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FORCING SEQUENCES OF POSITIVE INTEGERS 

GERSH0N HANOCH and DANIEL HERSHKOWITZ, Haifa 

(Received March 1, 1993) 

1 . INTRODUCTION 

Let c be a nonzero complex number. It is easy to prove that if cn is in the right 
half plane for every positive integer n, then c is a positive number. Hershkowitz 
and Schneider extended this result in [5], by generalizing the domain which contains 
all the powers, and by considering only partial sequence of the set of all positive 
integers as exponents. More specifically, let T be a domain in the complex plane, 
and let 0 ^ a < K. A sequence (Ti, T2, • • •) of positive integers is said to be a (T, a)-

forcing sequence if for every c G T, if cri, i = 1,2,..., are all in a wedge of width 2a 

symmetrically located around the nonnegative real axis, then c is a positive number. 
The paper [5] contains a few sufficient conditions and a few necessary conditions for 
certain sequences to be forcing, however, in general, the problem of characterizing 
forcing sequences is open. 

In this paper we generalize some theorems of [5], and further investigate several 
problems concerning forcing sequences. 

Most of our notation and definitions are given in Section 2. 

Let 0 ^ a ^ K, let n be a positive integer, and let R = (?r , . . . , r n ) be a sequence 
of positive integers. Clearly, the set of all nonzero complex numbers with argument 
in absolute value less than or equal to a/rn is contained in the set of all complex 
numbers c all of whose powers c r i , i = 1, 2 , . . . ,n, have argument in absolute value 
less than or equal to a. As is observed in [5], the study of the equality of these two 
sets is important to finding necessary conditions (under some additional conditions) 
and sufficient conditions for a sequence to be a forcing sequence. In Section 3 we 
prove new necessary and sufficient conditions for that equality to hold. While the 
results in [5] are of geometric flavor, our conditions are algebraic. Our result provides 
an alternative proof to results in [5] as well as some new assertions. 
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In Section 4 we discuss forcing sequences. We prove the infinite version of the 

main result of Section 3 to obtain an algebraic characterization of forcing sequences, 

in the form of existence of solution to a system of diophantine inequalities. We then 

use this result to characterize all geometric forcing sequences. 

In Section 5 we define the concept of Kronecker sequences, and we investigate the 

relations between such sequences and forcing sequences. The main theorem of this 

chapter characterizes the arithmetic forcing sequences, using Kronecker's Theorem. 

In Section 6 we define a minimal forcing sequence as a forcing sequence with no 

forcing subsequence . We show that minimal forcing sequences exist, and discuss the 

question whether every forcing sequence contains a minimal forcing sequence. This 

question is, in general, an open problem. As a possible approach for a further study 

we introduce an algorithm that prunes a forcing sequence without losing the forc­

ing property. Under certain conditions, our algorithm constructs a minimal forcing 

subsequence for a given sequence. 

2 . NOTATION AND DEFINITIONS 

This section contains almost all the notation and definitions used in this paper. 

We follow the notation used in [5]. 

2 .1 N o t a t i o n . The cardinality of a set S is denoted by | 5 | . The set of all 

complex numbers is denoted by C. The set of all real numbers is denoted by U. The 

set of all positive real numbers is denoted by (R+. The set of all rationale is denoted 

by Q. For a positive integer n, the set { 1 , . . . , n} is denoted by (n). 

2.2 C o n v e n t i o n . The argument arg(c) of a nonzero complex number c will be 

assumed to be in the interval [0, 2TT), unless is stated otherwise explicitly 

2.3 Def in i t ion . Let 0 ^ a ^ (3 ^ 2K. We define the closed wedge (excluding 0) 

W[a,0] to be the set {c G C: c ^ 0, a ^ arg(c) ^ /?}. For -n ^ a < 0 <C (5 ^ TI we 

define W[a,/3] to be the set {c G C: c ^ 0, 2 K - a ^ arg(c) or arg(c) ^ f3}. The open 

wedge VV(a,/3) is defined to be the interior of VV[a,/3] in the Euclidean topology. 

2.4 N o t a t i o n . For 0 ^ a ^ TT we denote W[a] = W [ - a , a ] and W(a) = 

W(-a,a). 

2.5 C o n v e n t i o n . When we say "sequence of positive integers" in this paper, we 

always mean "strictly increasing sequence of positive integers". 
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2.6 Nota t ion . Let 0 ^ a ^ 7i and let It = (IT,... , rn) be a sequence of positive 

integers. We denote 

S[R,a,n] = {ceC: cTk G W[a], ke (n)}, 

S(R,a,n) = {ceC: crk e W(a), k e (n)}. 

For an infinite sequence R we denote 

S[I?,a,oo] = { c G C : crk G W[a], k = l , 2 , . . . } , 

5(I?,a,oo) = { c G C : crk G W(a), k = l , 2 , . . . } . 

2.7 Nota t ion . Let 0 ^ a ^ K and let n be a positive integer. We denote 

Qn[a] = {cGC:c"GVV [a ]} , 

Qn(a) = { c G C : c n G l V ( a ) } . 

Let 0 ^ a ^ 7i and let n be a positive integer. As is observed in [5], we have 

{
n r l Ti1j,A2Kk-a 2rikH-ai 

fc-0 

Qn(«)--uV(=^I=*±£). 
k=o ^ n n / 

It is also observed in [5] that for a sequence R = (T i , . . . , rn) of positive integers we 

have 

(2.9) 
5[П,а,п]= П <?-.[<*], 

3(К,а,п)= П д п ( а ) . 
ѓ = l 

2.10 Notation. For a positive integer n and a nonnegative integer k, k ^ 

n - 1, we denote by W*[a] and by W^(a) the wedges ^ [ - ^ = - - - , -^±2-] and 

W ( ^ ^ , - ^ t a ) respectively. 

2.11 Definition. Let 0 ^ a < n, let T C C, and let I? be a (finite or infinite) 

sequence of positive integers. The sequence R is said to be a (T, a)-forcing sequence 

if TflS[I?, a, \R\] C R + . The sequence R is said to be a (T, a)-semiforcing sequence if 

T n S(.R, a, |H |) C R + . Each of the parameters T and a in our definition is optional, 

where the defaults are C and |TC respectively. 
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3. FINITE SEQUENCES 

Let 0 ^ a ^ K, let n be a positive integer, and let R = ( r i , . . . , r n ) be a sequence 

of positive integers. It follows from (2.8) and (2.9) that 

(3.1) W[a/rn]CS[R,a,n]. 

As is observed in [5], the study of the equality case in (3.1) 

(3.2) W[a/rn] = S[R,a,n] 

is important to finding necessary conditions and sufficient conditions for a sequence 

to be a forcing sequence. In this section we prove new necessary and sufficient 

conditions for (3.2) to hold. While the results in [5] are of geometric flavor, our 

conditions are algebraic. Our result provides an alternative proof to results in [5] as 

well as some new assertions. 

3.3 L e m m a . Let 0 ^ a ^ TC, and let k\, k2, r\, r 2 be numbers, r i , r 2 > 0. We 

liave 

/ 0 .v r2nfc i-a 2Ttk i+ai [2nk2 - a 2nk2 + an . _. 
(3.4) , H , ^ 0 

L ri n J L r 2 r 2 J 

if and only if 

a(r i + r 2 ) 
(3.5) | f c i r 2 - * а r i | < 2тc 

P r o o f . (3.4) holds if and only if ^^^ ^ 2*fci±H a n ( j 2*hi=°L ^ 25^+^ w h i c h 
\ / ^ T2 ri r\ ^ r2 

is equivalent to 27i(k2ri - kir2) ^ a(r i + r 2 ) and 2Tt(kir2 - k2ri) ^ a(r i + r 2 ) , which 

together form (3.5). • 

3.6 L e m m a . Let 0 ^ a ^ K, and let k\, k2, r i , r 2 be nonnegative integers 

satisfying ki ^ r$ — 1, i = 1,2. Then the following are equivalent. 

(i) W%[a]nW%[a]?Q. 

(ii) Either (3.5) holds, or 

(3.7) h=0 and r,{r2 - k2) ^ a(Tl+ ^ , 

ZK 

or 

a(r\ + ro) 
(3.8) fc2 = 0 and r2{n - kx) ^ - ^ —. 
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P r o o f . Since 0 ^ ki ^ r{ — 1, i = 1,2, by Notation 2.10, (i) can be written as 

(3.9) W \ 2 K k l - a ^ 1 + a , r 2 K k 2 - a 2 ^ + a i 
L n n J L ro ro J 

We distinguish between three cases: 

(i) Both ki and k2 are positive. Here, since k* ^ r t — 1, i = 1,2, (3.9) is equivalent 

to (3.4), which, by Lemma 3.3, is equivalent to (3.5). 

(ii)ki = 0 . In this case, (3.9) holds if and only if 2TT - ^ ^ **hz±£< or - ^ = S L <: IL, 

which is equivalent to Ti(r2 — k2) ^ a(r i H-r2)/2K or k2*T ^ a(r i +r2)/2n. Thus, in 

this case, (3.9) is equivalent to (3.5) or (3.7). 

(iii) k2 = 0. Similarly to the previous case, in this case (3.9) is equivalent to (3.5) 

or (3.8). • 

We can now state the main result of this section. 

3.10 Theorem. Let 0 ^ a < K, let n be a positive integer, and let R = ( n , . . . , r n ) 

be a sequence of positive integers. The following are equivalent. 

(i)W[a/rn]^S[R,a,n]. 

(ii) There exist nonnegative integers ki,..., kn such that 

f k{ ^ n - 1, i e (n- 1), 

0 < kn ^ rn - 1, 

, Ik^r, - kjn\ -̂  a(r{ + rj)/2v:, i,j e (n), i 7- j . 

(iii) There exist integers k\,..., kn such that 

(3.11) 

j kn 7--O (mod r n ) , 

{ \k{rj - kjn\ < a(n + Гj)/2ҡ, i,j Є (n), i фj. 

P r o o f . (i)=>(ii). Assume that (i) holds. In view of (3.1), let x e S[R,a,n] \ 

W[a/rn]. Since both S[R,a,n] and lV[a/rn] are symmetric with respect to the real 

axis, and since nonnegative numbers belong to both S[R, a, n] and lV[a/r n], we may 

assume, without loss of generality, that 

(3.12) 0 < arg(x) ^ TT. 

By (2.8) and (2.9) we have 

^€nQrJa] = n(rQV*[a]), 
z = l t = l k=0 
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and hence there exist nonnegative integers k\,..., kn, ki ^ n - 1, i G (n), such t h a t 

(3.13) xeWk;[a], ie(n). 

Also, x & W[a/rn] = W?n[a], and thus kn > 0. It follows from (3.13) by Lemma 3.6 

t h a t for all i, j G (n), i / j , we have either 

(3A4) \kirJ-kjri\<:

a(ri+rj), 

or 

(3.15) ki = 0 and r.-fa - k3) ^ a ( r i + r l \ 
2~ 

or 

kj = 0 and ГJ(ГІ — ki) ^ 
a ( r ť + Гj) 

2K 

Assume t h a t (3.14) does not hold for some i and j , and without loss of generality 

assume t h a t (3.15) holds. Since (3.14) does not hold, we have 

(3.16) kjП > 
a(rj +rj) 

2-

It follows from (3.15) and (3.16) t h a t k3ri > ri(r3-k3), implying that k3 > \r3. Since 

both kj and r3 are integers, it now follows that k3 ^ \(r3 + 1). Since x G Wr- [a], it 

now follows by Notat ion 2.10 t h a t 

, , 2nki — a 2K ^ a - — a 
arg(x) ^ - ^ -* = TC + > TI, 

r3 r3 r3 

in contradiction to (3.12). Therefore, our assumption that (3.14) does not hold for 

some i and j is false, and so (ii) holds. 

( i i )=>(i i i ) is trivial. 

(iii)--=-z->(i). Assume t h a t (iii) holds. By Lemma 3.3 we have 

[ 2ҡki — a 2ҡki + a "i [ 2ҡkj — a 2ҡk3 + a i 

L ГІ ' П J - Гj Гj J 
фђ, i,j Є (n), i фj. 

By Helly's Theorem [3], the intersection f| [2Kk;~a, 2Kk;+a] is non-empty, and so 
i=l 

there exists c G f| W*! ( m o d r t ) [ a ] C f) Qrt[a] = S[R,a,n}. Since WsJa] n 
i = l i = l 

J V ^ a ] = 0 whenever 0 ^ s, t < rn, s ^ t, and since kn ^ 0 (mod r n ) , it now 

follows t h a t c $ VVr°n[a] = VV[a/rn], and so (i) holds. D 
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In the open wedge case we obtain the following theorem. The proof is essentially 

the same and thus omitted. 

3.17 Theorem. LetO ^ a < TI, letn be a positive integer, and let R = ( n , . . . ,rn) 
be a sequence of positive integers. The following are equivalent. 

(i)W(a/rn)^S(R,a,n). 
(ii) There exist nonnegative integers k\,..., kn such that 

f ki ^ rz- - 1, i e (n - 1), 

0 < kn ^ rn - 1, 

, \kirj - kjn\ < a(r{ + rj)/2n, i,j € (n), i ?- j . 

(iii) There exist integers k\,... ,kn such that 

(3.18) f * » * 0 ( m o d r n ) . 
[ \kirj - kjn\ < a(n + rj)/2n, ^,j G (n), z ^ j . 

Theorems 3.10 and 3.17 provide an algebraic characterization, that is the existence 
of solution to a system (3.11) of diophantine inequalities, to the geometric property 
VV[a/rn] 7-- S[R,a,n]. The following theorem provides a sufficient conditions for the 
existence of a solution to inequalities of the type (3.11). 

3.19 Theorem. Let 0 -̂  a < K, let n be a positive integer, and letR= (r\,..., rn) 
be a sequence of positive integers. If 

(3-20) n^(r. + rn)^rr2, 
1 = 1 

then there exist integers k\,..., kn such that 

f 0 ^ ki ^ n, ie (n- 1), 

< 0<kn<rn, 

, \k{rn - knr{\ ^ a(n + rn)/2n, i € (n - 1). 

P r o o f . Define the homogeneous linear forms & = rnrrt- - nxn, i e (n — 1), and 
£n = xn. Observe that the determinant of the coefficients matrix A is the positive 
integer rJJ -1. Define the positive numbers At- = a(ri + rn)/2n + e, i € (n - 1), where 
e > 0, and choose e sufficiently small such that 

(3.21) [Xi] = [a(n + rn)/2n], i£(n-l), 
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where [a] is the largest integer that is less than or equal to a. We now define 

An = rn — 5, where 5 > 0. If (3.20) holds then it follows that for 6 sufficiently small 
n 

we have U X{ ^ r^'1 = det(A). By Minkowski's Theorem [2, Theorem 448, p. 395] 
t = i 

there exist integers fci,..., fcn, not all zero, for which 

(3.22) f l * n K A n < r n , 
( |fc;rn - fcnrz-| ^ A,, i G (n - 1). 

Since fc,rn — fcnr* is integer, it follows from (3.21) and (3.22) that 

(3.23) { '*"' < r " ' 
[ |fcirn - fcnr;| ^ a(r{ + rn)/27t, i G (n - 1). 

Note that if fci,..., fcn solve (3.23) then - fc i , . . . , -fcn solve (3.23). Therefore, with­

out loss of generality we may assume that fcn ^ 0. If fcn = 0 then it follows from 

(3.23) that 

a(ri_+_rn) 
2ҡ 

\ki\rn ^ \^ < \(ri + rn) < | ( r n + rn) = r n , i G (n - 1), 

implying that fc, = 0, i G (n - 1). But this contradicts the fact that not all the fc.'s 

are zero. Therefore, we have 

(3.24) 0 < fcn < r n . 

Assume now that for some i G (n — 1) we have fcz- < 0. Then, in view of fcn > 0, we 
have 

l / \ airi H" r n ) 
^ r n — Knri < Kirn ^ — r n =- —-^vn + rn) < - , 

in contradiction to (3.23). Therefore, we have fcj ^ 0, i E (n—1). Now, let k[ = r; — fc;, 

i G (n). Observe that k[rn — fcnr, = fcnr, - fczrn, and hence fci,...,fcn solve the 

inequalities 

(3.25) fe-fc>.Ka(ri

2+
rn), t € < n - l > . 

By (3.24) we have 0 < fcn < rn . Assume that for some i G (n - 1) we have fc- < 0. 

As before, we have 

K^rn — A;nri < rZ^rn < —rn = — 2^n ~*~ rn) "^ 7* -> 

in contradiction to (3.25). Therefore, we have fc- ̂  0, i G (n - 1), and so 0 ^ fc, ^ r,, 

i E ( n - 1). Since we have (3.23) and (3.24), our proof is now completed. D 
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n - 1 

3.26 Remark, (i) Since n < rn, i e (n - 1), we have ~\ ^ ^ < r^"1 . Thus, 
i= i 

if (3.20) holds then r n > ( £ ) n _ 1 . 

(ii) Since \\ ^ ( r * +rn) > {f^rn)n~ , it follows that if ( ^ ) n ~ rn ^ 1, or, equiv-
i = i 

alently, if r n ^ ( ^ ) n ~ \ then (3.20) holds. 
(iii) Note that by Theorem 3.19, condition (3.2) provides a sufficient condition for 

(3.18) to hold for i G (n) and j = n. 

Similarly to Theorem 3.19, we obtain the following sufficient condition for the 
existence of a solution to inequalities of the type (3.18). 

3.27 Theorem. LetO ^ a ^ TC, letn be a positive integer, and let R = ( n , . . . , r n ) 

be a sequence of positive integers. If 

n^(ri+rn)>rr2, 
i=l 

then there exist integers k\,..., kn such that 

0 ^ ki ^ r», i e (n- 1), 

U < rCn < rn, 

\hrn - knri\ < a(r{ + rn)/2n, i G (n - 1). 

In [5], the cases S[R, a, 1] = W[a/r\] and S(R, a, 1) = W(a/r\) are characterized. 
We conclude this section by using our results to obtain a simple characterization for 
the cases 5[H ,a,2] = W[a/r2\ and 5(i?,a,2) = W(a/r2). 

3.28 Proposition. Let 0 ^ a < K, and let R = (r\,r2) be a sequence of positive 

integers. We have S[R, a, 2] ?- W[a/r2] if and only if either r\-\-r2 ^ 2rc/a or r\ and 

r2 are not co-prime. 

P r o o f . If n and r2 are not co-prime then let d be their greatest common divisor. 
Choose ki = r{/d ^ n - 1, i = 1,2. We have 0 = |k ir2 - k2n| ^ a(ri + r2)/2n, 
and since 0 < ki ^ rt— 1, i = 1,2, it follows by Theorem 3.10 that S[R,a,2\ ^ 
VV[a/r2]. If ri + r2 ^ 27i/a then, by Theorem 3.19, there exist integers ki and 
k2, 0 ^ ki ^ n , 0 < k2 < r2, such that |k ir2 - k2n| < a(r\ + r2)/2n, and 
by Theorem 3.10 we have 5[.R,a,2] ?- W[a/r2\. Conversely, if 5[47,a,2] ^ W[a/r2\ 
then, by Theorem 3.10, there exist integers ki and k2, 0 ^ ki ^ ri — 1, 0 < k2 ^ r 2 - l , 
such that |k ir2 — k2n| ^ a(r i +r2)/27i. If n and r2 are co-prime then r\/r2 ^ ki/k2 

and hence |k ir2 - k 2 n | ^ 1. It now follows that a(r\ +r2)/2n ^ 1, which is equivalent 
to ri + r2 ^ 27i/a. D 
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For open wedges we similarly obtain 

3.29 Proposition. Let 0 ^ a < K, and let R = (n , r2) be a sequence of positive 
integers. We have S(H ,a,2) 7-= JV(a/r2) if and only if either n + r<i > 2n/a or r\ 
and r2 are not co-prime. 

We remark that the results of this section provide an alternative proof to results 
in [5]. For details see [1]. 

4. FORCING SEQUENCES 

The following theorem is the infinite version of Theorem 3.10. It provides an 
algebraic characterization of forcing sequences, in the form of existence of solution 
to a system of diophantine inequalities. 

4.1 Theorem. Let 0 ^ a < it, and let R = ( r i , r2, . . . ) be a sequence of positive 

integers. The following are equivalent. 

(i) R is not a-forcing. 

(ii) There exists a sequence (fci, £2? • • •) of integers such that 

(4.2) 

' 0 O i < r i - l , t = l , 2 , . . . , 

0 < fcn for some positive integer n, 

. \k{rj - fcjTil ^ a(r{ + ri)/2ic, ij G (n), i ^ j . 

(iii) There exists a sequence (fci, fc2, • • •) of integers such that 

{ fcn 7- 0 (mod rn) for some positive integer n, 

\ktrj - kjr{\ ^ a(r{ + rj)/2K, i,j e (n), i^ j . 

P r o o f . (i)=>(h). Assume that R is not a-forcing. Then there exists x G 
S[Ry a, 00] \ R+. Without loss of generality we may assume that 0 < arg(x) ^ K. 
Since x G S[R,a, 00], we have 

OO OO r ; — 1 

xeC]Qri[a] = f]^[jWr
k

t[a]). 
i = l i = l /c=0 

Hence, there exist nonnegative integers fci, fc2,..., fc{ ^ r» — 1, z = 1,2,..., such that 
00 

x G W%[a], f = 1, 2 , . . . . Since fl Wr{[
a} = R+> a n d s i n c e x & R+> [t follows that 

i=i 
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0 < kn for some positive integer n. The rest of the proof of this implication follows 

as the proof of the implication (i)=>(ii) in Theorem 3.10. 

(ii)==>(iii) is trivial. 

(iii)=->(i). Let (hi) hold. As in the proof of the corresponding implication in 

Theorem 3.10, we prove that f) W% ( m o d ri)[a] # 0. Since Q W% ( m o d ri)[a] C 
i=i i=i 

0 Qrx[a) = S[H,a,oo], it follows that VV*n
n {modrn)[a] D S[I?,a,oo] ^ 0. Since 

i=i 
W*r[a] n JVr

£
n[a] = 0 whenever 0 ^ s, t < rn, s ^ t, and since kn / 0 (mod rn), 

it now follows that S[H,a,oo] £ W°n[a]. Since R+ C W°n[a], we thus obtain that 

S[R,a, oo] ^ IR+, and so It is not a-forcing. D 

We now use Theorem 4.1 to characterize those geometric sequences that are a-

forcing. Our result generalizes Corollary 3.15 in [5]. 

4.3 Theorem. Let R be the sequence defined by 

[rm =a0p
m 2, m = 2 , 3 , . . . , 

where a0 and p are positive integers, p > 1, and let 0 ^ a < K. Then the following 

are equivalent. 

(i) It is a-forcing. 

(ii) W e h a v e a < m i n { - ^ , ^ } . 

P r o o f . (i)=^(ii). Assume that (ii) does not hold. Let us first assume that 

(4.4) a> 2K p + ľ 

and let c = eao(?'+1). Since p m = ± 1 (mod p + 1) for every positive integer m, it 
follows that for m ^ 2 we have c r 'n = e±:^, and by (4.4) we have cr"1 G VV[a], m ^ 2. 
Also, c r i G TV[ao(

2
p

TC
+l)] C W[^] C VV[a]. Thus, we have c G S[H,a,oo] \ R+, and 

so It is not a-forcing. Assume now that (4.4) does not hold. Then 

(4.5) a 2 = . 
a0 

Here we choose c = e°o~. By (4.5), c r i G W[a]. For m ^ 2, since Oo divides r m we 
have c r"' = 1 G VV[a]. Thus again, we have c G S[H,a,oo] \ R+, and so H is not 
a-forcing. 

159 



(ii) =>(i). Assume that (i) does not hold. By Theorem 4A there exists a sequence 
(k\,k2,...) of integers such that (4.2) holds. For i ^ 2 we have 

Ifcrt+i - ki+xnl = a0p
l~2\kip - ki+i\ ^ — a0p

l~2(p + 1) = — (n + r i + i ) , 

implying that \k{p - fc{+i| ^ ^(p + 1). By (ii) we now obtain |k;p - ki+1| < 1 and 
hence kip = k;+i, or, equivalently, 

(4.6) ki = k2p
1-2, i = 2 , 3 , . . . . 

Since 0 ^ ki ^ ri — 1 = 0 we have ki = 0, and hence kn > 0 implies n ^ 2. It 
now follows from (4.6) that k2 > 0. By applying (4.2) to 1 and i, i ^ 2, we obtain 
\kiri-kin\ = ki = k2p

{~2 ^ a ( a 0 p i ~ 2 + 1)/2TI. Hence, 1 ^ k{ ^ a (a 0 +p 2 - i ) /2n . We 
let i approach co and get 1 ^ aa0/2~, or, equivalently, a ^ 2n/a0, in contradiction 
to (ii). • 

In the semiforcing case we obtain the following, using essentially the same proofs. 

4.7 Theorem. Let 0 ^ a ^ TC, and let R = (r\,r2,...) be a sequence of positive 
integers. The following are equivalent. 

(i) R is not a-semiforcing. 

(ii) There exists a sequence (k\, k2,...) of integers such that 

O^ki ^ r { - l , i = l , 2 , . . . , 

0 < kn for some positive integer n, 

\kiTj - kjTi\ < a(n + rj)/2~, i,j e (n), i ?- j . 

(hi) There exists a sequence (k\,k2,...) of integers such that 

( kn 7-- 0 (mod rn) for some positive integer n, 

\kiTj - kjn\ < a(r{ + rj)/2u, i,j e (n), %± j . 

The algebraic characterization of geometric semiforcing sequences is 

4.8 Theorem. Let R be the sequence defined by 

ri = l, 

rm = a0pm 2, m = 2 , 3 , . . . , 

where a0 and p are positive integers, p > 1, and let 0 ^ a < -. Then the following 

are equivalent. 
(i) R is a-semiforcing. 
(ii) Wehavea^min{-2=-.2s}. 
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5 . KRONECKER SEQUENCES AND ARITHMETIC FORCING SEQUENCES 

In this section we define Kronecker sequences, and discuss their relations with 
forcing sequences. We apply these relations to characterize arithmetic sequences 
that are forcing. 

5.1 Notation. Let x be a nonnegative number and let t / b e a positive number. 
We denote x (mod y) = x — y[x/y], where [x/y] is the largest integer that is less 
than or equal to x/y. Observe that 0 ^ x (mod y) < y. 

5.2 Definition. The sequence R = (r\,r2,...) is said to be a Kronecker se­
quence if for every irrational number 6 the sequence (r{6 (mod l ) ) i = 1 is dense in the 
interval [0,1]. 

In 1884 Kronecker proved the following theorem, e.g. [2, Theorem 439, p. 376]. 

5.3 Theorem. The natural numbers form a Kronecker sequence. 

The following proposition states a relation between Kronecker sequences and forc­
ing sequences. 

5.4 Proposition. Let T = {c <E C: a-^M £ Q}} let R = (n,r2,...) be a Kro­

necker sequence, and let 0 ^ a < it. Then R is (T, a)-forcing. 

P r o o f . Let c e T and let 8 = a r ^ c ' . Since 6 is irrational, it follows that for 
some positive integer i we have \r{9 (mod 1) - 0.5| < - ^ . The latter implies that 
IT; arg(c) (mod 2rc) — rc| < TC — a. Thus, a < arg(c^) < 2TX - a, and so cTi £ W[a\. 
Therefore, we have c £ S[R, a, oo], implying that S[H, a, oo] n T = 0 C R+ , proving 
that R is (T, a)-forcing. • 

It is natural to ask whether the converse holds, that is: Does there exist an a, 

0 ^ a < 7i, such that every (T, a)-forcing sequence is a Kronecker sequence? The 
answer to this question is negative for a < 2n/3. It follows from the following 
theorem, proven in [6]. 

5.5 Theorem. If there exists a G R, a > 1, such that qn = --̂ ±-- ^ a, n = 1, 2 , . . . , 
then there exists £ G R \ Q such that 

, љ . , . 
(5.6) (3 ^ rn£ (mod 1) ^ 1 - (5, n = l,2 

for some (3 > 0. 

Condition (5.6) implies that the sequence (r*f (mod l ) ) ^ x is not dense in the 
interval [0,1], and hence we have 
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5.7 C o r o l l a r y . If there exists a G R, a > 1, such that qn = ^---- ^ a, 77 = 1,2, 

then the sequence H = (T i ,T2,. . .) is not a Kronecker sequence. 

5.8 Corol lary. For every a, 0 ^ a < 2TT/3 there exists a (T,a)-forcing sequence 

which is not a Kronecker sequence. 

P r o o f . By Theorem 4.3, with a0 = 1, p = 2, the sequence R = (2n~1)n
<L1 is 

a-forcing, and so clearly it is (T, a)-forcing. Since qn = 2, n = 1 ,2 , . . . , it follows 

from Corollary 5.7 tha t It is not a Kronecker sequence. • 

We remark tha t the question whether there exist an a, 2 K / 3 ^ a < TI, such tha t 

every (F, a)-forcing sequence is a Kronecker sequence, is still open . 

The rest of this section is devoted to characterizing arithmetic forcing sequences. 

5.9 P r o p o s i t i o n . Let m be a positive integer, m ^ 2, and let Fm be the set 

/e2Ki/c/m : 1 ^ k ^ m 5 (k,m) = 1} of the primitive mth roots of the unity. Let R be 

the arithmetic sequence (To + (71 — l)q) , , where (ro,q) = 1, let d = (q, m), and let 

0 ^ a < TI. Then R is (Tm, a)-forcing if and only if 

(5.10) a < < 

(1 - £)*. d = 1, m is odd, 

(1 - * * ) * . d > 1, m/d is odd, 

( 1 - d is odd, m is even, 

( 1 - m / ' d = 2, m/d is even, 

( 1 - < - - 4 \ _ d = 2 (mod 4), d > 2, m/d is even, 

(1 - < - - 2 \ _ 

— ) ï ï ' 
d = 0 (mod 4), m/d is even. 

P r o o f . By definition, It is (Fm, a)-forcing if and only if for every k, 1 ^ k ^ m, 

satisfying (k,m) = 1 there exists a nonnegative integer n such tha t (e
2Kl /c/m) r»+n(? £ 

VV[a]. The lat ter holds if and only if 

(5.И) 
а { 

7тг— < [fc(rn + nq)] (mod m) < m í 1 - V 
Let d = (q, m). Since kng is divisible by d, [k(ro + nq)] (mod m) can get one of the 

77i/d values: 

777 

(5.12) (krгj + jd) (mod m), 3 = 0, • • •, 1. 

We now show t h a t all the values in (5.12) are indeed attained as 71 goes from 0 to 

m/d — 1. Let 

(5.13) 

1G2 

m 
0 ^ 14,112 ^ — - 1, 



and assume that [k(r0 + n\q)] (mod m) = [k(r0 + n2q)] (mod m). Then k(n\ — 
n2)q is divisible by m, and hence k(n\ — n2)q/d is divisible by m/d. Observe that 
(m/d,q/d) = 1. Also, since m and k are co-prime it follows that (m/d,k) = 1. 
Therefore, n\ — 722 is divisible by m/d. In view of (5.13) this is possible if and only 
if n\ = 722. Thus, as n goes from 0 to m/d — 1, [k(r0 + nq)] (mod m) attains m/d 
distinct values, which are necessarily the values in (5.12). Since R is (Tm, a)-forcing 
if and only if for every k, 1 ^ k ^ m, satisfying (k, m) = 1 there exists a nonnegative 
integer n such that (5.11) holds, it now follows that R is (Tm, a)-forcing if and only 
if for every k, 1 ^ k ^ m, satisfying (k,m) = 1, we have 

(5.14) m— < (Ax0 4- jd) (mod m) < m ( l - —-), for some j , 0 ^ j ^ — - 1. 
2K V 2K/ a 

Observe that 

(ATO + jd) (mod m) = (fcro) (mod d) + j'd 

whenever j ' = [(fcro+idMmod ™>] or, equivalent^, 

^(/^[ ( fcr° ) (7dm)])(modmM. 

Therefore, (5.14) holds if and only if 

a / Q \ 

(5.15) m— < (Ar0) (mod d) + jd < ml 1 — — ), for some j , 0 ^ j ^ m/d— 1. 
2K \ 2K/ 

We now show that (Axo) (mod d) attains all the values /, 1 ^ / ^ d, satisfying 
(/, d) = 1, as k goes through all the values between 1 and m that are co-prime with 
m. Let k be such a number. Since d divides m, it follows that (d, A;) = 1. It is given 
that (r0,g) = 1, and hence, since d divides g, we have (r0,d) = 1. Thus (Ar0,d) = 1, 
and hence (Axo) (mod d) is co-prime with d. Now let / be any integer /, 1 -̂  / -̂  d, 
such that (/,d) = 1. Since (ro,d) = 1 there exists an integer k, 1 ^ k ^ d, such that 

(5.16) Ar0 (mod d) = /. 

Since (k,d) = 1, it follows by Dirichlet's Theorem on primes in arithmetic progres­
sions (e.g. [2, Theorem 15, p. 13]) that there exists a prime number of the form k+jd. 
We thus have 

(5.17) ((A; + jd) (mod m),m) = 1 . 

Let k! = (k + jd) (mod m). Since d divides m, we have k' (mod d) = k. Thus, by 
(5.16) we have k'r0 (mod d) = /. In view of (5.17), we have just proven that (A;r0) 
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(mod d) attains all the values /, 1 ^ / ^ d, satisfying (/,d) = 1, as k goes through all 
the values between 1 and m that are co-prime with m. Therefore, (5.15) holds for 
every k, 1 ^ k ^ m, satisfying (k,m) = 1, if and only if for every 1 ^ / ^ d, such 
that (/,d) = 1, there exists j , 0 ^ j ^ m/d— 1, such that m ^ < / + jd < m( l - ^). 
Note that y is the midpoint of the interval I = ( m ^ , m ( l - ^ ) ) . Denote by L the 
length m( l — ^) of I. We distinguish between the various cases: 

(i) d = 1, m is even. Since d = 1, all we require is that I contain an integral point. 
The midpoint y is such a point. 

(ii) d = 1, m is odd. Here I contains an integral point if and only if L > 1, which 
is equivalent t o a < ( l — ^-)TI. 

(iii) d = 2,3,4, m/d is even. Since m/d is even, we have m/2 = 0 (mod d). The 
only positive integers between 1 and d that are co-prime with d are 1 and d — 1. 
Therefore, our condition is satisfied if and only if I contains the points y - 1 and 
y + 1. This happens if L > 2, which is equivalent to a < (l - -^)K. 

(iv) d is odd, d > 5, m/d is even. Since (^y^,d) = 1, I must contain the points 
y ± ^=-k This would be enough, because in this case I would contain d consecutive 
integral points, and hence all the values mod d. So, our condition is satisfied if and 
only if L > 2-y--, which is equivalent to a < (l - ^^)TT:. 

(v) d = 0 (mod 4), d > 5, m/d is even. Since 2 divides | , it follows that | ±1 is not 
divisible by 2. Thus, ( | ± 1, d) is not divisible by 2, and it follows that ( | ± 1, d) = 1. 
Hence, I must contain the points y ± (^ — l ) . This would be enough, because in this 
case I would contain d — 1 consecutive integral points, and hence all the values mod 
d that are co-prime with d. So, our condition is satisfied if and only i f L > 2 ( | — l ) , 
which is equivalent to a < (l — ^p)rc. 

(vi) d = 2 (mod 4), d > 5, m/d is even. Let e = (f + 2,d) or e = (f - 2,d). It 
follows that e divides 4. Since | is odd, it follows that e is odd, and so ( | ±2 , d) = 1. 
Hence, I must contain the points y ± ( | — 2). To see that this is enough, observe 
that the interval ( y — ( | — l ) , y + (f — l)) contains d — 1 consecutive integral 
points and hence all values mod d that are co-prime with d. Since y — 1 is even, we 
have ( | - l,d) ^ 2, and hence the interval ( f - (f - 2), f + (f - 2)) contains all 
the values mod d that are co-prime with d. We now have L > 2 ( | — 2), which is 
equivalent to a < (l — ^^ )TC. 

(vii) d > 1, m/d is odd. Here y = | (mod d). Here, I must contain the points 
y ± ( | — l ) , which are equal to ±1 (mod d). This would be enough, because in this 
case I would contain d — 1 consecutive integral points, and hence all the values mod 
d that are co-prime with d. So, our condition is satisfied if and only if L > 2 ( | — l ) , 
which is equivalent to a < (l — ^p)rc. 

The proof of Proposition 5.9 is now completed. • 
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5.18 Lemma. Let ro and q be positive integers. The arithmetic sequence R = 

(rn = ro + (n — l)q) ± is a Kronecker sequence. 

P r o o f . Let 6 G R \ Q. Then qO G R \ Q. By Theorem 5.3, the sequence (nq0 

(mod 1))<^=1 is dense in the interval [0,1]. Clearly, this implies that the sequence 

((ro0-0 + nq0) (mod 1 ) ) ^ = ([ro + (n — l)q]9 (mod 1 ) ) ^ is dense in the interval 

[0,1], proving our assertion. • 

Using the above results, we can now prove the characterization of arithmetic forc­

ing sequences. 

5.19 Theorem. Let r 0 and q be positive integers, let R be the arithmetic sequence 

(rn = ro + (n — l)q)n

G_1, and let 0 ^ a < K. Then the following are equivalent. 

(i) R is a-forcing. 

(ii) (r0,q) = 1, and 

(5.20) a < { 

2тç 
3 ' 

тс 
2 ' 

2тţ 
q ' 

9 = 1 , 
q = 2, 

O З . 

P r o o f , (i) ==>(ii). Let d = (ro,q), and let c = e~^. Since d divides r n , we have 

c r" = 1, n ^ 1. Therefore, c G S[R,a,oo]. Since R is a-forcing, c G R+, implying 

that d = 1. If q = 1 then let c = e^ 1 . Since c n G J V [ x L n ^ *> a n ( l s m c e ^ *s 

a-forcing, it follows that we must have a < -|-. If g = 2 then, since (r0,<l) = 1, 

the integer ro is odd, and hence r n is odd for all n ^ 1. Therefore, for c = e ? we 

have c n G VV[|], n ^ 1. Since R is a-forcing, it follows that we must have a < | . 

Finally, assume that q ^ 3. Let m = q, and let d = (a, m) = g. Since by (i) R is also 

(Tm,a)-forcing, it follows by Proposition 5.9 that a < (l - ^ ) K = —. 

(ii)=>(i). Let m be a positive integer, m ^ 2, and let d = (q,m). We distinguish 

between several cases. 

(i) q = 1. Here d = 1. By (5.20) we have 

m is even, 

m is odd, 

and by Proposition 5.9 R is (T m , a)-forcing. 

(ii) q = 2, m is even. Here d = 2. By (5.20) we have 

TC, m/2 is odd, 
zn-^7i, m/2 is even, 
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and by Proposition 5.9 R is (Tm,a)-forcing. 
f l l Tiro n a i r a yv ^ _ . 

2 ^ 3 
(iii) g = 2, m is odd. Here d = 1. By (5.20) we have a < § < -£ ^ -=-K, and by 

Proposition 5.9 R is (Tm, a)-forcing. 
(iv) q = 3, m is divisible by 3. Here d = 3. By (5.20) we have 

2* ^ , a < y < < 

m — 1 
ÏÏ, m/3 is odd, 

m 

m - 2 

m 
m/3 is even, 

and by Proposition 5.9 R is (Tm, a)-forcing. 
(v) q = 3, m is not divisible by 3. Here d = 1. By (5.20) we have 

( IT, m is even, 
2TC I 
<* K, m is odd, 

V> m 

and by Proposition 5.9 R is (Tm,a)-forcing. 

(vi) <? ^ 4, m = g. Here d = q. By (5.20) we have a < ^ = (l - ^ ) K , and by 
Proposition 5.9 I2 is (Tm,a)-forcing. 

(vii) q ^ 4, m 7-= <?, d = 1. By (5.20) we have 

~ f K, m is even, 
2K 2K 

a < — < — ^ m - 1 . 
<7 o K, m is odd, 

V m 

and by Proposition 5.9 R is (Tm,a)-forcing. 
(viii) q ^ 4, m 7- <L d ?-= 1,2. Since m ^ q, we have d ^ m/2. By (5.20) we now 

o b t a i n a < f < _ ! < ( ! - ^ ) K ^ ( 1 - ^ ) K < ( 1 - ^ ) * < (l - - = - > , and 
by Proposition 5.9 H is (Tm, a)-forcing. 

(ix) q ^ 4, m 7-: q, d = 2. By (5.20) we have 

m/2 is odd, 

K, m/2 is even, 

and by Proposition 5.9 R is (Tm,a)-forcing. 
We have completed proving that R is (Tm,a)-forcing for every m, m ^ 2. Hence, 

R is (CQ , a)-forcing, where CQ = {c € C: ^-fj^ G Q}. By Lemma 5.18, H is a Kro-
necker sequence, and so by Proposition 5.4 R is also (C \ CQ , a)-forcing. Therefore, 
R is an a-forcing sequence. • 
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6. MINIMAL FORCING SEQUENCES 

6.1 Definition. A (T, a)-forcing sequence R is said to be a minimal (T,a)-
forcing sequence if every proper subsequence of R is not (T, a)-forcing. 

Minimal forcing sequences do exist, as follows from the following proposition. 

6.2 Proposition. Let q be a positive integer, q ^ 2. The sequence (qn~1)n
<L1 is 

a minimal a-forcing sequence for all a, % ^ a < -qp--. 

P r o o f . Since a < -^- , it follows by Theorem 4.3 that R is a-forcing. To see 

that R is a minimal a-forcing sequence let c = e ^ , where m is a positive integer. If 

n < m then m — n + 1 ^ 2, and since - J ^ a w e have crn = e^m - n + 1 £ VV[a]. If n = m 

then, since a < -q^-, we have cTn = e ~ ^ IV[a]. If n > m then cTn = 1 £ VV[a]. 

Thus, rm is the only element rn of It for which cTn 0 VV[a], and so r m must belong 

to every forcing subsequence of It. D 

As is observed in Remark 3.2.in in [5], there exists no a-forcing sequence for 
a ^ j . As a corollary to Proposition 6.2 we obtain 

6.3 Corollary. There exists a minimal a-forcing sequence whenever 0 < a < ^-. 

P r o o f . Let q be the smallest integer that is greater than or equal to -^ — 2. 
Then 

in ^ 2 K 2lz 

(6.4) —— <C a < q+2 q + l 

Since a < -|-, we have g > 1, and so q ^ 2, implying that <?2 ^ <? + 2. It now follows 
from (6.4) that | f ^ a < ^ - , and by Proposition 6.2 the sequence O f 1 - 1 ) ^ is a 
minimal a-forcing sequence. D 

Corollary 6.3 raises the following natural question. 

6.5 Question. Does every a-forcing sequence have a minimal a-forcing subse­
quence? 

Question 6.5 is still an open problem. As a possible approach for a further study 
we now introduce an algorithm that prunes a forcing sequence without losing the 
forcing property. We remark that our algorithm does not suggest a computational 
method for constructing minimal forcing sequences, but it implies a positive answer to 
Question 6.5 under certain conditions. We restrict our discussion to (CQ , a)-forcing 
sequences, where CQ = {c £ C: ^^- £ Q}. 
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6.6 Algorithm. Let 0 < a < n, and let R = (rn)™=1 be a (CQ , a)-forcing 
sequence. Let ( c m ) ^ = 1 be an ordering of the primitive roots of the unity that are 
not equal to one. We construct a sequence {Rk}k

xLQ of (CQ,a)-forcing sequences, 
satisfying R = R° D Rl D .... 

Initialization: We let R° be the sequence R. 
Step k, k = 1,2,.. .: 

Step fe.l: Since Rk~x is (CQ,a)-forcing, the set S = {r e R1"'1: c[ £ W[a]} 1S 

non-empty. We let 

rf = 
r,reS\{rk}, i f S \ { r f c } # 0 , 

.rit, i fS \{ r f c } = 0. 

Step k.j, j = 2 , 3 , . . . : Obviously, the set T = { Q : C]* G W[a], i = l,...,j - 1} 
contains the number e^ for m sufficiently large, and thus is non-empty. Let t = 

min{/: Q G T}. Since Rk~x is (CQ,a)-forcing, the set S = {r G Rk~x: c\ £ W[a]} 

is non-empty. We let 

r k = ( r , r G 5 \ { r , } , i f 5 \ { r f c } ^ 0 , 
Vj \rk, i f .S\{r*} = 0. 

Conclusion of step k: We order Rk in an increasing order. By our definition, for 

every j there exists i G (j) such that cr-{ £ W[a], and hence Rk is (CQ , a)-forcing. 

Also, we have Rk C Rk~l. 

In order to show that in certain cases Algorithm 6.6 produces a minimal forcing 

sequence, we define 

6.7 Definition. An element r of a (T,a)-forcing sequence is called (R,T,a)-

minimal if R \ {r} is not (T, a)-forcing. 

6.8 Proposition. For every positive integer k, the elements of Rk n { n , . . . , rk} 

are (Rk,Cq,a)-minimal. 

P r o o f . Assume that rz- G Rk for some i G (k). Since Rk C Rl, we have ri e Rl. 

By the construction in Algorithm 6.6, r̂  G R1 if and only if there exists a root c 

of the unity such that rt- is the only element of Rl~x for which cr% $ W[a]. Since 

Rk C H{_1, it follows that rt- is the only element of Rk for which cr% £ W[a\. Thus, 

ri is (Rk,Cq,a)-minimal. • 

oo 

6.9 Corollary. If R°° = f] Rk is a (CQ,a)-forcing sequence then R°° is a mini-
k=0 

mal (CQ , a)-forcing sequence. 
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Finally, we now show that for every (CQ , a)-forcing sequence It, there exists a 

subset C of C such that It!00 is a minimal (C,a)-forcing sequence. 

6.10 Notation. Let R be a (CQ , a)-forcing sequence, and let c G CQ \ R+. Then 

the set S = {r/ G R: c r i £ TV [a]} is non-empty. We denote 

( max{/: r/ G S}, if S is finite, 

oo, if 5 is infinite. 

6.11 Proposition. Let R be a (CQ, a)-forcing sequence. If for some c G CQ we 

have imax (c) < oo then there exists r G R°° for which cr £ W[a]. 

P r o o f . Let i = tmax(c). By Algorithm 6.6 and Proposition 6.S, for every 

I ^ k we have Rl D { n , . . . ,rk} — Rk D { n , . . . , n } . Therefore, if there exists 
oo 

r G I?1-1 fl { n , . . . , n _ i } for which cr g W[a] then we have r e f] Rk and we are 
k=0 

done. Otherwise, since Itz-1 is a (CQ , a)-forcing sequence, there exists r G I?1-1 \ 

{ n , . . . , n _ i } for which cr £ VV[a]. Since imax(c) = i, it follows by Notation 6.10 

that r t is the only element of Rl~l for which cTi 0 W[a], By Algorithm 6.6 we have 
CO 

Ti G R{ n { r i , . . . , n } , and hence n e f) Rk. • 

Let C be the set {cG CQ : imax (c) < oo}. We now obtain 

6.12 Corollary. Let R be a (CQ,a)-forcing sequence. Then R°° is a minimal 

( C , a)-forcing sequence. 
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