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Abstract. In this paper, we employ some new techniques to study the existence of positive
periodic solution of n-species neutral delay system

n

Ni(t) = Ni(t) [ai(t) =) Bip(tNG(t) = D> big (ON;(t =735 (1) = Y eij (N (t — 735(1)) |-
Jj=1 j=1

j=1

As a corollary, we answer an open problem proposed by Y. Kuang.
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1. INTRODUCTION
Consider the following neutral delay model
(1) N'(t) = N(t)[a(t) = BN () = bE)N(t = 7(t)) — c(t)N'(t — 7(1))]
where a(t), 8(t), b(t), 7(t), c(t) are nonnegative continuous T-periodic functions.

In 1993, Kuang Yang proposed the following open problem (Open Problem 9.2
in [1]): Obtain sufficient conditions for the existence of positive periodic solutions

of (1).
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When a(t), 5(t), b(t), 7(t) are positive and ¢(t) = 0, such a problem was considered
by Freedman and Wu [2]. In this paper, we consider the following more general
n-species neutral delay system

(2) N;(t) = Ni(t) {ai(t) - Z Big ()N (1) = > bis ()N, (¢ — 735 (1))

n

=S e (O~ 7 <t>>}

j=1

where a;(t), Bi;(t), bi;(t), 7:;(t), cij (t) (i,j = 1,2,...,n) are nonnegative continuous
T-periodic functions.

The purpose of this paper is to establish the existence of positive periodic solu-
tions for neutral delay system (2). As a corollary, we give an answer to the open
problem 9.2 in [1]. To show the existence of solutions to the considered problems,
we will use an existence theorem developed in [3], [4]. We will state this existence
theorem in Section 2.

2. AN EXISTENCE THEOREM

For a fixed r > 0, let C =: C([-r,0]; R™). If z € C([oc —r,0+6]; R™) for some § > 0
and o € R, then z; € C for t € [0, 0+ ] is defined by x:(0) = x(¢t+6) for 6 € [—r,0].

The supremum norm in C' is denoted by | - ||, i.e. ||¢] = Gn[m ]|<p(9)| for ¢ € C,
€[—r,0
n
where | - | denotes the norm in R™, and |u| = > |u;| for u = (uy,...,u,) € R™.
i=1

We consider the following neutral functional differential equation:

Lat) — blt,20)] = £t 20)

dt

where f: R x C' — R" is completely continuous and b: R x C' — R™ is continuous.
Moreover, we assume:

(H1) There exists T > 0 such that for every (t,¢) € R x C, we have b(t + T, ) =
b(t,) and f(t + T, ) = f(t,¢).

(H2) There exists a constant k£ < 1 such that |b(¢, ) — b(¢,v)| < k|l — || for
te R and p,v € C.

By using the continuation theorem for composite coincidence degrees, Erbe et
al. [3] proved the following existence theorem. See also Theorem 4.7.1 in [4].
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Theorem A. Suppose that there exists a constant M > 0 such that:
(i) For any A € (0,1) and any T-periodic solution x of the system

d
T lo(t) =20t 2)] = M (¢, 22)

we have |x( )| < M fort € R;
fo (s,i)ds # 0 for u € By (R™), where By (R") = {u € R": |u] <
M }, and @ denotes the constant mapping from [—r,0] to R™ with the value
u € R”;
(i) deg(g, Bar (R")) £ 0.
Then there exists at least one T-periodic solution of the system

d
G le(t) = bt z)] = f(t, 1)

that satisfies sup |z(t)| < M.
teR

Remark 1. From the proof of Theorem A (Theorem 4.7.1 in [4]), it is easy to see
that if assumption (H2) is replaced by

(H2)' There exists a constant k& < 1 such that |b(¢,p) — b(¢t, )| < k|l¢ — 9| for
teRand g, € {p € C: |¢|| < M} with M as given in condition (i) of Theorem A,
then Theorem A still holds.

3. MAIN RESULTS

In order to establish the existence of positive periodic solutions for neutral delay

system (2), we first consider the following system
(3) !E; (t) =a; (t) _ Z eTi () _ Z b, mj(t—nj )
j=1

= D e (B (¢ = iy (B)en T,
j=1

Let C2 denote the linear space of real valued continuous T-periodic functions
on R. The linear space C% is a Banach space with the usual norm for z(t) =

0 gi — — >
(x1(t),...,zn(t)) € CF given by ||z|lo = max lz(t)| = r?ea}%(l; | (t)].
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We define the following maps:
b: RXCHRTL, b(t,sﬁ):(bl(t,(ﬁ),...,bn(t,@)),

i Cij t (= s
bi(t’ (p) = — Z 1-77(/)]5)69%( ij (t));

j = 7i5(
j=1 J
f: RXC;}RW‘? ft7§0):(f1(t7§0),,fn(t7<,0)),
Filtsp) = at) = 3 85 000 = 3 (bie) = (124005 ) Yoo
j=1 j=1 ij

Now, the system (3) becomes

4
dt

In the following, we denote

[2(t) = (¢, 1)) = f(E,21).

1 T
§= — £)dt, gm = min g(t), — t
g T/o g(t)dt, g té?()lg]g( ), lglo max, lg(t)]

forge{ge C(R,R): g(t+T)=g(t) for t € R}.
Theorem B. Suppose that the following conditions are satisfied:
(a) a;(t), Bij(t), bij(t), Ti;(t), ci;(t) are T-periodic functions and
ai(t) € C(Ra (07 +OO))7 ﬁij (t)’ bij (t) € C(Ra R+)7 Cij (t) € Cl(Rv R* )»
7ii(t) € CX(R.RY), () <1, Bu(t) 25>0, i,j=12....m
where RT™ = [0, 4+00), 3 is a constant;
(b) the system

Z(Bzg +Z_)ij)uj =a;, 1=12,...,n
j=1

has a unique positive solution v* = (u,...,uk);
(c)
M. .a.:
a; > Z 1—J.C.LJ7 mii>07 1:17277”’7
=ty
where
bij — di; bij — di;
Mij = |Bijlo + T o mij = (Bij)m + <ﬁ>m’
¢ij(t) : -
dij(t) = —22 @l () < by(t), i,5=1,2,...,n;
1.7() 177_1(].(15) 1]() 1]() 2 n
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(d) ko =: ceMo < 1, where

= z":z": |dijlo, Mo = max{zn]lnuﬂ,R, TM, + iKZ}’
i=1 j=1

i=1 i=1
R= max (R}, Ri=ln—" +zn: |d”'|°fii +2a,T,
Isisn (Bii)m = (bij — di;)m
> lailo + Z Z |Bijloe™ + Z Z [bijloe™™
M. — =1 i=1j=1 i=1j=1
1—=> > leijloe™
i=1j=1
K; = max ‘ln ﬂii , |In ]:E\"/}:l , 1=1,2,...,n.

Then (2) has at least one positive T-periodic solution.

Remark 2. For the case n = 1, Theorem B gives an answer to the Open Prob-
lem 9.2 due to Kuang Y. [1].

Before proving Theorem B, we need the following lemmas.

Lemma 1. Under the assumptions of Theorem B, let Q = {p € C: ||¢|| < M},
where M > M is such that k =: ce™ < 1, then |b(t, ) — b(t, )| < klj¢ — 1| for
t € R and p, 9 € Q.

Proof. Fort e R and ¢, € Q, we have
|bz(ta (P) - bz(tv ’(/J)l
< Z dyj (t)|e¥’j(*7ij(t)) _ ewj(*fij(t))|

< Zdij(t)ef’@j(*fij(t))+(1*9)wj(*‘fij(t))|<pj(,7-ij( )) — i (—7i; (1)),

for some 0 € (0,1). So, we have

n

[bi(t, ) = bilt. )| < Y ldigloe™ [l — .

j=1

Therefore,

1b(t, @) = b(t, )| < D2 D Idijloe™ llp — vl = kllp = .

i=1 j=1
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Lemma 2. If the assumptions of Theorem B hold, then every solution x(t) € C%.
of the system

d
a[x(t) —Mb(t, )] = Af(t,ze), A€(0,1)

satisfies ||z|lo < Mp.

Proof. Let &(x(t) — Ab(t,x¢)] = Af (¢, 2¢) for z(t) € C., that is,

(4) [ +AzlfﬂT (- m(t))}/
_ A[al i #(t) _ §<bij(t) _ (%)’)ewm(m}

)

1=1,2,...,n, A€ (0,1).
Integrating these identities, we have

) / )er 0+ (b (1) — (1)) (=)

T
:/ a;(t)dt, i=1,2,... n,
0

_. _cii(®)
where dij (t) = 1*;¢/j(t)-

From (4), (5), we have
T n l
[ e+ 23 asstem s ﬂ
0 =

@[/ “lt dt*/ 0%+ (b (1) = iy ())e” )|

dt

T
< 2/ al(t) dt = 2Ta;.
0
That is,

(6) / '

dt < 2T'a;.

n /
)+ 3 Y dy st
j=1

T Tr n n
/ ai(t / [Z Dme™ O £ (b — df)ets T (t))} dt
0 0 j=1

Jj=1

> T[ (Big)me™ ) +> " (bij — d;j)mew&—m@i))],

j=1
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for some &; € [0,T]. Therefore, we have

a; a;

7 (&) <ln——, @& i) ¢ 0
g )< B (s — )
From (6), (7), we have

£+ A Z dyj (t)e®s (=T (1)
61 _|_ )\Z dl] e¥i (&i—Tij(&))

+/0

7 az|d1 |O _ .
s ﬁ”er; le/ +2a;, T = R;, 1=1,2 n;

g Ly ooy

dt

/
{xi@) £ Z i <t>e%<“if<f>>]

hence, we have x;(t) < R;, i = 1,2,
From (4), we have

(0 = Alas) = 3 B0

n

— Z bij(t)exj(tf‘rij(t)) _ Cij (t):c; (t — 7 (t))exj(tfrij(t)) :
j=1 j=1
|75 (t)] < A [ai(t) + Z B (£)e™®) + Z by (t)e® (=75 (0)
Jj=1 j=1
+ 37 et — 7is (8)) s <t>>}
j=1

<lailo + Z |513|06RJ + Z |bZJ|06RJ + Z |CZJ|0|:E loe™™.

j=1 j=1

So, we have
12 [lo < Z|x
Z lailo + Z Z |513|06RJ + Z Z |bZJ|06RJ + Z Z |CU|0|*T |0€RJ

i=1 j=1 i=1 j=1 i=1 j=1
Z oo + 3 D 1Buloe + 30 loe + 3 el loe®
i=1 j=1 i=1 j=1 i=1 j=1
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Since

n n n n n n
D3 el €303 feloe™ < 373 loe < 1
i=1 j=1 i=1 j=1 i=1 j=1
we have
> lailo + Z Z |Bijloe™ + Z Z [bijloe™
=1 i=1j= i=1j=
(8) l[#"]lo < — =: M,.
=2 2 leijloe®s
i=1j=1

Let s =t — 7(t), t = 04j(s) be the inverse function of s =t — 7;;(t) (¢t € [0,T]).
Then, we have

T T=75(T) b, (0 —di (04
/0 (bi (£) — df; (£))e™s =) 4 = /_ #05(8) = 45 (05(9) 20 4,

735 (0) 1- Ti/j (35(s))
_ big(mig) — di (mig) / T 0 g
L=7(ij)  J_r00

_ big(nig) — di;(nig) / " (o) g
1—15(nij)  Jo 7

for some 7;; € [0,T]; and fo Bij(t)es ® qt = 51](/%)] e%i() d¢, for some Hij €
[0, T']; hence, from (5)7 we have

n

bij(mij) — di; (mij T T
Z[ﬁij(uij)—i— 3 (is) (nj)]/ e%'(t)dt:/ a;(t)dt, i=1,2,...,n.
0 0

j=1 1- T (771])

Since fOT e (M) dt = Te® (%) for some §; € [0,T] (j = 1,2,...,n), we have

. bi'(’h‘) d; (Th) 6 =

j=1

From (9), we have

miie“(‘s") <a;, 1=12,...,n.

Therefore, we have

10 By <m 2 i=1,2,....n
(10) x;(0;) nmii i n
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From (9), (10), we get

Mel(‘s)Jr Z Mwe
J=1,j#1
M;;a; .
< My;e® 00 ¢ Z —Jaj, i1=1,2,...,n.

s
j=1,#i 9

Therefore, we have

From (10), (11), we have

(12)  |xi(6;)| < max < |In , [In ] E\/.;# =K; i=12,...,n.
Combining (8), (12), we have

T T

<l + [ latlar <Kot [Cletlae, i=120m

0 0

hence,
lzllo < ZK +/ |2/l dt = > K; + TM. < M.
i=1

Obviously, My is independent of A. This completes the proof. O

Proof of Theorem B. We apply Theorem A to (3). Clearly, for M as given in
Lemma 1, the condition (i) in Theorem A is satisfied. Let g(u) = (g1(u), ..., gn(u)).
Since

T T n T n T
u) = /0 fi(s,0)ds :/0 ai(t)dt—;/o Bi;(t) dt e"s —;/0 by; () dt e
:T[&i_Z(Bij +bij)euj:|,

=1

and M > > |lnu}|, we have g(u) # 0 for any u € 9B (R™). Thus, the condition (ii)
i=1
in Theorem A holds. Next we show that condition (iii) also holds. By (b) and the
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formula for Brouwer degree (see Theorem 2.2.3, [4]), we have

deg(g, By (R™)) = Z signdet Dg(u) = (—1)" or (—1)"*1.
uEgil(O)ﬂBju([R")

Therefore, all the conditions required in Theorem A hold. It follows by Theorem A
and Remark 1 that (3) has a T-periodic solution (7 (¢), ..., z%(t)). Therefore, (2) has
a positive T-periodic solution (e®1(®) ... e*n(*)), This finishes the proof of Theo-
rem B. (]
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