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THE FUBINI THEOREM AND CONVOLUTION
OF VECTOR-VALUED MEASURES

MILOSLAV DUCHON, Bratislava

Let X be a Banach algebra. Let ¢ be a compact Hausdorff topological
semigroup. Denote #(G) the o-algebra of Borel sets in &. If m: A(G) > X
and n:%(G)— X are regular Borel measures both with finite wvariation,
then their convolution is a regular Borel measure on Z(G), with finite variation,
with values in X which can be defined in two equivalent ways.

In the first definition, for each Borel subset D of G, m * n(D) is defined
to be m @ n(E), where E is the Borel subset {(s, ) :st € D} of & < G and
m & n is the unique regular Borel measure on Z#(G X G ), with finite variation,
with values in X such that

d(m ®@n) = f{fgstdm )} dn(t)
¢ oG

GXG

for all continuous functions g on @ X G.
In the second definition, m xn is taken to be the unique regular Borel
measure on (), with finite variation, with values in .\ satisfyving

ffd(m*n f{ff (st) dm(s)} dn(t)

for all continuous functions f on ¢ [cf. 5].

We wish to prove that both definitions are equivalent. similarly as in a
complex case [cf. 3 and 9]. Also the first definition makes it possible. in case &
is a group, to give m * n explicitly by the formula

mx (D) = [ m(De~1) dn(t) = [ n(s~1D) dm(s)
G ¢

for each D in #(G). For this and other purposes the Fubini theorem for vector-
-valued measures is needed. Thus we establish a theorem of this kind convenient
for our purposes.
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1. Vector-valued measures in product spaces

Let X, Y and Z be Banach spaces. Let a bilinear continuous mapping
of X X Y into Z be given, denoted by juxtaposition, z =zy, € X, ye T,
zeZ (Jay| < |#| |ly]). Let S and T' be compact Hausdorff topological spaces.
Denote by Z(S), B(T') the o-algebra of Borel sets in S, T', respectively. For our
purposes it is convenient to introduce a vector-valued measure in the product
space S X T' by means of dominated operators introduced by Dinculeanu
[ef. 4, p. 379] and we use the terminology from his book. By C(S) is meant,
as usual, the Banach space of all continuous functions f : § - C (C = real line
or complex plane) equipped with the standard supremum norm. Following
Dinculeanu [4, p. 379] we say that a linear operator U : C(S) — X is dominated
if there is a regular positive Borel measure @ such that

()] < [1flda

for every f in C(S). According to [4, p. 380] there is an isomorphism U «»> m
between the set of the dominated linear operators U : C(S) - X and the set
of the regular Borel measures m : Z(S) — X with finite variation p = |m ,
given by the equality
U(f) = _ffdm, for every f e C(S).
S

The measure u = |m| is a least positive regular measure ¢ dominating U.

Let m : Z(S) - X and n : Z(T) — Y be regular Borel measures with finite
variation, © = |m|, v = |n|, respectively. Then the mappings

U(f) = [fdm, feC(S),
S

V(g) = [gdn, geC(T)
T
are the dominated operators from C(S) into X, C(T) into Y, respectively.
Take now & in C(S X T). Then for every s €8, the mapping ¢ — h(s, t) i~
a continuous function on 7'. Further the mapping from § into Z, given by the
relation -

s — [ (s, t) dn(t)

T

is continuous. We have

| {[ B(s, ) dn(®)} dmi(s)| < [ { ] ik(s, £) dln| ()} d[m] ().
S T S T
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It is easy to see that the mapping given by
W [ { [ K(s, t) dln| ()} d}m] (s), k € C(S X T),
s T

is a positive linear functional on C(S X 7T') and thus the mapping 1V, given
by the formula

W) = [ { ] his, t) dn(t)} dm(s), heC(S x T),
S T

is a dominated linear operator on C(8 X 7') into Z [4, p. 392]. Therefore there
exists a regular Borel measure ! : #(S X T') - Z with finite variation ¢ = [I|
such that
W(h) = [ hadl, for every h e C(S X T).
SxT

We denote the measure I by I = m ® n. Similarly |m| ® |r|is a unique positive
regular Borel measure on #Z(8 X T') such that

[ {[ B(s,t) dln|(®)} d|mi(s) = [ Ldim| @ |n|

S T SxT
for every h e C(S X T).

Since we have

W@ = [ Ik(s, )] dim| @ |nl(s, )
T

Sx

and m ® n] is a least positive regular Borel measure b such that

Ww) = [ |his, )] db(s, 1),

SxT

we obtain p = |m @ n] £ |m| ® |n|. Clearly

J' hdm @n = f {f h(s, t) dn(t)} dm(s)
SXT s 7
for every function € C(S x T).

We remark that |m| ® |n|, |m ® | and m & n are defined on the s-algebra
AB(S x T) which contains the product ¢-algebra Z(S) X #(T'). The inclusion
A(8) x A(T) CH(S X T) may be proper if neither S nor 7 is metrisable
[ef. 2]. Therefore |m| X |n| as defined in [1] or m X % as defined in [6] need
not be a Borel measure [cf. 7). Thus |m| ® |n| is the unique regular Borel
extension of |m| X |n] and m ® » is the unique regular Borel extension
of m X n.

Since every function in C(S X7T) can be uniformly aproximated by fun-
ction wich are finite sums of type
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(8:t) = 2 fils)gu(t)
with f;eC(S) and ¢;eC(T), all functions in C(SxT') are m Xmn-integrable
[4, p. 138] and we may write
[ hdm @n= [ hdm x n= [ {] ks, t)dn(t)} dm(s)
SXT SXT s 7

for every h e C(S x 7).

2. The Fubini theorem

We take the measures m and n as in Section 1. The proof of the Fubini
theorem is based on some lemmas.

Lemma 1. Let u = |m|. For every function fe LS, u) there exists a se-
quence (fx) of the functions in C(S) converging to f in mean and u-almost every-
where.

Proof. The space C(8) is dense in £1(S, u) [4, p. 325]. So for every natural
number 7 there exists a sequence (%,) in C(S) such that

1
[ b — fldpe <—.
S n

Thus the sequence (k,) converges to f in mean. According to [4, p. 130] the
sequence (h,) contains a subsequence (fx) converging u-almost everywhere
and in mean to f.

Lemma 2. Let Z be a set of u ® v-measure 0 in S X T'. Then for u-almost
s € 8 we have v(Z;) = 0, 1.e. there exists a set P of u-measure 0 such that v(Z;) = 0
for s ¢ P.

Proof. We have, using the Fubini theorem for positive Borel measures
[8, p. 153]

0=pnQ@v2Z) = [czdu ®v =Sf { [ cz(s, t) dv(t)} du(s) =
T
= [ {] ez(6) dv(®)} du(s) = [ »(Zs) du(s),
S T S

where ¢z denotes the characteristic function of the set Z.

Theorem 1 (Fubini). Let f be a scalar function on S X T. Let f € 1S x T,
u®»), u=|ml,v = |n|. Then

fis m ® n-integrable;

Sfor u = |m|-almost all s, the map fs: t— f(s,t), is in ST, »);
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the map guven by

s [fedn
T

for u-almost all s (and defined arbitrarily for other s) is in ZL¥(S, n) and
we have

. J”de(m ®n) = f {q[f(s, 8) dn(t)} dm(s)

Proof. The fact that f is m ® n-integrable follows [4, p- 132] from the
inequality |m @ n] £ m] ® |n| = p @ ».
By Lemma 1 there exists a sequence (f,) in C(S X T') converging to f u @ »-

-almost everywhere and in mean, i.e.

im [ |f(s,t) — fals, 1) dp @ (s, 8) = 0.

n->o SxT
From there we have

m | |f(s;t) — fals, t)] dlm @ nl(s, ) = O

n->0 SxT

therefore

lim | [ (f(s, 8) — fals, ) dm @ n(s, )] = 0 ,

n->0 SxT

that is
lim | Ja(s, t) dm ® n(s, t) Jj'(s t) dm @ n(s, t) .

n>o SXT SxT

Let Z be a set of 4 @ v-measure 0 in S X T such that (fz) converges to f
outside Z and P denote a set of u-measure 0 in S (Lemma 2) such that for
s ¢ P we have

1"(Z‘g) == O.

If s ¢ P, it follows that (fas) converges pointwise to f; on the complement
of Zs.

For each n the map gu: s — fus is a map of 8 into C(T') C £YT, v). The
sequence (g) is Cauchy in,?_lg,(,)(S, u). In fact, we have

Niugn — gm) = f |gn — gm].zn(v) du = f |gn(s) — gm(s)lz’;(v) du(s) =
5 S

=1

fn(s t) — fm(s, t)| dv(t) du(s) = f lfn — fmldp @v—>0,

SxT

(S ‘i:-

as m, n— . Since the space £}, (S, u) is complete there is a function
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g:8—~>ZYT,») such that (g9,) (taking subsequences if necessary) converges
to g u-almost everywhere and in mean, i.e.

lim ' 192 — gleryy dp = lim f |g2(8) — 9(8)| 1y duls) = 0 N

n->wo S n->o S
This means that there is a set @ of u-measure 0 in S such that for s ¢ @, the
sequence (g(s)) = (fr,s) is Cauchy in LT, »), i.e.

' ign(s) — gm(s)| dv = f |fn.s — fm,sl dv >0,
7 7

asm,n—>ooforsé¢q.

If s ¢ P U@, we know that (fys(f)) converges to fs(t) for v-almost all ¢ € 7'.
Hence by [4, p. 133] we conclude that fs € YT, v) C LYT,n) and that
(fn,s) is LT ,v)-convergent to fs, so that

]ffnsdn——ffsd’nl ]fns—f,sldv-—>0

as m,n—>oo,for all s¢ PUQ, i.e. ffn,s d» converges to ffs dn for s¢ PUQ.
T T
Finally, we note that the map &y,
ha(s) = [ fu,s dn,
T

is a continuous function from 8 into Y, ks € Cy(S) C Z%(S, 1). Furthermore,
(%y) is Cauchy in LL(8, u),

f lhn — hm| dp = f lha(8) — hm(s)| du(s) =
5 5

=[] fasdn — j[fm,s dn| du(s) = S[Tf [fn.s — fm,s] dv du(s) -0,

57
as m, n — oo, and since for s ¢ P U Q ha(s) converges to

h(s) = [ fsdn ,
T

(Bn) is L3(8S, p)-convergent to k, and k is in Z£3(8S, u).

‘For n — o0 we have

| [ J'f,,,s dn dm(s) — f ffs dndm(s)| £ f | ff,,,s dn — ffs dn| du(s) -0,
S T T

ST ST
ie.

lim " [f,, (s, t) dn(t) dm(s

n>o ST

t) dn(t) dm(s) ,

Zite—,
e

but
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lim [ [ fa(s, t) dn(t) dm(s) =lim [ fa(s, t) dm @ n(s, t) =

n>x ST n->0 SxT
= [ fls,t)dm @ n(s,?),
SxT
ie.

| fs,0)dm @m) = [ { [ f(s,¢) dn(t)} dm(s) .
S T

SxT
Corollary. Let Q be @ Borel set in S X T. Then we have
f cgd(m ®n) = J' J'cqs dndm(s) = f chs(t) dn(t) dm(s) .
SXT Iy sT

3. Images of measures and the convolution formula

Let T and S be compact Hausdorff spaces and suppose that p:7 — S
is a continuous function. Let X be a Banach space and m : #(T') — X a regular
Borel measure with finite variation x on 7'. For every 4 € #(S) we put

n(d) = m(p=1(4))
and

W) = up=1(4)) .

Since p~1(4) € #(T) for every A € #(S), n and v are well defined, » has finite
variation, |n| < », and # is regular [4, p. 402—403]. The regular Borel measure
n 1 #B(8) - X is called the image of m by the function p and is denoted p(m) [4].
Then » is denoted p(u) and the inequality |»| < » is now written |p(m)| =
< p(|m]). Since y is bounded, p(u) is bounded.

Let now S = @ be a compact Hausdorff topological semigroup, and 7' =
=G X G. Let m : Z(G) — X and n : #(GF) - Y be two regular Borel measures
with finite wvariation u and », respectively. Let ui » and m! n denote
the measures, which are the images of 1 @ v, m @ n, respectively by the
semigroup operation p(s, t) = st,

vy =pp ®@v), min=pmQemn).
Let feC(S). Then fe LY G, ulv) and fop e LYG X G, p ® ») [4, p- 404]
and we have

Jfopdm®n=é(fdp(m®n>,

Gx G

in other words
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[ flst) dm @ n(s, t)_jfdm,

GxG

Since the last equality holds for every function f € C(G), we have
ffdm*n_ ff(st ydm ® n(s, t) = ffdm.n

Gx@

for every f € C(G). However this means that
mEn = mi n
on #4(@) [4, p- 326].

If G is a group, then the convolution formula is an easy consequence of
Corollary of Theorem 1.

Theorem 2. Let G be a compact Hausdorff group, m and n regular Borel
measures on B(Q) with finite variation and with values in X and Y, respectively.
Then, for each Borel subset D of G
(1) t — m(Dt-1)

18 an n-integrable function on G and we have

(2) m * n(D) = ( m(Dt=1) dn(?) .
e

Proof. We have, putting £ = p~1(D),

[ ca(s, t) dm(s) = m(Dt-1) ,
G

and

m*n(D)=m Q@ nE { cedm @n = f {l ce(s, t) dm(s)} dn(t) ,
&

Gx G

using the fact that if ge PYG, u*v), then gop e LG X G, w C n)
and we have

fg pdm @n = fgdm*n

GxG

cf. 1. p. 404], in particular for ¢ = cp.
P
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