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ON DECOMPOSITIONS OF COMPLETE GRAPHS
INTO FACTORS WITH GIVEN RADII

DANIEL PALUMBINY, Zvolen, STEFAN ZNAM, Bratislava

In paper [1] the decomposition of complete graphs into factors with given
diameters is studied. A. Rosa proposed to study the decomposition of complete
graphs into factors with given radii. Our article deals with this problem.

The mentioned problem is here completely solved for a decomposition into
two factors and some partial results for a decomposition into three factors
are given. [Further, we consider the decomposition with ecual radii.

Some of our results can also be used for solving the problems studied in [1].

General considerations

We shall consider undirected graphs without loops and multiple edges.
Let G be such a graph and Vg its vertex set. The radius r() of a graph G
is defined as

r(@) = inf sup o¢(x, ¥),
2eVe yeVe
where og(x, y) denotes the distance between two vertices a,ye€ V¢ in G.
Hence r(G) is oo if @ is a disconnected graph or if sup p¢(x, y) is infinite for
yeVe
all x. Obviously r(G) = d(G) (the diameter of ) for any G. Suppose that ¢ is
finite and connected. Then the eccentricity (z) of a vertex  in G is max gg(x,¥)
for all y e I'¢. Clearly 7(G) = min ¢(z) and d(G) = max g(x). A vertex o is
zeVe 2eVe
a center of G if ¢(v) = r(G). The remaining terms are used in the usual sense
(see [2]). The complete graph with n vertices will be denoted by n).

We shall study conditions for the existence of a decomposition of =, into
factors Fy,Fs, ..., Fyp with given radii 71,72, ..., 7", where »; = ()
(#=1, 2,...,m) are naturals or symbols co. Denote by G(ri,rz, ..., ")
the smallest natural n for which (») is decomposable into m factors with radii
i, 72, ..., 'm; if such a natural does not exist then put G(ri, 72, ..., ry) = .

Theorem 1. Jf (n) is decomposable into factors Fy, Fs, ..., Fyy with the radii
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TL, T2, ..., T, then for any cardinal N > n the graph {(N) is decomnosable
tn the same way.

Proof. If m = 1, the assertion is trivial. Therefore let m = 2. Denote
H = (N> and let U = {n) be a complete subgraph of H. Denote 4 = Vy,
B — Vi — Vy and choose a vertex v € A. Decompose U into factors U,
Ue, ..., Uy, withradii 1, 72, ..., rn. Decompose H into factors Hy, Hz, ..., Hp
as follows:

1. all the edges of U; belong to H; (¢ =1,2,...,m),

2. for a € A(a # v), b € B the edge ab € H; if the edge av e Uy,

3. the edges of the complete graph with vertex set B U {v} belong to H;.
Obviously, if »(U1) = 1, then r(H:) = 1, too. For r; > 1 the statement that
r(H;) = r; can be proved in the same manner as the analogical assertion
in Theorem 1 of [1].

From this theorem it follews that if G(ry, re, ..., ry) is found, then the
problem of the existence of a decomposition of (N> into m factors with radii
71.72, ..., 'm i3 solved for any cardinal number N.

Now we prove the following

Lemma 1. Let r and n be positive integers, then for a graph G with n vertices
and radius r we have

(1) 2r £ n.

Proof. The case r = 1 is trivial. Therefore we can suppose » = 2. Let v be
an arbitrary center of ¢f. Since &(v) = r, there exists a vertex w in G such
that gg(v, w) = r. Let vwvs ... v,w be a shortest path from » to w. Denote
by S the set of such vertices of @ that no shortest path joining them to » is
passing through v;. It is easy to show that deg » # 1, which implies S 7= 0.

Let s — max gg(v, ). Clearly s = r — 1. If the opposite were true, then

xeS
e(v1) £ r — 1, which contradicts the fact that 7 is the radius of G. Thus there
exists a path (beginning in v) of the length » — 1 in G not containing vertices
in common with the path v1v2 ... v,qw. Hence G contains at least 2r vertices.
In our considerations we shall need the following results (see [3]):
Theorem 2. Let n and r be positive integers such that 2r < n. Then the maximal
number of edges in a graph with n vertices and radius r is

n(n — 1)
—_ if r =1,
> if 7
n(n — 2)
fn,r) = ["“‘—2 ] ’ if r=2,
n2 — 4rn + 5n -+ 4r2 — O6r
9 ’ 'I:f r Z 3.
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Corollary. For 2 < r < o0 we have f(2r,r) = 2r.

Theorem 3. Let n and r be positive inlegers such that 4 < 2r < n, then the
mazxivmal degree of the vertices of a graph with n vertices and radius r isn — 2r -+ 2.

Analogically as in [1] (see Theorem 2) it can be shown that if {(n)> is de-
composable into m factors with natural radii, then

(2) 2m £ n.

Theorem 4. Let naturals m, n, r1, ra, ..., rn be given. If the complete graph n -
is decomposable into m factors with radii r1, r2, ..., rm, then

m

3) nt—mn—2%f(n,r) 20,
i

(4) 2maxr; £ n.

Proof. Denote by %; the number of edges in the factor #;. Then obviously

n )
(2)227” < Zf(n, r;) and (3) follows. According to (1) we have (4).
71 ) .

Corollary. For arbitrary naturals m, n, r1, *e, ..., iy we have
G(ry, 72, ..., ') = 2 max (m, max r;).
Theorem 5. For m = 3 and re = 13 = ... = 1, = o0 we have

3, if rn=o0,

G e om) =y = o

Proof. The proof of the first part is evident. If a graph contains a factor
with natural radius 71, then it has to have at least 2r; vertices (see Lemma 1).
Therefore it is sufficient to decompose the graph {(2r1> into m factors with
radii ry, 00, ..., 00. It can be done as follows. Denote the vertices of 2r;
by o1, vz, ..., ver, . The factor F1 consists of the cycle v1vs ... vay,01. The factor F»
consists of all edges between vs, vs, ..., v, except of those contained in /7.
F3 consists of the remaining edges and #; for ¢ > 4 (if m > 3) are nullgraphs.
It is easy to check that this decomposition fulfils the required conditions.

Theorem 6. Let m = 3, r; =2 2 (1 = 1, 2, ..., m) be nalurals. Then
Gri,re, oo, tm) S 2(r1 + 72+ ...+ 1) — 2m.

Proof. It is sufficient to find a decomposition of the graph ¢ = 2(r; 4
12+ ...+ ) — 2m) into factors K1, Fo, ..., Iy with radiil 71, 12, ..., rp.
We shall use the construction from the proof of Theorem 4 of [1] with ;
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= 2r; — 1. It is easy to show that for every factor F; in this construction

v;, 1 is a center of ¢ and r(F;) = r;.
Corollary. For every natural m > 1 the equality

G2, 2,...,2) =2m
R
m — times

holds.
Proof. For m = 2 see Theorem 9. For m > 2 our assertion follows from

Theorem 6 and from Corollary of Theorem 4.
Theorem 7. Let 3 < r1 £ 12 £ r3 £ 14 < 0. Then we have

G(ry,re, r3, ra) < 2(r1 + 12 + 7r4) — 9.

Proof. We shall construct the four factors of the graph (2(ry 4 r2 + 74) — 9
with the radii r; (z = 1, 2, 3, 4). Denote the vertices of the graph (2(r1 4 r2 -
+ 74) — 9> by w1, Uz, ..., Uzp,—3, V1, V3, ..., V2r,—3, Wi, W2, ..., War,—3.

I. The factor F'; contains

(a) the edges of the path wius ... us,—3,
(b) wwr,
(c) all the edges v;w; except of viw,
(d) wiw; with j — ¢ = 2 except of:
wsw; and wew;, t =13+ 1, r3-+4+2,...,2ry —3 for r3=3,
(if they exist),
wiwg for r3 = 4,
the path wswiwiwsy,—swswer,—aWe ... Wer,—r, 12wy, and the edges wow;,
i=rs+1,7r3+2, ..., 2rs —r3 + 1 for 3 > 5.
. The factor Fa contains
(a) the path vivs ... vep,-3,
(b) viu,
(c) all usu; except of uywy, usws, usws, usws,
(d) wsuy with j — ¢ = 2. :
I1I. the factor Fs3 contains
(a) u1ve, uzv1, 2wz, usvs,
(

wowg, =13+ 1, 1342, ..., 2r4 — 3 for r3 = 3,4 (if they exist),
wiwyg if r3 = 4,

(g) the path wiwswsr,—swswar,—aws - Wop, T390, and waw;, © =73 + 1,
rs +2,...,2rs —rg -+ 1 for rg3 = 5.

)
)
d) wswi,
)
)



1V. The factor F; contains

(a) the path wiws ... wor,-3,

(b) w1201,

(C) Vi0j Wlthj —1 = 2,

(d) uw; except of uivi, wive, u2v1, Usve, usvs and wugv;, uws with ¢ > 3
(if they exist).

It can be proved that the system of the factors F; forms a decomposition
of (2(r1 + r2 + r4) — 9> and that r(F;) = ;.

Remark 1. Analogical results can be stated (and proved by similar methods)
in case of a decomposition into 5 and 6 factors with given radii.

Remark 2. It can be easily proved that for r; = 4 the factors F;
(6 =1, 2,3, 4) in the preceding theorem have diameters d; = 2r; — 1. Denote
by F(d1, d2, d3, d1) the smallest natural N for which (V) can be decomposed
into 4 factors with diameters di, ds, ds, da (see [1]). Then we get

Theorem 8. Let 6 < dy < d2 £ ds £ dy < 00, then
F(di,de,ds, ds) < di + do + ds — 6.

Proof. If di, ds, ds, ds are odd, the proof follows from the considerations
above. If some of them are even, it can be done by using a similar consideration.

This theorem can be developed for decomposition into 5 and 6 factors
with given diameters, too.

The case m = 2

It is easy to prove the following

Lemma 2. If 7(G) = 1, then the complement G of G is a disconnected graph.
If G is a disconnected graph, then r(G) is 1 or 2.

Lemma 3. If r(G) = 3, then r(G) = 2.

Proof. According to Lemma 2 we may suppose that G is connected. We
shall distinguish two cases.

(a) d(G) = 4, then due to Lemma 3 of [1] we get r(G) < d(G) £ 2.

(b) (r@) = d(G) = 3. Then for every vertex a there exists a vertex x’
with gg(x, ') = 3. We shall proceed indirectly: suppose there exist two
vertices u, v for which pg(u, v) = 3. (Then the edge uv belongs to G.) Let v" be
a vertex for which gg(v, »') = 3. (Then the edge vv’ belongs to G.) Consider
the edge wv’. If uv’ belongs to @, then vuv’ is a path of the length 2 in ¢ between
the vertices » and v’, which is a contradiction. If uv’ belongs to @, then the
path wv'v is in G (the length is 2) — a cotradiction.
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Theorem 9. Let 71 < 7y, then

2 ifr=1, rpn=o00,
4 if r1==2, rg = 0,
2ry tf 11 =2, r3 < 0,
o in the remaining cases.

Proof. The proofs of the assertions G(1, c0) = 2, G(2, 0) = 4 and G(2, 2) =

4 are evident.

If 2 <ry < oo, then decompose (2ry> into two factors as follows. The
factor Fs consists of a cycle containing all the vertices of {2rs). F; contains
all the remaining edges. Then obviously r(#1) = 2 and r(Fa) = r2.

Clearly G(1,r) = co for any finite r. From Lemma 3 it follows that for
. = 3, we have ro < 2, hence G(r1, r2) == oo for r1,rs = 3.

The case m = 3
Theorem 10. For 3 < r1 £ r3 < r3 < 00 we have
G(Tl, re, r3) < 2(r1 + re + r3) — 11.

Proof. In the proof of the second part of Theorem 6 in [1] a decomposition
of {di1 + ds + ds — 8) into factors F1, Fs, F'3 of diameters di, dz, ds is given.
Put d; = 2r; — 1. It is easy to prove that the factor F; of the mentioned
decomposition has radius equal to 7;.

Theorem 11. Let 2 < rs < 13 << <0, then G(2, 2, 2) = 6 and G(2, ra, r3) = 2r3
’Lf rg = 3.

Proof. The first assertion follows from Corollary of Theorem 6. From
Corollary of Theorem 4 we get G(2, r2, r3) = 2r3, hence it is sufficient to prove
that (2r3> can be decomposed into three factors with radii 2, »2, 73 (r3 = 3).
Denote the vertices of (2r3> by v1, vz, ..., var,. We shall distinguish two cases.

(a) re == 2. Let the factor F3 consist of the path wivs ... ver,. Obviously
r(F3) = r3. Let the edges wov1, vor0s, ..., Vor,V2r,—3, Vor,—1V2r,—3, V2r,—2V2r,—4
belong to F; and the edges wvivs, vivs, v10s, ..., V1V2r,—1, V2rV2r,—2, Vor,—102
belong to Fs; the remaining edges are distributed into the factors F, and F.
in an arbitrary way. None of the vertices in F; (¢ = 1, 2) is of degree 2r3 — 1
and hence #(F;) > 1. It is easy to check that vs.,(v1) is a center of F';(F3) and
that r(#) = r(Fs) = 2.

(b) 2 = 3. G(2,3,3) =6 = 2r3 (see Fig.1l). Therefore we can suppose
r3 = 4. Now we shall construct the factors F; with radii 2, re, r3. The factor F3
is equal to the path var,—102,—3 ... VgV7V3V2VV1V506V8V10 - . . Vor,—2Var,. Thus it has
radius r3. We must distinguish 4 cases:
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(b1) If 72 = 3, then F; contains the path 230123060405

(bz) If 7o = 4, then F; contains the path vv;vsvevavsv7vs-

(b3) If 72 = 5 and odd, then Fs contains the path varvar, 1v2p,-av2r,—5 ...
-+ V10VgUaV1V3VEVAVSVIVEVILYLS - - . V2r,—3Vor,—2, Where the vertices w7, cs. ..., 02,
were added to the path vav1v3v604v5 in the evident way.

(bs) If 2 = 6 and even, then F3 contains the path var,—2vsr,—sv2r,—602r,~7 ...
- -« V100902010306V V50708011012 . . . V2rg—102r, .

1 5 ——0———0—0——0—0
3" 1 2 5 4 6
6 3
. PSS S SNV S Y
2

4 3 2 4 1 5 6
Fig. 1.

If ro < r3, then Fo contains besides the mentioned path also the edges
Ui2ryi1, Val2p,2, ..., VaVsr, (in all four cases). It can be shown that in all
cases r(l's) = 3.

The factor Fs (F'3) consists of 2r3 — 1 edges. Put all the remaining edges
into the factor F;. We have to prove that r(#1) = 2. It can be shown that F;
is a connected graph (it contains the path vi1vev2vsvsvs and the edges vie; for
¢ > 6). F, contains

27‘3 o
X = 9 -——2(27‘3—-1):27‘5—-57’34—2

\
edges. We now show that
(5) X > f(2rs, 1) = 2r; — 4dryr - brg + 2r2 — 3r

for 3 < » < r3 and r3 = 4 (see Theorem 2). We have two cases:

(a) If r = 3, then f(2r3, 3) = 25 — Tr3 + 9. Since r3 = 4, which implies
2r3 > 7, we have 2r — 5r3 4+ 2> 25 — Tr3 + 9 i.e. X > f(2r3, 3).

(b) If r = 4, then 4r — 10 > 2r — 3. Since 73 = r > 0, 4r — 10 > 0 and
2r — 3 >0, we have r3(4r — 10) > r(2r — 3). The last inequality implies
23 — Brg + 2> 2r2 — drgr + 5rg - 22 — 3r, i.e. X > f(2r3,7r) for 4 <
<r = rs.

We have proved that (5) holds, hence r(#;) < 2. However 7(#1) > 1 because
none of the vertices inF; is of degree 2rg — 1. Thus r(F") = 2.

Theorem 12. Let 3 < r3 << 0. Then
G(3, 3, r3) = 2r3.
Proof. According to Corollary of Theorem 4 we have G(3, 3,73) = 2r3.

It can be shown that G(3, 3, 3) = 6 (see Fig. 2) and G(3, 3, 4) = 8 (see Fig. 3).
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Hence it is sufficient to find a decomposition of (2r3> for r3 = 5 into three
factors with radii 3, 3, r3. Denote the vertices of {2rsd by w1, us, ..., Uy, v1,
2, ..., 0. For ¢ > rs we define u; (v;) in the following manner: wu;(v:) = ws(vs)
with s — ¢(mod r3), 0 < s =< r3.

1 6 2 5 3 4 2 1 3 6 4 5 3 2 4 1 5 6
Tig. 2.
T 6 2 5 3 4 2 1 3 6 4 5 7 3 2 4 1 5 6 8
Fig. 3.

Let the factor F; contain the edges
(a) wu; and vy for j==4 4 1(mod 73) and j =£¢ — 1(mod r3),
(b) all the edges u;vi4r,—2.
Then 7(F1) = 3 (or,(ui, vi+r,-1) = 3 and every vertex is a center of F).
The factor F contains the edges
(&) wivit1, WiVise, ..., UiVitr—3,
(b) wsus1 and vv441.
Obviously 7(Fs) = 3 (op,(us, vi+r,-1) = 3 and every vertex is a center of Fy).
The factor Fs contains the remaining edges w;v; and v;u; .1 which form
a cycle of the length 2r3.

Yemark. Tig. 4 shows that G(3, 4, 4) = 8, but it can be easily proved
that G(3,r,r) > 2r for 4 < r < o0. To prove it (indirectly), we suppose that
the graph (2r) (6 < r << o0) is decomposable into three factors with radii 3, », r.
Then the factors F2 and F3 have at most 2r edges each (see Corollary of

2r
Theorem 2). Thus Fi contains at least Y=(2) — 4r = 212 — br edges.

According to Theorem 2 we have f(2r, 3) = 2r2 — 7r + 9. It is easy to check
that Y > f(2r, 3) for » > 4. Hence 7(#;) s~ 3, which is a contradiction.

Fig, 4.
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Theorem 13. We have
I. 0(2, r9, 00) = 213 for 2 £ ry < o0,

4
II. max {2;‘2, 3(7‘1 + re — 2)} < G(ry,r2,0) £ 2(r1 +1r)— 6 for 3 <

=r £ rg << .
Proof. I. The first assertion follows from Theorem 9 (take as F3 the null-
graph).
I1. Suppose that for some » with

4
(6) n < g(rl + r2 — 2)

the graph (n) can be decomposed into three factors F; with r(F1) = r1, r(F2) —
= 7y, 1(F3) = 0. The factor F3 is disconnected, hence the vertices of n
can be split into two disjoint sets 4 and B so that all the edges between A
and B belong to F; or Fy. From (6) we get

2(2n — 2r1 — 2rs + 4) < m.

Hence one of the sets — say 4 — contains at least 2n — 2r; — 21, 4 5 ele-
ments. Let v be an arbitrary element of B. According to Theorem 3 the dearee
of v in Fy is at most n — 2r1 + 2 and in the factor F3 at most n — 2ry 2.
This is a contradiction.

To complete the proof we must show that G(r, 72, ) < 2r. + 212 6.
It can be done by considerations analogical to those of the proof of Theorem 8
from [1] (see part I(b)). Namely, if we take d; = 2r; — 1 (¢ = 1, 2), then
we can see that the factors Fy, and Fs of the graph {(di + d» — 4
= {2r; + 2ro — 6> have the radii r; and r3. The factor F3 is obviously dis-
connected. (There is no path from v»; to any »; with ¢ = 2 in F3.)

Decomposition into 3 and 4 factors with equal radii

Denote G(r, r, r) = g(r).

Theorem 14. The following holds
L. g(o0) = 3, g(1) = o0, ¢(2) = ¢(3) = 6,
IL 3+ |3y —9<g(r) < 6r—11 for +=r<o.
Proof. The first part follows from evident considerations. The estimation
g(r) £ 6r — 11 holds due to Theorem 10. Now, if (») is decomposable into
three factors with equal radii », then owing to Theorem 2 we get
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n2 — drn + 5n + 412 — 67 n
3 = .
2 2

After some modifications of the last inequality we get
(7) Sp(n) = n2 4 (8 — 6r)n 4 (612 — 9r) = 0.

It can be easily checked that s,(2r) << 0 and s((3 + VE)T — 9) < 0 for all

r = 4. The function s,(n) is convex and hence from (7) we get n > (3 + |/ 3)r —
— 9. The theorem follows.

Now denote G(r,r,r,r) = H(r).

Theorem 15. For 3 £ r << c0 we have

4r — 8 < H(r) = 6r — 9.

Proof. The estimation H(r) < 6r — 9 follows from Theorem 7. Further
we have to prove that {4r — 9> cannot be decomposed into 4 factors with
equal radii r. For r = 3 and 4 this follows from (2); so we can supposc » = 5.
Suppose (n) is decomposable into 4 factors with radii ». Then according to
Theorem 2 we have

n2 — 4rn - 5n + 4r2 — 6r (n)
— _ g .

(8) ! S

2 2
After some modifications
t(n) = 3n2 - (21 — 16r)n + (1612 — 24r) = 0.

For r > 5 obviously ¢,(2r) < 0 and it can be shown that (forr = 6) f,(4r — 8) <
< 0. t,(n) is a convex function of the variable n for any r and hence if »n fulfils

35

(8) where r = 6, then n = 4r — 8. As for »r = 5 we have {3 (g) = 0 and

35 2
1(5) = 5 = llg. Since H(5) is an integer, we get H(5) =2 12=4.5 8.

Remark. From Corollary of Theorem 6 it follows that H(2) = 8.
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