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U-IDEALS OF FACTORABLE OPERATORS

Kamil John,* Praha

(Received November 13, 1996)

Abstract. We suggest a method of renorming of spaces of operators which are suitably
approximable by sequences of operators from a given class. Further we generalize J. John-
sons’s construction of ideals of compact operators in the space of bounded operators and
observe e.g. that under our renormings compact operators are u-ideals in the: space of
2-absolutely summing operators or in the space of operators factorable through a Hilbert
space.

MSC 2000 : 46A32, 46B20, 46H10, 46B99, 46B25

Keywords: factorization of linear operators, u-ideal, approximation properties, uncondi-
tional basis

Let K a be subspace of a Banach space L. Following [G, K, S] we say that K is

an ideal in L if K◦ is the kern of a contractive projection P in L∗. Moreover, K is
a u-ideal in (L, ‖ · ‖) if ‖ IdL∗ −2P‖ � 1.
In [J2] it was observed that Johnson’s argument that K (X, Y ) is an ideal in

L (X, Y ) can be carried out even when X and Y do not have the (compact) ap-

proximation property but when any f ∈ L (X, Y ) is suitably approximated by a

sequence {fn} of compact operators, fn
w′
−→ f (for the topology w′ see the definition

below). In fact any ϕ ∈ K ∗ may be uniquely extended to the w′-sequential closure
of K . This attitude is particularly suited for the situation of factorable operators

because of this unicity of extensions but it was used also in other situations [Li],
[F]. Here we develop a slightly formal scheme which further generalizes the idea. We
show that when we suitably renorm spaces of factorable operator then Johnson’s con-

struction even gives u-ideals. More precisely, we observe that K (X, Y ) ∩ A (X, Y )
is a u-ideal in A (X, Y ) for operator ideals A =P2 or A = Γ2 (cf. [Pie]). Here we

*The work was supported by the grants of AVČR No. A1019504 and of GAČR No. 201/
94/0069
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denote by F (X, Y ), K (X, Y ),Γ2(X, Y ), P2(X, Y ) and L (X, Y ) the Banach spaces

of linear operators from the Banach space X to the Banach space Y which are re-
spectively finite-dimensional, compact, factorable through a Hilbert space, absolutely
2-summing or bounded.

To conclude the introduction we remark that we have not been able to get any
reasonable corresponding results on M-ideals (except the trivial ones in [E, J]).

Let {fn} ⊂ L (X, Y ) be a sequence of operators and let f ∈ L (X, Y ). We will
denote by w the (locally convex) topology on L (Y ∗, X∗) projectively generated by

the linear forms of the form x∗∗ ⊗ y∗ for all x∗∗ ∈ X∗∗ and all y∗ ∈ Y ∗. Following
Kalton [Ka] we shall denote by w′ the topology on L (X, Y ) induced by the topology

w from L (Y ∗, X∗). Here we consider L (X, Y ) ⊂ L (Y ∗, X∗) via the adjoint map.

If T is a locally convex topology we will write T -
∑

fn = f if lim
n

n∑
i=1

fi = f in the

topology T . Thus we will write w′-
∑

fn = f if for all x∗∗ ∈ X∗∗ and all y∗ ∈ Y ∗

we have lim
n

n∑
i=1
(x∗∗f∗i )y

∗ = (x∗∗f∗)y∗.

Definition. Let {fn} be a sequence of elements of a Banach space, let T be a

topology on this Banach space and let T -
∑

fn = f exist in this Banach space. We
will denote by Ku({fn}) the number (possibly also ∞)

sup

{
max

(∥∥∥∥
n∑

i=1

εifi

∥∥∥∥,

∥∥∥∥f − 2
n∑

i=1

ηifi

∥∥∥∥
)
; n � 1, |εi| � 1, 0 � ηi � 1

}
.

Suppose further that ‖ · ‖ is a Banach space norm on a class of operators Z ⊂
L (X, Y ) and that T means e.g. the w′-topology. We will say that S (X, Y ) is an
(S )-class of sequences {fn}∞n=1 of operators fn : X → Y, fn ∈ Z when the following

holds:
(i) S (X, Y ) forms a vector space (with the co-ordinatewise operations),

(ii) S (X, Y ) contains with each {fn} also each {f1, . . . , fm, 0, 0, . . .},
(iii) S (X, Y ) is closed in the following sense:

If {fnp}∞n=1 ∈ S (X, Y ) for all p, if
∞∑

p=1
Ku({fnp}n) � C for some constant C

and if nipi is any ordering of the cartesian product of natural numbers then also

{fnipi} ∈ S (X, Y ).
Further we will say that an (S )-class S has the property (U ) if

∑
fn is weakly

unconditionally Cauchy (WUC), i.e. if Ku({fn}) < ∞ for every {fn} ∈ S .

The following proposition strengthens some results in [J2].

Proposition 1. Let X , Y be Banach spaces and let S (X, Y ) be an (S )-class
of sequences {fn} of compact operators such that for every f ∈ L (X, Y ) there is a
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sequence {fn} ⊂ K (X, Y ), {fn} ∈ S (X, Y ) with w′-
∑

fn = f . Let ‖ · ‖ be a norm
on L (X, Y ) equivalent to the sup norm on L (X, Y ) and suppose that S (X, Y ) has
the property (U ). Then the norm ||| · |||,

|||f ||| = inf
{
Ku({fn}) ; w′-

∑
fn = f, {fn} ∈ S (X, Y ), {fn} ⊂ K (X, Y )

}

for f ∈ L (X, Y ) is an equivalent norm on L (X, Y ) and the space K (X, Y ) is a

u-ideal in (L (X, Y ), ||| · |||).
�����. We first show that the norm ||| · ||| is equivalent to the usual sup norm.

We observe that ‖ · ‖ � ||| · ||| on L . In fact, by the definition of Ku({fn}), we have
‖f‖ � Ku({fn}) for any w′-

∑
fn = f . Passing to the infimum proves the claim.

Evidently ||| · ||| is a norm on L . Now we observe that (L , ||| · |||) is complete. To prove
this it is sufficient to show that if fp ∈ L ,

∞∑
p=1

|||fp||| < ∞ then
∞∑

p=1
fp ∈ L exists

in L and |||∑ fp||| �
∑ |||fp||| (cf. Theorem 6.2.3 [Pie]). To see this let {fnp}n ∈ S ,

fnp ∈ K be such that for each p we have w′-
∑
n

fnp = fp, Ku({fnp}n) � |||fp|||+ ε
2p .

If |x∗∗| � 1, |y∗| � 1 and if the sup norm | · | satisfies on L (X, Y ) the inequality

| · | � c‖ · ‖ then we have for suitable ηi = ±1
n∑

i=1

∣∣x∗∗(f∗ipy∗)
∣∣ = x∗∗

( n∑

i=1

εif
∗
ipy

∗
)

� c

∥∥∥∥
n∑

i=1

εifip

∥∥∥∥(1)

� cKu({fnp}n) � c|||fp|||+
cε

2p
for all n.

Let {gi} = {fnipi} be a reordering of {fnp} into a sequence. Then we have

(2)
∑

x∗∗(g∗i y∗) =
∑

n,p

x∗∗(f∗npy
∗) =

∑

p

x∗∗(f∗p y∗)

because by (1) the convergence is absolute.
Observe now that

∑
p

fp ∈ L converges in the norm ‖ · ‖ because ‖fp‖ � |||fp|||,

and similarly also
∞∑

p=1
fnp ∈ K exists in the norm ‖ · ‖ because K is ‖ ‖-complete.

Indeed, we have
∑

p

‖fnp‖ �
∑

p

Ku({fnp}n) �
∑

|||fp|||+ ε

for all n and thus by the assumption (iii) we have made on the class S it follows

that {gi} ∈ S (X, Y ). Now (2) implies that

w′-
∑

i

gi =
∑

p

fp.
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This implies that

(3)∣∣∣
∣∣∣
∣∣∣
∑

fp

∣∣∣
∣∣∣
∣∣∣ � Ku({gi}i)

= sup

{
max

(∥∥∥∥
n∑

j=1

εjgj

∥∥∥∥,

∥∥∥∥
∑

p

fp − 2
∑

i

ηigi

∥∥∥∥
)
; n � 1, |εj| � 1, 0 � ηi � 1

}

� sup
{
max

(∥∥∥∥
n∑

i,p=1

εipfip

∥∥∥∥,

∥∥∥∥
∑

p

fp − 2
∑

i,p

ηipfip

∥∥∥∥
)
; n � 1, |εip| � 1, 0 � ηip � 1

}

� sup
{
max

( n∑

p=1

∥∥∥∥
n∑

i=1

εipfip

∥∥∥∥,
∑

p

∥∥∥∥fp − 2
∑

i

ηipfip

∥∥∥∥
)
; n � 1, |εip| � 1, 0 � ηip � 1

}

�
∑

p

Ku({fnp}n)) � ε+
∑

p

|||fp|||,

showing that Ku({gi}) < ∞ and |||∑
p

fp||| �
∑
p
|||fp|||. In (3) we have used that the

sums
∑

fp and
∑
i,p

εipfip absolutely converge in the norm ‖ · ‖. Finally, the open

mapping theorem yields that the norms ||| · ||| and ‖ · ‖ are equivalent.
To show that K (X, Y ) is an ideal in L = (L (X, Y ), ||| · |||) we again follow [J2],

namely we define the projection P in L ∗:

(4) (Pϕ)f =
∑

ϕ(fn) for ϕ ∈ L ∗ and for f ∈ L ,

where w′-
∑

fn = f , {fn} ∈ S and {fn} ⊂ K (X, Y ).
Now we observe that the sum in (4) converges and does not depend on the se-

quence {fn} with w′-
∑

fn = f . Indeed, let sn =
n∑
i

fi. The uniform bounded-

ness principle implies that {ϕ(sn)} is bounded and thus lim sup
n

ϕ(sn) = lim
k

ϕ(snk
)

and lim inf
n

ϕ(sn) = lim
k

ϕ(smk
) for suitable subsequences {nk} and {mk} of nat-

ural numbers. Thus lim supϕ(sn) − lim inf ϕ(sn) = lim
k

ϕ(snk
− smk

) = 0, be-

cause snk
− smk

→ 0 weakly by (K). Similarly we show that if {gn} ⊂ K then∑
ϕ(fn) =

∑
ϕ(gn) for any ϕ ∈ K ∗. Thus P is well defined.

Now it is not difficult to check that P is a bounded linear projection in L ∗ and

that Ker P = K ◦ (cf. [J2]).
Given ε > 0 we choose |||ϕ||| = 1, |||f ||| = 1 so that |||P ||| � P (ϕ)(f) + ε. Thus

|||P ||| �
∑

ϕ(fn) + ε � sup
m

∞∑

i=1

ϕ(fm) + ε � |||ϕ||| sup
m

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

fi

∣∣∣∣
∣∣∣∣
∣∣∣∣+ ε � Ku({f̂n}n) + ε

� Ku({fn}n) + ε � |||f |||+ 2ε � 1 + 2ε
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for suitable w′-
∑

fn = f , Ku({fn}) � |||f |||+ ε. Here we have used that by (ii)

{f̂n} = {f1, . . . , fm, 0, 0, . . .} ∈ S (X, Y )

and w′-
∑

f̂n =
m∑

i=1
fi.

Finally, we suppose that the class S (X, Y ) has the property (U ) and show that

|||ϕ − 2Pϕ||| � |||ϕ|||

for all ϕ ∈ L ∗. Indeed, let f ∈ L . Then

|||ϕ− 2Pϕ||| = sup
{
lim
n

∣∣∣∣
(

f − 2
n∑

i=1

fi

)
ϕ

∣∣∣∣ ; f ∈ L , |||f ||| � 1
}

(5)

� |||ϕ||| · sup
n

{∣∣∣∣
∣∣∣∣
∣∣∣∣f − 2

n∑

i=1

fi

∣∣∣∣
∣∣∣∣
∣∣∣∣ ; f ∈ L , |||f ||| � 1

}
.

Let ε > 0, f ∈ L and let {fn} ⊂ K (X, Y ) be the sequence from S such that

w′-
∑

fn = f and such that ‖Ku({fn})‖ � |||f ||| + ε. Let m be fixed and let {f̂n} =
{f1, f2, . . . , fm, 0, 0, 0, . . .} ∈ S . Then {gn} = {fn − 2f̂n} ∈ S , gn ∈ K (X, Y ) and

w′-
∑

gn = f − 2
m∑

i=1
fi. Thus

∣∣∣∣
∣∣∣∣
∣∣∣∣f − 2

m∑

i=1

fi

∣∣∣∣
∣∣∣∣
∣∣∣∣ � Ku({gn}n) � Ku({fn}) � |||f |||+ ε.

The middle inequality follows by a simple calculation directly from the definition of
Ku({fn}).
The last inequality together with (5) imply that K (X, Y ) is u-ideal in L . �

Corollary 1. Let every operator f ∈ L (X, Y ) be factorable through a Banach

space Zf , Zf having a shrinking unconditional basis (more generally an uncondi-

tional shrinking finite-dimensional decomposition). Then K (X, Y ) is a u-ideal in

(L (X, Y ), ||| · |||) where ||| · ||| is a norm equivalent to the sup norm | · | on L (X, Y ).

�����. Let the class S (X, Y ) consist of all sequences {fn} of the form fn =
AknB, where f ∈ L (X, Y ) and f = AB is the factorization of f through Zf , Zf

having a shrinking 1-unconditional basis. (Note that Zf may vary with f .) Let ‖ · ‖
be the factorization norm on Z (X, Y ) defined by

‖f‖ = inf |A| · |B| ·Ku({kn}n) for f ∈ L (X, Y ).
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Here the kn’s are the canonical projections onto the subspaces of Zf which form

the shrinking 1-unconditional decomposition of Zf , so that Ku({kn}n) = 1 and
Ku({kn}n) is computed in the norm | · |. The infimum is taken over all the above
described factorizations f = AB.

Below we observe that ‖ · ‖ is a norm and similarly as in the proof of Proposition
1 we can show that ‖ · ‖ is equivalent to the sup norm on L (X, Y ).

Notice also that ||| · ||| = ‖ · ‖ where ||| · ||| is the norm from Proposition 1. (The norm
||| · ||| is built on the norm ‖ · ‖.) Indeed, |||f ||| � Ku({AknB}n) � |A||B|Ku({kn}n) �
‖f‖+ ε for a suitable factorization f = AB of f . On the other hand, by definition
we have Ku({fn}) � ‖f‖ for each w′-

∑
fn = f .

S (X, Y ) has the property (U ) with respect to the factorization norm ‖ · ‖ on
L (X, Y ) and has all the properties we have demanded for the class S (X, Y ). We

shall only show that S (X, Y ) is closed in the sense described in the definition.
Thus let {fnp}n ∈ S (X, Y ) be such that

∑
p
‖fnp‖ =

∑
p
|||fnp||| �

∑
Ku({fnp}n) �

C, w′-
∑
n

fnp = fp and let fnp = bpknpap where fp = apbp are the factorizations

through Banach spaces Zp, Zp having a countable finite-dimensional unconditional

decomposition given by the projections {knp}. Having in mind the definition of the
norm ‖ · ‖ we assume that |ap||bp|Ku({knp}n) < ‖fp‖ + ε

2p , where Ku({knp}n) = 1.
According to [Pie, Lemma 8.6.4.] we may further assume that 1 = |b1| � |b2| � . . . �
0, lim

p
|bp| = 0 and that

∑ |ap| �
∑ ‖fp‖+ ε. Let Z =

( ∞⊕
n=1

Zp

)
c0
be the c0-sum of

Zp’s with the sup norm. Let qp be the projections of Z onto Zp and let ip be the

imbeddings of Zp into Z. Let us writeKnp = ipknpqp ∈ K (Z), Ap = apqp ∈ L (Z, Y )
and Bp = ipbp ∈ L (X, Z). Then Z also has a 1-unconditional finite-dimensional

decomposition Z =
∞⊕

n,p=1
Knp =

∞⊕
i=1

Knipi where {Knipi} is any reordering of {Knp}

into a sequence. Let B : X → Z be defined by Bx =
∑

Bp ∈ Z and let A : Z → Y ,

Az =
∑
p

Apz. Then evidently |B| � 1 and |A| �
∑ |Ap| �

∑ |ap| �
∑
p
‖fp‖+ ε. We

easily see that fnp = AKnpB are factorizations through Z. Now

w′-
∑

i

fnipi = A ◦
(

w′-
∑

i

Knipi

)
◦B = AB

and thus {fnipi}i = {AKnipiB}i ∈ S (X, Y ).
Similarly we observe that S (X, Y ) is closed under addition. Indeed,

fn1 + fn2 = A(Kn1 +Kn2)B

and thus w′-
∑
n
(fn1 + fn2) = f1 + f2 and by definition {fn1 + fn2}n ∈ S (X, Y ) and

‖f1 + f2‖ � |A||B|Ku({Kn1 +Kn2}n).
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Having in mind that |A| �
2∑

p=1
|fp|+ ε and that

Ku({Kn1 +Kn2}n) � max
p

Ku({Knp}n) � 1

we see that ‖ · ‖ is a norm.
Finally, we observe that the class S has the property U with respect to the norm

‖ · ‖. Indeed,

n∑

i=1

εifi = A ◦
( n∑

i=1

εiki

)
◦B and f − 2

n∑

i=1

ηifi = A ◦
(
IdZ −2

n∑

i=1

ηiki

)
◦B

and thus

max

{∥∥∥∥
n∑

i=1

εifi

∥∥∥∥,

∥∥∥∥f − 2
n∑

i=1

ηifi

∥∥∥∥
}

� |A| · |B| ·Ku({kn}n)

for all n > 1, all |εi| � 1 and all 0 � ηi � 1. �

Remark 1. We could alternatively have used instead of Ku({fn}) the number

K̃u({fn}) = lim sup
n

{
max

(∥∥∥∥
n∑

i=1

εifi

∥∥∥∥,

∥∥∥∥f − 2
n∑

i=1

ηifi

∥∥∥∥
)
; |εi| � 1, 0 � ηi � 1

}
.

Also we could have defined an equivalent norm ||| · |||1 = infKu({fn}) where the
Ku({fn}) is built from the sup norm | · |. Corollary 1 holds also for this norm,
i.e. K (X, Y ) is a u-ideal in (L (X, Y ), ||| · |||). ||| · ||| is equivalent to the norm ‖ · ‖ and
thus to the sup norm | · |. The same holds for the norms built from K̃u({fn}).

Remark 2. The corollary applies in particular when every f ∈ L (X, Y ) is
factorable through a Hilbert space. This is for example the case of L (P, P ∗), where

P is any Pisier space [Pi], [J1]. Note that the canonical basis in the Hilbert space is
1-unconditional so that we can easily see that the norm ||| · ||| is equal to the usual γ2
norm, i.e. the factorization norm through a Hilbert space. Thus

K (P, P ∗) is a u-ideal in L (P, P ∗), where the latter space is equipped with the γ2
norm.

This strengthens a result in [J1, J2].

Remark 3. In Proposition 1 we have supposed that each f ∈ L (X, Y ) is suit-

ably factorable. Nevertheless Proposition 1 remains also valid for smaller classes of
operators:
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Proposition 1a. Let X , Y be Banach spaces, let Z (X, Y ) ⊂ L (X, Y ) be a

vector subspace (not necessarily closed in the sup norm | · |) and let S (X, Y ) be an
(S )-class of sequences {fn} ⊂ K (X, Y ) which has the property (U ) with respect
to the norm ‖ · ‖. Suppose that for every f ∈ Z (X, Y ) there is a sequence {fn} ⊂
Z (X, Y ) ∩K (X, Y ), {fn} ∈ S (X, Y ) with w′ −∑

fn = f and let ‖ · ‖ � | · | be a
complete operator ideal norm on Z (X, Y ). Then the norm ||| · |||,

|||f ||| = inf{Ku({fn}) ; w′-
∑

fn = f, {fn} ∈ S (X, Y ), {fn} ⊂ K (X, Y )∩Z (X, Y )}

for f ∈ Z (X, Y ) is an equivalent norm on (Z (X, Y ), ‖ · ‖) and Z (X, Y )∩K (X, Y )

is a u-ideal in (Z (X, Y ), ||| · |||).

�����. For the proof that Z (X, Y ) ∩K (X, Y ) is a u-ideal in (Z (X, Y ), ||| · |||)
we only have to substitute L by Z and K by K ∩Z in the proof of Proposition

1. So it remains to observe that ||| · ||| is a norm equivalent to the norm ‖ · ‖. Again
we show that (Z , ||| · |||) is complete. We follow the proof of Proposition 1 having in
mind that | · | � ‖ · ‖ � ||| · |||. Thus∑

fp converges in the Banach space (Z , ‖ · ‖) and
similarly

∑
p

fnp ∈ K ∩Z exists because K is | · | complete and L is ‖ · ‖ complete.
This completes the sketch of the proof. �

Variants of Proposition 1a where the norm ‖·‖ is a factorization norm on Z (X, Y )

are also possible. Again we denote by | · | the sup norm.

Proposition 2. Let (A , | · |A ) be a normed operator ideal and let Z (X, Y ) be

a class of all operators f : X → Y which are factorable through a Banach space

Z = Zf , f = AB where B ∈ L (X, Z), A ∈ A (Z, Y ). Suppose further that there is

a sequence {kn} ⊂ K (Zf ) such that Ku({kn}n) is finite and such that w′-
∑

kn =
IdZf
. Let the (S )-class S (X, Y ) consist of all sequences {fn} of the form fn =

AknB, where f ∈ Z (X, Y ) and f = AB is the above described factorization of f

through Zf with A ∈ A (Z, Y ). (Note that Zf may vary with f .) Let the norm ‖ · ‖
on Z (X, Y ) be defined by

‖f‖ = inf |A|A · |B| ·Ku({kn}n) for f ∈ Z (X, Y ).

The infimum is taken over all above described factorizations f = AB, w′-
∑

kn =

IdZf
, Ku({kn}n) < ∞ and A ∈ A .

Then S (X, Y ) is an (S )-class which has the property (U ) with respect to the

operator norm ‖·‖ on Z (X, Y ).

Thus Proposition 1a yields that K (X, Y ) ∩ Z (X, Y ) is a u-ideal in (Z (X, Y ),
||| · |||) = (Z (X, Y ), ‖ · ‖).
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�����. First we observe that if f ∈ Z (X, Y ) and fn = AknB are as in the

proposition then fn ∈ K (X, Y ) ∩Z (X, Y ) and w′-
∑

fn = f . Next we notice that
‖ · ‖ is a norm and that S (X, Y ) is an (S )-class with the property (U ). The
argument is the same as in the proof of Corollary 1. We just write |A|A instead of
|A | for A ∈ A (Zf , Y ). �

Remark 4. Proposition 2 remains valid if we suppose the factorizations f = AB

in the form A ∈ L (Z, Y ) and B ∈ B(X, Z) where (B, | · |B) is a normed operator
ideal. Of course the norm ‖ · ‖ on Z (X, Y ) is then defined by

‖f‖ = inf |A| · |B|B ·Ku({kn}n).

Proposition 2 has for example the following two special cases:

A) Let X, Y be Banach spaces and let Γ2(X, Y ) ⊂ L (X, Y ) be the set of all oper-

ators from L (X, Y ) which are factorable through a Hilbert space. Then K (X, Y )∩
Γ2(X, Y ) is a u-ideal in (Γ2(X, Y ), γ2).

Notice that as in Remark 2 we have ||| · ||| = γ2.

It is well known that every 2-summing operator f : X → Y may be factored
through a Hilbert space H as f = AB where A : X → H is 2-summing. Let (P2, P2)

denote the operator ideal of 2-summing operators [Pie]. Then Proposition 2 with
Remark 3 give

B) K (X, Y ) ∩ P2(X, Y ) is a u-ideal in (P2, P2)(X, Y ) for any Banach spaces
X, Y .

Acknowledgement. The author is indebted to Dirk Werner for valuable discus-
sions on subjects closely connected with the paper.
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