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Abstract. We slightly modify the definition of the Kurzweil integral and prove that it
still gives the same integral.
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0. Introduction

We prove the equivalence of a multidimensional constructive integral with the
multidimensional Kurzweil or Generalized Riemann integral [2] working in a general

Banach-space valued context. The regular integral corresponding to the former,
however, is not equivalent to the Mawhin integral [3].

1. Definitions and terminology

Let R be a compact interval of �n with sides parallel to the coordinate axes. Any

finite set of closed nonoverlapping subintervals of R is called a partition of R. A
pair d = (ξi, Ji) is a tagged division of R if (Ji) is a partition of R with

⋃
Ji = R

and ξi ∈ Ji for every i. We denote by TDR the set of all tagged divisions of R.
Let d = (ξi, Ji) and d′ = (ηj , Ij) belong to TDR. We say that d′ refines and write

d′ � d if for given j there exists i such that Ij ⊂ Ji (see [1], p. 41). A gauge of a
subset E of R is a function δ : E →]0,∞[. We say that d = (ξi, Ji) ∈ TDR is δ-fine

if Ji ⊂ {t ∈ R ; |t − ξi| < δ(ξi)} for every i. Given a gauge δ of R, there exists a
δ-fine d ∈ TDR (Cousin’s Lemma).
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By int(A) and cl(A) we mean respectively the interior and the closure of a set

A ⊂ �
n and we write ∂(A) = cl(A) \ int(A).

In what follows X denotes a Banach space.

Definition 1.1. A function f : R → X is Kurzweil integrable (we write f ∈
K(R, X)) and I ∈ X is its integral (we write I = K

∫
R

f) if for every ε > 0, there is

a gauge δ of R such that for every δ-fine d = (ξi, Ji) ∈ TDR,

(1)

∥∥∥∥
∑

i

f(ξi)|Ji| − I

∥∥∥∥ < ε.

Definition 1.2. We say that f : R → X is K∗-integrable (we write f ∈
K∗(R, X)) and that I ∈ X is its integral (we write I = K∗∫

R f) if for every ε > 0,
there is a gauge δ of R and there is a δ-fine d ∈ TDR such that for every δ-fine

d′ = (ξi, Ji) ∈ TDR with d′ � d, (1) holds.

Definition 1.3. We say that f : R → X is K∗∗-integrable (we write f ∈
K∗∗(R, X)) and that I ∈ X is its integral (we write I = K∗∗∫

R f) if for every ε > 0,
there is a gauge δ of R and there exists d ∈ TDR (not necessarily δ-fine) such that

for every δ-fine d′ = (ξi, Ji) ∈ TDR with d′ � d, (1) holds.

Remark. It is immediate that K(R, X) ⊂ K∗(R, X) and K(R, X) ⊂ K∗∗(R, X).
Besides, K∗∗(R, X) = K∗(R, X) and the integrals coincide when defined.

2. The main result

Theorem 2.1. K(R, X) = K∗(R, X) = K∗∗(R, X) and the integrals coincide.

�����. We prove the result for the two-dimensional case. When n > 2, the

proof follows analogous steps. By the above Remark, it is enough to show that
K∗(R, X) ⊂ K(R, X).

Let f ∈ K∗(R, X). Then given ε > 0, there exists a gauge δ and there exists a
δ-fine d = (ζj , Lj) ∈ TDR such that for every δ-fine d′ = (ξi, Ji) ∈ TDR with d′ � d,

(2)

∥∥∥∥
∑

i

f(ξi)|Ji| − K∗
∫

R

f

∥∥∥∥ < ε

Let us define another gauge δ′ of R as follows:

(i) for every ξ ∈ R, let δ′(ξ) < δ(ξ).

Let ξ ∈ Lm. Then,
(ii) if ξ ∈ int(Lm), let δ′(ξ) < dist{ξ, R \ Lm};
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(iii) if ξ ∈ ∂(Lm) and ξ �= ζj for every j, let δ′(ξ) < min{|ξ − ζj |, for every j};
(iv) if ξ ∈ ∂(Lm) and ξ = ζj for some j, let δ′(ξ) < min{|ξ − ζj | for every j such

that ξ �= ζj} and δ′(ξ) < 1/2min{hj for every j such that ξ = ζj}, where hj denotes
the smallest side of the interval Lj.

Now, if d1 = (ηk, Ik) ∈ TDR is δ′-fine, then it satisfies the following conditions:
(v) d1 is δ-fine;

(vi) if ηk ∈ int(Lm), then Ik ⊂ Lm;
(vii) if ηk ∈ ∂(Lm), then ηk belongs to at most three other intervals Lj’s, j �= m.

Consider the set of indices Am = {j ; ηk ∈ Lj and Lj ∩ Lm �= ∅} and let nm be
the number of elements of Am. Then 2 � nm � 4. Divide the interval Ik into nm

subintervals such that each new interval is contained in one and only one of the
intervals Lj, j ∈ A. Hence, ηk belongs to each new interval and can be regarded as

the tag of each of these intervals. Clearly Ik =
⋃

j∈Am

(Lj ∩ Ik); Lj ∩ Ik, j ∈ Am are

nonoverlapping and therefore |Ik| =
∑

j∈Am

|Lj ∩ Ik|. Hence we can consider without
loss of generality that d1 is such that given k, there exists j such that Ik ⊂ Lj, since

the Riemann sum with respect to the new d1 is equal to the Riemann sum with
respect to the original d1. Thus, d1 � d and by (2) it follows that

(3)

∥∥∥∥
∑

k

f(ηk)|Ik| − K∗
∫

R

f

∥∥∥∥ < ε.

Hence, for every ε > 0, there is a gauge δ′ of R such that for every δ′-fine d1 =
(ηk, Ik) ∈ TDR, (3) holds. Then f ∈ K(R, X) with K

∫
R

f = K∗∫
R

f and the proof is

complete. �

The author thanks Prof. Dr. Marina Pizzotti for her careful reading of the preview.
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