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ON THE KUROSH-ORE REPLACEMENT PROPERTY

Andrzej Walendziak, Warszawa

(Received December 23, 1996)

In this note we give a generalization of results of papers [2] and [3]. Moreover, it

is shown here that the question (see [3], p. 183) has negative answer.
Next we recall some definitions and results. Let L be a lattice. Denote by J(L)

the set of all join-irreducible elements of L. For two elements a, b ∈ L(a � b) we
define [a, b] = {c ∈ L : a � c � b}. We say that a is a lower cover of b, if a < b

and [a, b] = {a, b}; in this case we write a ≺ b. L is called strongly atomic (strongly
dually atomic), if for any a, b ∈ L with a < b there is p ∈ [a, b] such that a ≺ p(p ≺ b).

Let L be a complete strongly dually atomic lattice. If u ∈ J(L) − {0}, then
by u′ we denote the uniquely determined lower cover of u. For a ∈ L − {1}, let
a+ =

∨{b ∈ L : a ≺ b}. We say that L is locally modular, or locally distributive if
for each a ∈ L, a �= 1, the interval [a, a+] is a modular sublattice or a distributive

sublattice, respectively.
A complete lattice L has replaceable irredundant ∨-decompositions (∨-KORP,

for short) if each element of L has at least one irredundant ∨-decomposition, and
whenever a =

∨
T =

∨
R are two irredundant ∨-decompositions of an element a ∈ L,

for each t ∈ T there exists r ∈ R such that a =
∨
(T −{t})∨ r is also an irredundant

∨-decomposition.
The

∧
-KORP is defined dually. P.Crawley and R.P.Dilworth investigated the∧

-KORP in algebraic strongly atomic lattices. We recall the following result.

Theorem A (cf. [1], Theorems 7.5 and 7.6). Let L be an algebraic strongly

atomic lattice.

(i) L has the
∧
-KORP if and only if for all x, y ∈ L, if the interval [x, x ∨ y] has

exactly one atom, then the interval [x ∧ y, y] has exactly one atom.
(ii) If L is semimodular, then L has the

∧
-KORP if and only if L is locally modular.

Let us recall the following definition from [4], p. 570. A lattice L is strong if for
a, b ∈ L, u ∈ J(L), b < u � a ∨ b implies u � a. We note that for a class of strongly
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dually atomic lattices, the preceding notion of strongness is essentially the same as

given in Stern [3]. The next result is a generalization of [3], Lemma 2.

Proposition 1. A lattice L is strong if and only if L does not contain a pentagon

isomorphic to the lattice in Figure 1 (where u ∈ J(L)).

a

a ∨ u = a ∨ b

u

b

a ∧ b = a ∧ u
�
Fig. 1

�����. Assume that L is not strong. Then there are a, c ∈ L, u ∈ J(L) such
that c < u � a ∨ c and u �� a. Let b = c ∨ (a ∧ u). Since u is join-irreducible, b < u.

We have
a ∧ b � a ∧ u � a ∧ [c ∨ (a ∧ u)] = a ∧ b,

and hence a ∧ b = a ∧ u. Now we observe that a ∧ b < b. Namely, a ∧ b = b yields

b � a and thus u � a ∨ b = a contradicting our assumption u �� a. It is easy to see
that a ∧ b < a and a < a ∨ b � a ∨ u. On the other hand, a ∨ u � a ∨ b. Therefore,

a ∨ b = a ∨ u, and thus L contains a pentagon isomorphic to the lattice in Figure 1.
The converse is trivial. �

Remark 1. Proposition 1 implies that any modular is strong.

From Theorem 2 of [4] we obtain

Theorem B. A semimodular, dually algebraic, strongly dually atomic lattice L

has the
∨
-KORP if and only if L is strong.

We denote by K the class of all lattices L such that both L and its dual L∗ are

algebraic and strongly atomic.
The first major result is

Theorem 1. Let L ∈ K. If L is semimodular or lower semimodular, then L has

both
∧
-KORP and the

∨
-KORP if and only if L is modular.

�����. Without loss of generality we can assume that L is semimodular. Let
L have both the

∧
-KORP and the

∨
-KORP. We know that if an algebraic, strongly
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atomic lattice is both semimodular and lower semimodular, then it is modular (see

[1], Theorem 3.6). Therefore, we only need to show that L is lower semimodular.
Then we prove that L satisfies the following condition:

(LS) x ≺ x ∨ y implies x ∧ y ≺ y.

Assume that x ≺ x ∨ y. By Theorem A(i), the interval [x ∧ y, y] has exactly one
atom, say p. We shall now prove that p = y. On the contrary, suppose that p < y.

Since every element of L has at least one irredundant ∨-decomposition, we conclude
that there is u ∈ J(L) such that u � y and u �� p. From Theorem B it follows that

L is strong. We have

x � x ∨ u′ � x ∨ y and x ≺ x ∨ y.

Observe that x = x ∨ u′. Indeed, if x ∨ u′ = x ∨ y, then u � x ∨ u′ and strongness

implies u � x, a contradiction. Therefore, u′ � x. Hence, u∧ x∧ y = u′ ≺ u, and by
semimodularity we deduce that x ∧ y ≺ u ∨ (x ∧ y) � y. Then p = u ∨ (x ∧ y), and

this contradicts the fact that u �� p. Thus x ∧ y ≺ p = y, that is, (LS) holds in L,
and, in consequence, L is modular.

The converse follows from Theorems A and B. �

Remark 2. The preceding theorem generalizes Theorem 6 of [3], since any lattice
satisfying the Descending Chain Condition is strongly atomic.

Theorem 2. If L ∈ K, then L has both the uniqueness property for irredundant

∧-decompositions and the uniqueness property for irredundant ∨-decompositions if
and only if L is distributive.

The proof is the same as in [3], Theorem 7.

Theorem 3. If L ∈ K, then
(i) L is strong and locally modular if and only if L is modular.

(ii) L is strong and locally distributive if and only if L is distributive.

�����. (i). If L is locally modular, then L is also semimodular (see [1], p. 25).
From Theorems A(ii) and B we conclude that L has both the

∧
-KORP and the∨

-KORP. Therefore, by Theorem 1, L is modular. The converse is obvious.
(ii). Let L be strong and locally distributive. By local distributivity, every modular

sublattice of L is distributive (cf. [1], first paragraph on page 53). But L is modular,
which follows from (i). Consequently, L is distributive.

The converse is clear. �
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Remark 3. Theorem 3 is a generalization of Theorems 1 and 2 of [2].

Finally we recall that a complete lattice L has the Kurosh-Ore property for ∨-
decompositions (

∨
-KOP, for short), if every element of L has an irredundant finite

∨-decomposition and for each a ∈ L, the number of join-irreducible elements in any
irredundant finite ∨-decomposition of a is unique. In a dual way one defines the∧
-KOP. It is obvious that the KORP implies the corresponding KOP, whereas the
converse does not hold in general. In semimodular algebraic lattices satisfying the

Descending Chain Condition, the
∧
-KORP is equivalent to the

∧
-KOP (see [1],

Theorems 7.6 and 7.7). Hence in Theorem 6 of [3] we may replace the
∧
-KORP by

the
∧
-KOP, but here it is not possible to replace the

∨
-KORP by the

∨
-KOP, that

is, the question of [3] has a negative answer. Indeed, let L be a lattice diagrammed

in Figure 2. L is locally modular, and therefore it has the
∧
-KORP (and, evidently,

the
∧
-KOP). This lattice also has the

∨
-KOP, whereas the

∨
-KORP does not hold.

�
Fig. 2
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