^^n is totally differentiable at x we set divU(:r) = 
n 

S ffi"(:r)' a n d a t ai^ other points x € A we set diviT(x) = 0. 
i=i Xt 

By [Fed] there exists for each A e jtf a J^-measurable vector function HA : dA —•> 
(Rn, the so called exterior normal, with Hn^ll ^ 1. Furthermore, for any vector 

function v being totally differentiable in a neighborhood of A we have J V-TIA dJff = 
dA 

JA div U, where the integral on the right is a simple n-dimensional Lebesgue integral. 

Theorem 3.1 (Divergence Theorem). Let A be a compact subset of Un with 

\dA\n-i < oo and v: A —> Un be a vector function. By D we denote the set of all 

points from the interior of A where v is totally differentiable, and we write A — D as 

a disjoint countable union of aai-Unite sets Mi and cti-null sets Ni with 0 < a; ^ n 

(i E N) such that \J (Mi U Ni) lies in the interior of A. If we assume that v 
a» <n—1 

satisfies the condition (tai+i-n) resp. (L a .+i_n) at each point of Mi resp. Ni then 

v is Jf?-measurable and bounded on dA, div v is vi-integrable on A and 

I v • ПA dJť = I div v. 

dA 

P r o o f . Note that Af» C dA for a{ = n (since MiC]A° C D), hence |.A-.D|n = 0. 
Furthermore, v is continuous on A except for an (n — l)-null set, and thus the im­
measurability of v on A follows. Since v is locally bounded at each point of dA we 
also see that v is bounded on dA. 

Extend v to whole of Rn by setting v(x) = 0 if x E Ac and fix an interval I. 
Within the proof of Thm 2.1 in [Ju-No 2] it is shown that / ||v|| dJtf < oo, and since 

di 
d(Anl) C dAUdl we have a finite integral J \\v\\ dJff. Consequently, we define 

d(Ani) 
an additive interval function F on Rn by setting F(I) = J v-UAnl dJf? for each 

d(Anl) 
interval I (using standard additive properties of n # , B E £/). 

Using the divergence theorem for linear vector functions one easily sees that F 

is differentiable on D with F = diviT, and that F satisfies the condition Xai resp. 
Aai (relative to A) on Mi resp. Ni if n — 1 ^ a; ^ n as well as the condition An_i 
(relative to A) on A - (J (Mi U Ni). E.g., take x E M{ U Ni where a{ = n and 

a. ^n —1 

determine K > 0, 6 > 0 such that \\v(y) - v(x)\\ ^ K\\y - x\\ for all y E B(x, S) n A. 

Then for any interval I containing x and having diameter less than S we conclude: 

\ni)\ = / (v-v(x)) -ПAПldJť 

д(AПІ) 

^Kd(Ani)\d(Ani)\n. 
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Now take x G Mi with 0 < ai < n - 1 and let us show that F satisfies AQ|. at x 

relative to A. In the proof of Thm 2.1 in [Ju-No 2] it was shown that the inequality 

/ \\y - x\\OCi+1~n dJf(y) < c(n,ai)d(I)ai holds for each interval I containing x, 
di 
where c = c(n,ai) is a positive constant depending only on n and at-. Given e > 0 

we determine a 6 > 0 such that \\v(y) — v(x)\\ ^ J\\y — x | | a i + 1 _ T l holds for all 

y G B(x,S) C ^4°, y ^ x. If now J denotes an interval with x £ I and d(J) < S we 

get 

|F(I)| = [(v-vixfi-njdJfr^ 
di 

< - c d ( / ) a ť = t - d ( Л n Л в i . 
c 

Analogously one shows that F satisfies Aai on N, (relative to A) for 0 < a, < n - 1 . 

Thus the ^i-integrability of F on A follows by the Fundamental Theorem, and since 

F = divtf a.e. on A we have 

I diviT= / F = F(Un)= v-nAdJf. 

dA 

D 

Remark 3.1. (i) For n ^ 2 the case a; = 0 has to be excluded since otherwise 

the integral f v - n^n; dJtf can fail to exist. But if n = 1 the case ai = 0 can 
d(Ani) 

obviously be included since v remains continuous on A. 

(ii) The analytic assumptions in our Divergence Theorem do not completely cover 

the situation of the corresponding theorem for intervals in [Ju-No 2] since we here 

require the singularities lj (Mi U Ni) not to lie on the boundary of A. Anyhow, 
Ot{ < 7 l — 1 

imposing certain regularity conditions on dA which, in particular, are fulfilled by 

intervals, it is possible to include this situation. 
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