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Matematický časopis 23 (1973), No. 2 

THE FUBINI THEOREM AND CONVOLUTION 
OF VECTOR-VALUED MEASURES 

MILOSLAV DUCHON, Bratislava 

Let X be a Banach algebra. Let G be a compact HausdorfF topological 
semigroup. Denote 8fi{G) the cr-algebra of Borel sets in G. If m : 3${G) -> X 
and n : SS{G) -> X are regular Borel measures both with finite variation, 
then their convolution is a regular Borel measure on 2%{G), with finite variation, 
with values in X which can be defined in two equivalent ways. 

I n the first definition, for each Borel subset D of G, m * n{D) is defined 
to be m ®n{E), where E is the Borel subset {{s, t) : st e D) of G X G and 
m (x) n is the unique regular Borel measure on 23{G X G ), with finite variation, 
with values in X such that 

J* g d{m ® n) = J* { J g{s, t) dm{s)} dn{t) 
GxG G G 

for all continuous functions g on G X G. 
I n the second definition, m * n is taken to be the unique regular Borel 

measure on Sft{G), with finite variation, with values in X satisfying 

\îd(m*n) = j { j f(st) dm(s)} dìi(t) 
o в 

for all continuous functions/on G [cf. 5]. 
We wish to prove that both definitions are equivalent, similarly as in a 

complex case [cf. 3 and 9]. Also the first definition makes it possible, in case G 
is a group, to give m * n explicitly by the formula 

m * n{D) = j m{Dt~1) dn{t) = f n{s~W) dm{s) 

for each D in 8ft{G). For this and other purposes the Fubini theorem for vector-
-valued measures is needed. Thus we establish a theorem of this kind convenient 
for our purposes. 
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1. Vector-valued measures in product spaces 

Let X, Y and Z be Banach spaces. Let a bilinear continuous mapping 
of i r X T into Z be given, denoted by juxtaposition, z = xy, x e X, ye Y, 
z eZ (\xy\ < \x\ \y\). Let S and T be compact Hausdorff topological spaces. 
Denote by 33(S), 33(T) the c-algebra of Borel sets in S, T, respectively. For our 
purposes it is convenient to introduce a vector-valued measure in the product 
space S X T by means of dominated operators introduced by D i n c u l e a n u 
[cf. 4, p . 379] and we use the terminology from his book. Byr C(S) is meant, 
as usual, the Banach space of all continuous funct ions/ : S -> (7 (C = real line 
or complex plane) equipped with the standard supremum norm. Following 
Dinculeanu [4, p . 379] we say tha t a linear operator U : C(S) -> X is dominated 
if there is a regular positive Borel measure a such tha t 

iU(/)i ^ f | / | d « 
s 

for e v e r y / in C(S). According to [4, p . 380] there is an isomorphism U<-> w 
between the set of the dominated linear operators U : C(S) -> X and the set 
of the regular Borel measures m : 33(S) -> X with finite variation ji = \m , 
given by the equality 

U(f)= \fdm, for every / e C(S). 
s 

The measure jit = \m\ is a least positive regular measure a dominating U. 
Let m : 33(S) -> X and n : 33(T) -> Y be regular Borel measures with finite 

variation, /LI = \m\, v = \n\, respectively. Then the mappings 

£/(/) = / / d m , feC(S), 
S 

V(g)= \gdn, geC(T) 
T 

are the dominated operators from C(S) into X, C(T) into Y, respectively. 
Take now h in C(S X T). Then for every s eS, the mapping t->h(s,t) i* 
a continuous function on T. Further the mapping from S into Z, given by the 
relation 

s -> J h(s, t) dn(t) 

T 

is continuous. We have 

| \ {\h(s,t)dn(t)}dm(s)\ < J {J [h(s, t) d\n\ (t)}d\m\ (s). 
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I t is easy to see tha t the mapping given by 

% - > / { / h(s, t) d\n\ (t)} d\m\ (s), heC(S XT), 
S T 

is a positive linear functional on C(S X T) and thus the mapping IV, given 
by the formula 

W(h) = J { J h(s, t) dn(t)} dm(s), h e C(S x T), 
S T 

is a dominated linear operator on C(S X T) into Z [4, p . 392]. Therefore there 
exists a regular Borel measure I: &(S X T)->Z with finite variation Q = \l\ 
such tha t 

W(h) = j hdl, for every heC(S XT). 
SxT 

We denote the measure I by I = m ® n. Similarly \m\ ® \n\ is a unique positive 
regular Borel measure on 33(S X T) such tha t 

\{\h(s,t)d\n\(t)}d\m\(s)= \ hd\m\®\n\ 
S T SxT 

for every h e C(S X T). 
Since we have 

\W(h)\ ^ { \h(s,t)\d\m\ ®\n\(s,t) 
SxT 

and \m ® n\ is a least positive regular Borel measure b such tha t 

\W(h)\^ | \h(s,t)\ db(s,t), 
SxT 

we obtain o = \m ® n\ ^ \m\ ® \n\. Clearly 

J h dm ®n=j{\ h(s, t) dn(t)} dm(s) 
SxT S T 

for every function h e C(S X T). 
We remark tha t \m\ ® \n\, \m ® n\ and m ® n are defined on the cr-algebra 

&(S X T) which contains the product c-algebra @l(S) X SS(T). The inclusion 
3(S) X M(T) C @(S X T) may be proper if neither S nor T is metrisable 
[cf. 2]. Therefore \m\ X \n\ as defined in [1] or m X n as defined in [6] need 
not be a Borel measure [cf. 7]. Thus \m\ ® \n\ is the unique regular Borel 
extension of \m\ X \n\ and m (x)n is the unique regular Borel extension 
of m X n. 

Since every function in C(SxT) can be uniformly aproximated by fun­
ction wich are finite sums of type 
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(M) -*2M*)gi{t) 

withfieC(S) and gteC(T), all functions in C(SxT) are mXw-integrable 
[4, p. 138] and we may write 

\ h dm ®n = j h dm X n = \ { \ h(s, t) dn(t)} dm(s) 
SxT SxT S T 

for every h e C(S X T). 

2. The Fubini theorem 

We take the measures m and n as in Section 1. The proof of the Fubini 
theorem is based on some lemmas. 

Lemma 1. Let JLC = \m\. For every function f e ^1(S, fx) there exists a se­
quence (fn) of the functions in C(S) converging to f in mean and /u-almost every­
where. 

Proof. The space C(S) is dense in ^X(S, ju) [4, p. 325]. So for every natural 
number n there exists a sequence (hn) in C(S) such that 

- 1 
J \hn-f\d[l < - . 
s n 

Thus the sequence (hn) converges to / in mean. According to [4, p. 130] the 
sequence (hn) contains a subsequence (fn) converging ^-almost everywhere 
and in mean to /. 

Lemma 2. Let Z be a set of /a ® v-measure 0 in S X T. Then for /u-almost 
s eS we have v(Zs) = 0, i.e. there exists a set P of ju-measure 0 such that v(Zs) = 0 
for s $P. 

Proof. We have, using the Fubini theorem for positive Borel measures 
[8, p. 153] 

0 = ft ® v(Z) = Sczdfi®v = S iS CЖS'ř) dvW dM*) = 
s т 

= S í í czЏ) Mt)} dfi(s) = S v(Zs) dfi(s), 
S T S 

where Cz denotes the characteristic function of the set Z. 

Theorem 1 (Fubini). Let f be a scalar function on S X T. Let f e ^X(S X T, 
p> ®v), fi = \m\, v = \n\. Then 

f is m ® n-integrable; 
for ju = \m\-almost all s, the map fs: t ->f(s, t), is in Sf^T, v); 
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the map given by 

s-> I fs dn 
Ť 

for ja-ahnost all s (and defined arbitrarily for other s) is in 3?y(S, ft) and 
we have 

J fd(m ® n) = J { \f(s, t) dn(t)} dm(s) . 
S <T S T 

Proof. The fact that / i s m ® w-integrable follows [4, p. 132] from the 

inequality \m ®n\ ^ \m\ ® \n\ = p ® v. 

By Lemma 1 there exists a sequence (fn) in C(S X T) converging tofp ® v-
-almost everywhere and in mean, i.e. 

lim J \f(s91) - fn(s, *)|d/*® v(s, t) = 0. 
n-*n SxT 

From there we have 

lim J \f(s,t)-fn(s,t)\d\m®n\(s,t) = 0, 
n-*<x> SxT 

therefore 

lim | J (f(s, t) - fn(s, t)) dm ® n(s, t)\ = 0 , 
n-*co SxT 

that is 

lim | fn(s, t) dm ® n(s, t) = J f(s, t) dm ® n(s, t) . 
n-+co SxT SxT 

Let Z be a set of JLC ® î -measure 0 in S X T such that (fn) converges to / 
outside Z and P denote a set of /^-measure 0 in S (Lemma 2) such that for 
s £ P we have 

v(Zs) = 0. 

If s <fc P, it follows that (fn,s) converges pointwise to fs on the complement 
ofZs. 

For each n the map gn: s->fnfS is a map of S into C(T) C ̂ ?1(T, v). The 
sequence (gn) is Cauchy in^^i{v)(S, ju). In fact, we have 

N!(gn — gm) = $ \gn — gm\^l(v) dp = J \gn(s) — gm{s)\*l{v) dju(s) = 
s s 

= $ \ \U(S, t) - fm(s, t)\ dv(t) dfl(s) = f |/n - fm\ dfl ® v -> 0 , 
S T SxT 

as m, n -> x . Since the space J&? î(v)($, [A) is complete there is a function 
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g : S ->£fl(T, v) such tha t (gn) (taking subsequences if necessary) converges 
to g ^-almost everywhere and in mean, i.e. 

lim J \gn - g\<r1{v) dp = lim J \gn(s) — g(s)\<?1(v) d^(s) = 0 /* 
yi-»oo S n->oo S 

This means that there is a set Q of /^-measure 0 in S such tha t for s $Q, the 
sequence (gn(s)) = (/»,s) is Cauchy in J§? 1(77, y), i.e. 

f !?«(*) ~ ffwWI di> = J |/Wf« — /j»,*| dv -> 0 , 
T T 

as m, ?i -> oo for s $Q . 

If s $ P U Q, we know tha t (fn,s(t)) converges to fs(t) for r-almost all t e T. 
Hence by [4, p . 133] we conclude tha t fs e ^?1(T, v) CSe\T,n) and tha t 
(fn,s) isJSf1(77,v)-convergent t o / s , so tha t 

I \fn,sdn — jfsdn\ g J \fn,s —fs\dv->0, 
T T T 

as m, n -> oo5 for all s <£P U Q, i.e. ^ fn,s dn converges to \fs dn for s$P\jQ. 
T T 

Finally, we note tha t the map hn, 

hn(s) = \fn,sdn, 
T 

is a continuous function from S into Y, hn e Gy(S) C J§?Y(S, [A). Furthermore, 
(hn) is Cauchy in J£\(S, JLC) , 

J \hn — hm\ dju = J |fin($) — hm(s)\ dju(s) = 
s s 

= [ ] I /w , s dn — J/W M dw| d/*(s) ^ J J \fn,s —fm,s\ dv dju(s) -> 0 , 
S T T ST 

as m, n->oo, and since for s $ P U Q hn(s) converges to 

*(*) = J / s d r c , 

(Aw) is ^\(S, //)-convergent to h, and h is in -^(.-S, ju). 
^ For n-> co we have 

| )" J / w , s dn dm(s) — J J / s dn dm(s)\ ^ J | J/w,5 dw — J / s dw| dju(s) -> 0 , 
,S* T S T S T T 

i.e. 

lim [ jfn{s, t) dn(t) dm(s) = J j f(s, t) dn(t) dm(s) , 
/i->oo S T S T 

but 
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lim J | fn(s, t) dn(t) dm(s) = lim J* fn(s, t) dm ® n(s, t) = 
n->x S f n-*oo SxT 

= J f(s, t) dm ® n(s, t) , 
SxT 

i.e. 

f /(*, 0 d(m ® w) = J { J /(*, 0 dn(0} dm(s) . 

Corollary. Let Q be a Borel set in S X T. Then we have 

j CQ d(m ®ri) = J | cQs dralm(8) = J j cQs(t) dn(t) dm(s) . 
SxT ST ST 

3. Images of measures and the convolution formula 

Let T and S be compact Hausdorff spaces and suppose tha t p :T -> S 
is a continuous function. Let X be a Banach space and m : £3(T) - > I a regular 
Borel measure with finite variation /J, on T. For every A e &(S) we put 

n(A) = m(p~1(A)) 

and 

Since -p"1^) e ^?(T) for every .4 e &(S), n and r are well defined, n has finite 
variation, \n\ ^ 1>, and n is regular [4. p . 402—403]. The regular Borel measure 
n : SS(S) -> X is called the image of m by the function p and is denoted p(m) [4]. 
Then v is denoted P(JLI) and the inequality \n\ ^ v is now written |£>(m)| rg 
= ^(lmD- Since JLI is bounded, p(jii) is bounded. 

Let now S = C7 be a compact Hausdorff topological semigroup, and T = 
= G X G. Let m : J*((T) -> X and n : &(G) -> Y be two regular Borel measures 
with finite variation jbt and v, respectively. Let jul v and ml n denote 
the measures, which are the images of JLI ® v, m ® n, respectively by the 
semigroup operation p(s, t) = st, 

ptlv = p(jn ®v), mln = p(m ® w) . 

Let / e G(S). Then / e £>i(G, p\ v) and / ° ^ e ^ ( G x <?, /u ® r) [4, p . 404] 
and we have 

GxG 

in other words 
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j f(st) dm ® n(s, t) = J/dml n , 
GxG G 

Since the last equality holds for every function/ e (7(6?), we have 

f fdm * w = J /(sř) dm ® w(.?, č) = j fdml n 
GxG 

for every / e C(G). However this means t h a t 

m* n = ml n 

on J>(£) [4, p . 326]. 

If G is a group, then the convolution formula is an easy consequence of 
Corollary of Theorem 1. 

Theorem 2. Let G be a compact Hausdorff group, m and n regidar Borel 
measures on 28(G) with finite variation and with values in X and Y, respectively. 
Then, for each Borel subset D of G 

(1) t-^m(Dt~1) 

is an n-integrable function on G and we have 

(2) m * n(D) = [ m(Dt~1) dn(t) . 
G 

Proof . We have, putting E = p-\D), 

\ cE(s, t) dm(s) = m(Dt~1) , 
G 

and 

m * n(D) = m ® n(E) = J* cE dm ®n= \ { | CE(S, t) dm(s)} dn(t) , 
GxG G G 

using the fact tha t if g e ^(G, [x * v), then g ° p e S^\G X G, m- ® 72) 
and we have 

ľ g ° p dm (Я)n = f g dm * ю. 
GxG 

[cf. 4. p. 404], in particular for g = C&. 
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