Czechoslovak Mathematical Journal

Pavol Marusiak
On unbounded nonoscillatory solutions of systems of neutral differential equations

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 1, 117-128

Persistent URL: http://dml.cz/dmlcz/128317

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/128317
http://dml.cz

Czechoslovak Mathematical Journal, 42 (117) 1992, Praha

ON UNBOUNDED NONOSCILLATORY SOLUTIONS OF SYSTEMS
OF NEUTRAL DIFFERENTIAL EQUATIONS

PAvoL MARUSIAK, Zilina

(Received March 16, 1991)

>
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1. INTRODUCTION
In this paper we consider systems of neutral differential equations of the form

n N
(1r) :7 [21(2) + (=1) @@z (hi())] = Y pij (D) fij (25 (9:5(1))),
j=1
i=1,...,.N, N>2, n>2 re{0,1}.
subject to the hypotheses

(2) ai;: [to,OO) - [O)ﬂi], to 2 0! 0< ﬂi < 1)
hi, pij, gij: [to,00) > Rand fij: R— R, 1<i,j<N

are continuous functions;

(3) hi(t) <t fort > to, tl_xg}) hi(t) = oo, :1.1.123 gij(t) = oo,
1<4,5<N;

(4) fij(u)u > 0 for u # 0 and f;; are nondecreasing functions, 1 < ¢, j < N;
. hi(t) ko .
(5) thm a;(t) — ) =ana €[0,8], for IiK N

and every k € {1,...,n—1}.
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Let t; > to. Denote
ST (P i '
t; = min {}é‘f, hi(t), ,‘;‘f, 9ii(t), 1 <14, j < N}

A function X = (z,,...,zn) is a solution of the system (1), if there exists a t; > o
such that X is continuous on [t3,00), zi(t) + (—1)"a;(t)zi(hi(t)), 1 < i < N are
n-times continuously differentiable on [t;,00) and X satisfies (1) on [t;, 00).

A solution X = (z1,...,zN) of (1,) is nonoscillatory if there exists an a > to such
that its every component is different from zero for all t > a.

Our aim in this paper is to extend some of the results obtained in [1-4] to the
system (1;). We give conditions for the system (1) to possess nonoscillatory solutions
X = (z1,...,zN) with the asymptotic behavior

<

lim =¢ #£0, sgne; =sgne;
t—o0

ki

or

t—o00 tki_l

tim 20 o i 20 _

t—o00 tki
for some k; € {1,...,n—1}, 1 < i< N.

Denote

7(to) = max{sup{s > to: hi(s) < to,9ij(s) Stofor 1 <i, j < N}},
(6) Hi(o,t) =t, Hi(k,t) = H;(k—1,hi(t)), 1<i<N, k=1,2,...,

k-1

(7) Ai(0, ) =1, Ai(k,t) = H a;(H:(j,1)), 1<i< N, k=1,2,...,
7=0

(8) (pij)t.(t) = max{(—1)"~*ip;;(t),0} and

(pij), (t) = max{—(=1)""%p;;(2),0}, t > to,
1<i, j<N,k;e{l,...,n—1}.

Note that

9 (1) pii (@) = (i), (1) = (2ij)5, (1),
|pi; ()] = (ij)E, @) + (i), (1), 1<, G N,
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2. MAIN RESULTS

Theorem 1. Let the assumptions (2)—(5) hold and let k; € {1,2,...,n — 1},
1<i<N.If

% N
n—k;— kj
(10) / R0 g (0] £ (65 (965(2)) ) dt < o0
+(to) i=1
for some constants b; > 0,1 < i < N, then for any (¢;,...,en), (€ >0, 1 i< N)
there exists a positive solution X = (z1,...,zN) of the system (1,) such that
ox(t) .
(11) ‘I_Lrgo e =¢>0,1<iKN.
Proof. Letc¢; > 0,1 < i< N be some arbitrary, but fixed constants and let
ke{l,...,n—1},1< 1<N Weputb_c,+d.,where
1-5
(12) 0<d'<c‘l+ﬁ.~'
Let T > to be such that
(13) To = mm{txggh;(t),tlggg;j(t);l <4,j< N} >t
and

e N
/t"—k‘_l 3 lpii @)1 (05 (05;8) ) dt < dj, 1< i< N
T i=t

We denote by C[Tp, 00) the locally convex space of all continuous vector functions
X = (zi,...,zn) defined on [Ty, 00) which are constant on [Ty, T], with the topology
of uniform convergence on any compact subinterval of [Ty, 00). Thus C[Tp,00) is a
Frechet space.

(I) Let r = 0. We consider the closed convex subset Sy of C[Tp, 00) defined by

k;

T
(15) So = {Y =(y1,---,yn) € C[To,00);yi(t) = c; T for

1
€ [To, T, m(c; —di)th < yi(t) < b thifort >T, 1<i< N} .

For each Y € Sy we define functions z;(1 <7 < N) by

[ %(T)
Ti—(T—)’ t € [To, T],
ni(t)-
(16) zi(t) = ¢ zj 1( 1)k A; (k, t)ys (Hi(k, t))
(=)™ 4; (ns(2), 1) 11‘(,T()T) <T,
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where n;(t), 1 < i < N are the least positive integers such that Ty < H; (n,(t ) T.
The functions in (16) are adaptions of the function introduced in [1,5].

We easily verify that z;(t) € C[Tp,00), 1 < i < N, and they satisfy the functional
equations

(17) zi(t) + a;(t)zi (hi(t)) = wi(t), t > T, 1 <i< N.

Let n;(t) = 2m; + 1 or ni(t) = 2m; +2, m = 0,1,..., 1 < i < N. Then (16)
together with Y € Sp, (2) and (3) implies

k'l._‘

2(0) 2 (o = et = (O ()"
+ Ai2,1)[(ci — di) (Hi(2, 1)) — as (Hi(2, 1)) b: (Hi(3,1))%] + . ..
+ A;(?m;,t) [(c; - d,-)(H,-(?m,—, t))ki — a; (H,'(Qm,',t))b,' (h,-(?m,‘ +1, t))k'])
1
2wl

—[ {(1=B)—di(1+B)]t5 >0, t>T, 1<ig<N.

[(ci = di) = Bibi) [t* + Ai(2,0) (Hi(2, )" + ... + Ai(2mi, 1) (Hi(2my, 1)) "]

?r-,_,

Taking into account Y € Sy and the last inequality we obtain from (17)
1 , 1
(18) 0< m[c,~(1 - Bi) = di(1 + B)]t5 < zi(t) < wi(t) < ] bitks.

We define an operator F = (Fy,...,Fn): So — C[To, o) by

; ki

k' ) tE[To,T],

: (t = s)ti=1 °°(u _ s)nkemt

(19)  RY()=1{ G5+ i ki1 | (n—k—1)
T s

Z vu)f,.,(:c_,(g.J u)))duds t>T, 1<i< M

We shall show that the operator F' is continuous and maps Sj into a compact
subset of Sp.
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(i) We prove that F(Sp) C Sp. From (19) in view of (9), (4), (15), (12) and (14)
we conclude that

C,tk ; (t — s)k.‘—l 7 (u _ s)n—k,-—l
(200 Fy(t) < S5+ %) L= o)

N
x 3" (i)¥ (w) i3 (b5 (93 (w)) ™) duds <
i=1
tk ¢ (t _ s)k.-—l 1

i [ —t——ds < —bit*, t > T, 1<i <N,
kgl &= 1) ds lc,-!bt t>T, 1<i<N
T

t oo
itk (t- s)k.‘—l (u— s)n—k,-—l
EY () > 7 —/ G ) Gk
T T

<

N
X Z(Pij)i (w) fi5 (5 (955 (w)) ™) duds >

t"' t—sht o (- di)

(ki —1)' 2 k;!

(ii) We prove that the operator F is continuous. Let Y, = (yim,---,Ynm) € So,
m=1,2,... and yim — yi for m — 0o, 1 < i < N in the space C[Tp, 00).
Denote

ni(t)-1
Zm®) = 3 (=R Ak, i (Ha(k, 1) + (~1)O 4 (n(0), )
k=0
yim(T) . _
m, t?T, ].SlSN, m—l,2,....
Using (19) we obtain
. , i (t _ s)k.-—l oo(u _ s)n—k.-—l
= IF¥n(t) = FiY (0)] < J k=D ) (n- k- 1)

N
X le‘f(u)”fii (zjm (9i5(w)) = fij (; (gij(’u)))ldu ds <

ji=1

ki
S T) /G”‘(u)du 1<i< N,
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where

N
GP(t) =" 51 |pii (w)|| £ij (zim(®)) — fis (25 (955(1)))|, t > T,1 i< N.

ji=1
We easily see that
lim G*(t)=0fort > T and ¢g["(t) < M;(t), where

M;(t) = 2kt Elp.,(u)lf., (9:5(0))"), t> T, 1<i < N.

By virtue of (10) and the Lebesgue dominated convergence theorem we conclude that
F;Yn(t) — FiY(t) in C[Ty, 00) for m — oo, 1 < i < N. This implies the continuity
of F.

(iii) F'(So) is relatively compact. This follows from the Arzela-Ascoli theorem and
the observation that for (y1,...,yn) € So, (F1Y (2))',..., (FNY(t))") is given by

tk‘—l

|(EY @) < Gy

ki1 T oun-ki-1
+ (k;—l)!/(n—- : 1)12!”'1(3 )| £is (b; 9-:(“)) ) du

b,'tk‘-l
= (ki — 1)!’

t>T, Ke{l,...,n—1}1<i<N.

Then by the Schauder-Tychonov fixed point theorem there exists a Y = (¢, ...,
gn) € So such that (F\Y,...,FNY) = (41,...,9n). The components of X =
(21, ...,ZN) safisfy the system

t [oe]
citki (t - s)k"‘l (u-— s)n—k.-—l

@) sl =5 +("1)"-k'T/ = 1) /(n—k.-—l)!

X Zp;j(u)f,'j (i‘j (g,J(u))) duds, t>T, 1<ig<N.
=1

where g;(t) = Z;(t) + ai(t)Z; (hi(t)), 1 < i< N, and (%;,...,Zn) is a solution of (1o)
on [Ty, 00).
Differentiating (22) k;-times we obtain

3 (u _ t)n—k.—l N

G () = ¢ + (=1)n ks mgpﬁ(“)ﬁj (25 (9ij(u))) du,
t>T, 1<i<N.

122



which implies that tlim g§"‘)(t) =¢; > 0,1 < ¢ < N. The last relation is equivalent
—00
to

(23) tlirg%@:c;()O),l&isN.

Then (23) together with (5) implies (11), where & = ¢;/(1 + @i;), 1 <i < N.

(II) Let r = 1. We consider the closed convex subset .5'1 of C[To, 00) defined by

S1={Z+(z,...,2n) € C[To,0); z(t) = k fort € [To, T,

(24) %(c,- —d)tk < %(t) € ——b thifort>T,1<i< N}.
For each Z € Sy we define

%(T)

1— ﬂ,’(T)’ te [TOaﬂa
(25) zi(t) = ni(t)-1
z.(T)

E Ai(k, t)z (Hi(k, 1)) + A (ni(2), t) @’ t>T,

where n;(t), 1 < N are the same as in the case (I).

We easily venfy that zi(t) € C[Ty,00), 1 < i < N and they satisfy the functional
equations

(26) zi(t) — ai(t)zi(hi(t)) = (1), t 2 T,1 i< N.
From (25) taking into account (26), Z € Si, the assumptions (2) and (3) we obtain

(@) — d)tH < 5:(®) < milt) < ppbilth + B ()™

+...+ﬁ:'-'<"(H.-(n.-a>,t))’“1 s

We define an operator F = (Fy,...,Fy): Sy — C[Tp,00) by (19) in which we
replace y;(¢) by zi(t), 1 i< N.

Proceeding similarly as in the case (I) we prove that the operator F is continuous
and maps S; into a compact subset of S;. Then by the Schauder-Tychonov theo-
rem there exists a fixed point Z = (1,...,Zy) € S; such that the components of
(Z1,...,ZnN) are solutions of the system (1) on [Ty, 00) with the property
(28) li ﬁ—c.->0,1<igN

where z(t) = Zi(t) — ai(t)Zi(hi(t)), 1 < i < N. Then (28) together (27) and (5)

implies

. :!:(t) Ci - .
‘1_1‘!};0 % = T—an, =¢>0,1<i<N.
The proof of Theorem 1 is complete. a
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Theorem 2. Let the assumptions (2)-(4) hold and k; € {1,2,...,n—1},1< i<
N. If

®© N
n-k;- kj
@) [ R SO (s (05(0) ) de < o0
7(‘0) ji=1
for some constants a;; > 0, 1 <,j <N,
*® N
n—k; - kj
(30) / "4y " (0i)i, (0 i (bij (935() ) dt < o0
j=1
¥(to)
for some constants b;; > 0, 1 <4,j < N,
[e ]
(31) / "% (pin)t (t) fn (cin (gin()™* ) dt = 00
¥(to)

for some h € {1,..., N} and all constants ¢; >0, 1<i,j <N,

then there exists a positive solution of the system (1.) with the property

(32) lim 28 Zo him 2O _

t—oo tki t— 00 t"i‘l

Proof. Leta;,b;;,1<4j<N be positive constants. Then we choose é; such
that 0 < 26; = min{a;j, b;j; 1 <J< N}, 1<i<N. Weput 26/(1 - 3) = ;.
Let T > max{‘y(to) 1} be such that (13) holds and

(33) /tn ki _IZ DO f5 (5 (Q'J(t)) 7)dt < bi(n — ki = 1)},

T
ey fes Zj(p,-j);..(t)f.-j(éj (95(0) ™) dt < g2 LS.
T j=1

Let C[Tp, 00) be the space defined in the proof of Theorem 1. We consider the closed
convex subset S of C[Tp, 00) defined by

Tk -1
S:{Z:(Zl,.. ZN)EC[T(),“)) Z,(t)—(s (T——-—l_)'
§itki-1 26;t*:
(35) for ¢ € [To,ﬂ, W < Z,(t) (_k——_lT fOl't ‘l N}
With every (21,...,2n) € S we associate the functions (z1,...,zn) defined by the
formula (25). From (25) in view of (26), (35), (2) and (3) we obtain
(36) zi(t) < zi(t) < (—ﬁ[tk + B (hi() ™ + .
i ki n; .
+ B; - 1(H.'(ni(t) -1Lt)" +8; (t)Tk']
ﬂ t>T, 1<i<N
< (k' _ 1)') = ) AN < .
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Define an operator F = (Fy,...,Fn): S — C[Tp, 00) by

37

, 6‘,Tk.'—1

T t € [To, T,

F.'Z(t) = (ki — 1)!

N

X .le.-j(u)f,-j (z(9ij(u))) duds, t > T, 1< i

i Bl AR i,
+=n / &-1F ) =k 1)

N

N.

Clearly, S is a closed convex subset of C[Tp, 00). We show that FI(S) C S. Let

Z = (z1,...,2n) € S. From (37) in view of (9), (4) and (36) we get for t >
I1<i<N:
Sigki=1 '( Jri-1 7 (u)r=ki-1
et t—s)tT u)rre
@)  RIO<E—mit ) moor ) mokoD
T T

Using

(39)

x E(Pu )+ (u)fi5 (85 (i (w)) j) duds

j=1
6.'tk‘—l 6.’(t - T)k‘ 26,'tk‘
SE=D B SHm-DY

(4), (35) and (34) we easily derive that

; (u— s)rki=1 N
/ —)T Z(P'J )k (u)fu (3_1 (9:; (U))) duds <

(n—

=

u— n—k;
S SR 053 6 00 ) e <

wl.?‘

‘i\g

t>T, 1<

<N

T,
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From (37) with regard to (9) and (39) we obtain for k; > 2,1 i< N:

pki—
FZ(t) > (%‘_—1‘),
¢ — g)ki—-1 _ o\n—ki—
- (t(k,- ’_) 1)! ((“n _8). 1)! E(P-J )k, (w)fi (31 (9., (u))) duds
6,'tk"'1 ’
” (ki - 1)
—o)ki-2 u ~— g)n—ki-1
_/(t(k —)2)| _/_/((n-— ) —1)! Z(pij);,-(“)fij (3;' (g.;,-(u))) dudsdo

6.‘#"1 o (t - ”)k.-—2

—_—_— -~ ___d
Phi-D 2 (k-2
T
6,'tk‘_l .

If k; = 1, then form (37) in virtue of (39) we have

t oo n—2 N
F:Z(t) > & —// )2), (p-'j)f(u)
T s

x fij (z;(gij(u))) duds > 56,, t>T, 1<i<N.

()

We have proved that F(S) C S.

Proceeding similarly as in the proof of Theorem 1 we obtain that the operator F
is continuous and F(S) has a compact closure. Therefore by the Schauder-Tychonov
fixed point theorem there exists a Z = (21,...,2n) € S such that (F1Z,...,FN2) =
(z1,...,2n) and the components of (Z,,...,Zpz) satisfy for t > T the system

F(t—s)t=t T (u—sg)r—kim1
E-1! | k=1

bitki-1

(ks = 1)!

(40) z(t) = + (=) H

N
x Y pij(u) fij (Z; (95 (w))) duds, 1 <i N,
j=1
where 7 (t) = z;(t) — a;(t)Z: (hi(2)).
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Differentiating (40) (k; — 1)-times and k;-times, we get

@ Y=g [ [E
T s

N
X Zp.‘,'(u)f,',‘ (:Ej (g,-,-(u))) duds, t>T, 1<i<N,
j=1

(42) E'(h)(t) = (_l)n—bi (u —_— t)n—k'-..l

(n—k; —1)!
t
N
x 3 pij(w)fij (i (9i5(u))) duds, t > T, 1<i < N,
j=1
respectively.
Then (42) implies that
(43) Jlim £ =o.

From (41) on the basis of (9), (39), (3), (36) and (35) we conclude

200 > 6+ / %——T)Tl(p.»)k () fin (@ (hin())]

- Zpu(u):..f.-,- (25 (965(w))) duds

=1

> %- + T‘ %(1’"‘)& (w)fin (Zh (h.;.(u))) du
6

i u-— 6n(gin(u a1
>3 / R ot s (M ) v

The last inequality together with (31) implies that

FE=D gy =
(44) Jim 2 (t) = oo.
By L’Hospital’s rule, (43) and (44)
z(t) z(t)
(45) Jim T =0, lim Ry

Then from (45) in view of (2), (3) and (36) we get
tim 20 _ o, tim ZC) _

respectively.
The proof of Theorem 2 is complete.
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