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EXTENDING PEANO DERIVATIVES
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Summary. Let H C [0,1] be a closed set, k a positive integer and f a function defined
on H so that the k-th Peano derivative relative to H exists. The major result of this paper
is that if H has finite Denjoy index, then f has an extension, F, to [0,1] which is k times
Peano differentiable on [0,1] with f; = F; on H for i = 1,2,...,k.
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1. INTRODUCTION

Throughout this paper R will denote the real line and N, the positive integers. The
letter k will denote a element of N and H will denote a closed subset of [0,1] with
He¢ =1[0,1]\ H. Let f be a function defined on H having a k-th derivative relative
to H. In this paper we consider the problem of extending f to the entire interval
[0,1] so that the new function, F, is k times differentiable on [0, 1] with F(!) = f(?)
on H fori =0,1,...,k. A solution for the case k = 1 was given in [9] as well as in
[10] and [8] with the added assumption that H is perfect. In the second section we
provide a new proof of the result in [9]. For the rest of the paper we consider the
case k > 2. In Section 3 we recall an example (given by the second author) of a set,
H., and a function, f, defined on H which is twice differentiable there but having no
twice differentiable extension to [0, 1]. The nature of this example demonstrates the
futility of pursuing the problem for the ordinary k-th derivative. So we consider the
k-th Peano derivative instead and prove a theorem giving conditions on the function
that assure its extendability to a function having a k-th Peano derivative rather than

Professor Jan Mafik died on January 6, 1994.
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a k-th ordinary derivative. (The pertinent definition is given in that section.) In the
fourth section we turn our attention to the underlying set H. There is a perfect set
H, and a function, f, defined on H having a second Peano derivative, fa, relative to
H but for which there is no twice Peano differentiable function, F, on [0, 1] whose
Peano derivatives agree with those of f on H. (See Buczolich [1].) We will show
that the desired extension does exist if H is a perfect set having finite Denjoy index
(defined in the section). In particular there is an extension for any such function
defined on the Cantor set since its Denjoy index is 3 as can be easily verified.

2. EXTENDING FIRST DERIVATIVES

In this section we will give a new proof of the result proved by Mafik, in [9];
namely Theorem 2.1 below. For the case H perfect, the theorem was proved in [10]
and [8]. Although Maiik’s proof is elementary in the sense that it uses no advanced
theorems, it is very complicated. Here we give a relatively simple proof.

Theorem 2.1. Let H C [0,1] be closed and f: H — R. Suppose that f’, com-
puted relative to H, exists at every point £ € H. (In case z is an isolated point of
H, the value of f'(z) is arbitrary.) Then there is a function F differentiable on [0, 1]
sothat F = f and F' = f' on H.

Proof. We describe how to define an initial extension, G, of the function f
to each component interval of H—the complement of H. If H¢ has a component
interval of the form [0, ), set G(z) = f(b) + (= — b) f'(b) for each z € [0,b). Proceed
similarly if H¢ has a component interval of the form (a,1]. Let (a,b) be a component
interval of H¢ with a,b € [0,1]. For the left endpoint, a, we distinguish two cases.
If a is an isolated point of H, then there is a component interval of H¢ of the form
(¢, a) (unless a = 0). Choose d, € (a, %2) so that

[ (-0 (a-cp
o <min{ S

(de —a < T%T_f'g()_:ﬂ if a = 0). If a is not an isolated point, then there is a strictly
increasing sequence {z,} in H converging to a with a — z; < "—;ﬂ In this case for
each n € N we let =), = 2a — z,; that is, the point symmetric to z, in a. Similarly
either b is an isolated point of H in which case there is a component interval (b, d)
of H¢ (unless b = 1) and we choose dj, € (ﬂzi,b) so that

(b—a)® (d-1b)° }
L+{f'®)" 1+ ()]

b——d;,gmin{



(with the obvious modification if & = 1) or there is a strictly decreasing sequence
{yn} in H converging to b with y; — b < (b — @) in which case we set y), = 2b — yn.
Define G on (a,b) as follows. First let

2f(a) — f(zx) if z = z!, for some n € N
2f(b) — f(yn) if £ =y, for somen € N
f(@)+ (@ —a)f'(a) if= € (a,da)
FB) + (z = b)f'(b) ifz € (ds,b).

Note that the set where G is not yet defined consists of open subintervals of (a,b).
On each of these intervals define G to be linear on the corresponding closed interval.

Having defined G above on H¢ we define G(z) = f(z) for z € H. We will show
that G is differentiable everywhere on [0, 1] except possibly at points in a component
interval, (a, b), of H¢ of the form z.,, y,,, d, or d, and that G’ = f' on H. To this end
let w € H and € > 0. Set M = max{7,6+4|f'(w)|}. By the differentiability of f and
by the definition of G, there is a d; > 0 so that |G(y)—G(w)—(y—w) f'(w)] < 37ly—w|
whenever y € H and |y — w| < 6;. One can choose 0 < § < + so small that if (a,b)
is a component interval of H¢ so that if 1) w < a < b with b — w < 4, then
b+ 852 —w < 6, orif 2) a < b < w with w—a <4, then w— (a — %) < 6. Let
z € H¢ and assume w < z. (The case z < w is similar.) Let (a, ) be the component

interval of H containing z. First suppose z = z,, for some n € N. Then

IG(z) - G(w) — (z — w)f'(w)| = 2(f(a) - f(w) - (a — w)f'(w))
= (f(zn) = f(w) = (zn — w)f' (W)
< 2—1%]:1 —w|+ —:;I-)a:n — |

< 3%]1 —w| < elz — w|.
Next suppose z = y,, for some n € N. Then similarly

- —(z—w) fw) < 2=1p— L
1G(2) ~ G(w) — (& —w) f'(w)] <247]b w| + 27lyn — v
€ €
—2—Hib——w]+ﬁ(|b—w|+lb—z|)
€ €
<4—=Ip— -l -
\4M|b :z:|+3Mlx w|

£
< 7ﬁ]z —w| < gl — w|.
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Now suppose that z € [a,d,]. Then

IG() - Gw) - (= — w)f'(w) |
= |f(a)  f(w) — (a — w)f'(w) - (=~ )(f'(w) = F' (@)
< ola=wl+lz - al(lf' @] +If (@)

< o~ wl +|da = al(f' @]+ |F @)
‘<%n—m+m—wmbﬂfwm
< Slo - ul+ |e - w1 +1f @)
< ]—‘;-m —w| + %u —w|(L+ | (w)])
< e —w|@+ 1 W))) <elo - wl.
Next suppose that = € [dy,b]. Then as above
IG(@) - G(w) - (z = w)f ()| < 77lb—wl +[b = w (X +1f ())-

Since |b—w| < |b—a| + |a — w| < 2|z — a| + |a — w| < 2|z —w),

IG(@) - G(w) - (& - w)f' (w)] < 27lw —wl + 4l — w1+ 1f @)
<2—lz — wl + 437l —wl(1 +1f @)
< Xel—lx — w|(6 + 4|f'(w)]) < elz —w]|.

Consequently in all four cases,

1) |G(z) — G(w) — (z — w) f' ()] < elz —w|.

Finally any z € (a,b) not covered by one of the four cases above is in an interval
(c,d) where both ¢ and d are one of the four types discussed above. Then there are
a, € [0,1] with a+ 8 = 1 such that = ac+ d and G(z) = aG(c) + BG(d). Thus

we have ‘
IG(2) ~ G(w) ~ (z - w)f' ()| = &lG(c) - Gw) — (¢~ w)f'(w)|
+BIG(d) = G(w) — (d — w)f'(w)|
< ag(c — w) + Pe(d - w) = elz — w|.
Therefore G is differentiable on H with G’ = f’ on H.
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In fact G is differentiable everywhere except possibly at the points of the first
four types discussed above since these are the points which are simultaneous the
endpoints of two intervals on which G is linear. The objective now is to redefine G in
small neighborhoods of such points so that the new function, F, is differentiable on
[0,1]. To accomplish this goal let ¢ be such a point and let (a,b) be the component
interval of H¢ with c € (a,b). Let z; be the midpoint of the interval to the left of
¢ on which G is linear and z; the midpoint of the interval to the right on which
G is linear. There is a function G differentiable on [21, 22] so that G(z1) = G(z1),
G(z2) = G(z), G'(z1) = G'(21), G'(22) = G'(22) and the graph of G lies in the
triangle with vertices (z1,G(z1)), (¢, G(c)) and (z2,G(22)). Now define a function F
on [0, 1] to be this function, G on each of the intervals, [21, 2] and to be G otherwise.
Clearly F is differentiable on H®. So it remains only to check that F is differentiable
on H with F’ = f’ on H. For this purpose let w € H and ¢ > 0. Thereisa d > 0
so that |z — w| < § implies

(2) |G(z) - G(w) - (z — w)f'(w)| < |z - w].

If z belongs to one of the intervals [z1, 22], (Employing the notation of the previous
paragraph, ¢ € [2z1,22] denotes a common endpoint of two intervals on which G is
linear.) then there are o, 8,7 € [0,1] with a+ 3+~ = 1 such that z = az; + fc+v2,
and F(z) = aG(z1) + BG(c) + vG(z2). Thus

|F(z) — F(w) = (z — w) f'(w)| = [aG(21) + BG(c) +1G(22) — (a + B +7)G(w)
~ (@21 + Be+v22 — (@ + B+ 7)w) f'(w)]
< 0|G(21) — G(w) = (21 — w) f' (w)|
+B|G(c) = G(w) = (c — w) f'(w)]
+7G(22) = G(w) - (22 — w) ' ()|
< e(a(z1 —w) + fc - w) + (23 —w)) = (z ~ w).

Since € was arbitrary, we see that the function F satisfies the assertion of the theorem.
O

3. EXTENDING k-TH DERIVATIVES

We became interested in the problem of extending higher order derivatives through
a question posed by Professor Richard O’Malley. He asked if a function which is de-
fined and say twice differentiable on a perfect set, H, relative to H can be extended
to a function defined on [0, 1] which is twice differentiable on [0,1]. We begin this
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section by discussing an example given in [9] showing that in general the answer to
O’Malley’s question is no. In [9] Mafik started with any sequence {z,} converging
monotonically to 0 and constructed a sequence {[Zn,¥n]} of disjoint, closed subin-

tervals of [0,1] and put H = | [zn,yn]U{0}. Clearly H is a perfect set. He defined
n=1

f on H by f(0) = 0 and for each n € N and each = € [z,,y,] by f(z) = z2. It is
obvious that for each n € N and each z € [zn,yn] f'(z) = 0. Since the graph of f
lies betweeny = 22 and y = 0, it is easy to see that f’(0) = 0. Consequently, for
each i € N (in particular for i = 2) f() = 0 on H. In [9] it is shown that f can
not be extended to a twice differentiable function on [0, 1] by showing that any such
extension would have a first derivative that is unbounded on any neighborhood of
0. What this example illustrates, besides its intended purpose, is that for functions
whose domains are not connected, the usual notion of differentiation is not the cor-
rect one to use for higher order differentiation. One which is considerably better is
the notion of the k-th Peano derivative whose definition we recall next.

Definition 3.1. Let H C [0,1] be closed, let £k € N, let f: H — R and let
z € H. Then f is k times Peano differentiable at z relative to H means there are
numbers f;(z, H),..., fx(z, H) so that y € H implies

— »\k
@) = 5@ + =D )+ + D (e, B) + )

where E}}m €k(y) = 0. The number fi(z, H) is called the k-th Peano derivative
Yy Yy

of f at z relative to H. It will be convenient to denote f(z) by fo(z, H). When H is
an interval we simply write fi(z, H) = fi(z). If f is k times Peano differentiable at
each z € H, we say that f is k times Peano differentiable on H relative to H. At an
isolated point = € H the choice of the numbers, f,(z, H),..., fi(z, H), is completely
arbitrary.

For more information about the theory of k-th Peano derivative, the reader is
referred to [4] and [11]. Here we only note that it follows from the classical form
of Taylor’s Theorem that if f is defined on a neighborhood of z and is k times
differentiable at z in the usual sense, then f is k times Peano differentiable at z and
f®)(z) = fi(z). For this equality to hold it is essential that the domain of f contains
a neighborhood of z as is demonstrated by the example presented above. It is not
hard to show that if, in that example, one selects z,, = ;ﬁ, then f3(0, H) = 2. This
observation gives another way to conclude that no extension of f is possible. For if
F is such an extension, then since f”’(0) = 0, we must have F”'(0) = 0. But since
f2(0, H) = 2, we must have F;(0) = 2. However by Taylor’s theorem, F"(0) and
F,(0) must be equal. By a similar argument it can be seen that a necessary condition
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for extendability of a k-th ordinary derivative is the existence of the first k¥ Peano
derivatives and their agreement with the first k¥ ordinary derivatives. This condition
is not sufficient for extendability to a k times differentiable function as will be shown,
but is sufficient for extendability to a k times Peano differentiable function.

Lemma 3.2. Let H C [0,1] be closed, let k € N and let g: H — R be k times
Peano differentiable on H relative to H. Suppose that for each i € N with i < k
gi = 0 on H. Then there is a function G: [0,1] = R which is k times Peano
differentiable on [0, 1] such that G|y = g.

Proof. The assumption simply states that for each + € H we have g(y) =
g(z) + (y — x)*e(y) for y € H where e}}m €(y) = 0. (The k! is absorbed into the
vy ,v—)I

function €.) To define the extension let (a,b) be a component interval of H¢. There
is a unique polynomial, p, of degree 2k + 1 defined on [a, b] such that p(a) = g(a),
p(b) = g(b), and for each i € N with i < k, p(¥(a) = p{?(b) = 0. (If the component
interval is of the form [0,b), then simply set p(z) = g(b) + (b — z)**1. Proceed
similarly if the component interval is of the form (a,1].) Let G = p on (a, b) for each
component interval (a,b) of H¢ and let G = g on H. Clearly G is k times (and hence
k times Peano) differentiable on H¢. It remains to show that for each z € [0,1],
Gi(z) exists and Gi(z) =0 for ¢ =1,2,..., k. To do so we must first investigate the
polynomial p more closely. Since the first k derivatives of p are 0 at both a and b, it
follows that for each y € (a,b), p'(y) = A(y — a)*(y — b)* where A is a number to be
determined. So

P(y) =Aly-a)*(y—a+a-b)*

= AWy -a) k}:( ) (- a (a0

3=0

AZ ( )@= b - o

Integrating once gives

k—
p(y) = AZ( )(Zﬂb)ﬂ (y—a)***1 1 B.
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Since p(a) = g(a), B = g(a), and since p(b) = g(b),

k-
g(b) — g(a) = AZ( )-(:—;]I’)T_T(b a)k+iH

(=1)*7

=46~ “’“*‘E( irreT

Thus A = {Q—féﬁ.ck where C = Zf—o ( )1;__3;3— depends only on k. Hence

_p)k-i )
60) =») = $2=500, 5 () et - o

Jj=0
Let x € H. Tt will be shown that G;(z) = Ga2(z) = --- = Gk(z) = 0; that is,
lim €=CG=) _ o, Since g;(z) = gz(z) = --- = gk(z) = 0, we need only consider
y—=z W
y € H.

Suppose (a, b) is a component interval of H¢ with z < a < b. Thecaseofa < b <z
is dealt with in a similar fashion. Then

iG(y) ~G(@)| . |GW) ~G(@)]| _ |9(a) —9(=)||(a=2)"|
(y-=)* (y—=)* @-2)* [|(y-2)*
Since a — z < y — z, and since g,(z) = g2(z) = -+ = gr(x) = 0, the second term
tends to 0 as y — z. So we estimate the first term.
Gly)-G@)|_|__9() —g(a) K\ (@=b*7 o ei;
=2 |~ |- o) am ZO () s
b— z)*e(b) + k —b)k—i .
‘( (: ;)Z(b (a 27316(‘1)0 Z( ) I‘:+J - (y — a)k+i+1
(b—2)*(y — a)* (b~ a)**'[e(b)]
< ( (y — 2)*(b — a)?k+1

2k+1|e(a k
+ (a —2)*(b — a)® +1|g( )I)Ckz (f) 1

(y — z)k(b — a)2k+1 = k+j+1

Since a — z < y — z, the second term in the parentheses above tends to 0 as y — z.
So we consider the first term. There are two cases. First assume that £ —a < b—a.
Thenb—z =b—-a+a—2z < 2(b-a). Since y —a < y — z, the first term is no
more than %’—‘3—;%:—’};|e(b)| < 2*|e(b)]. The other case is b—a < = — a. Then
b—z=b-a+a-z<2(@a-1) <2(y—:z;) and so in this case sincey —a < b —a,
the first term is no more than %”Tg-gls(b < 2*|(b)| and hence the first term also
tends to 0 as y — z, which completes the proof of the lemma. a
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Theorem 3.3. Let H C [0,1] be closed, let k € N and let f: H — R be k times
Peano differentiable on H relative to H. Suppose in addition that f is k times
differentiable in the usual sense on H relative to H and that for each i,j € NU {0}
with i +j <k f() is j times Peano differentiable on H relative to H and (f), =
f(+3), Then there is a function F: [0,1] — R which is k times Peano differentiable
on [0,1] such that F|g = f.

Proof. We proceed by induction on k. For £ = 1 the assertion is just that
of Theorem 2.1. So suppose the assertion is true for ¥ — 1 and let f satisfy the
hypotheses for k. Then f’ satisfies the hypotheses for k — 1. Consequently there is
a function S: [0,1] = R which is k¥ — 1 times Peano differentiable on [0, 1] such that
S|g = f'. Let T be any antiderivative of S. Then for each ¢ = 1,2, ---k on H we
have (f—T)i=fi-Ti=fi—-T)i-1=fi-Sici=fi—-(fici=fi-fi=0.
Thus the function f — T satisfies the assumptions of Lemma 3.2. Hence there is a
function G: [0,1] = R k times Peano differentiable on [0,1] such that G|y = f - T.
Let F =T + G. Then F|g = f and the proof is complete. ]

We close this section with an example showing that the extension whose existence
was just proved in general need not be k times differentiable for k¥ > 2. In fact the
example is for k = 2.

For each n € N let b, = ;—}ﬁ and let a, = b, — b3. It is routine to show that
bnt1 < Gn, and that the line joining (a,,0) and (b,,b3) has slope 1. For each n € N

let d, = %’—‘ﬂ. Let H = {0} U L_Jl[bn+11bn+1 +dp) U [an — dn,a,). Define f on

H by f(0) = 0 and for eachn € N f = b3, on [bat1,bnt1 + dn] while f = 0 on
[an — dn,ax). Since the graph of f lies between y = 23 and y = 0, f1(0) = £,(0) = 0.
Moreover for eachn € N f' = f” = 0 on [bp+1, bnt1+dn]U[an—dn, an]. Consequently
f'(0) = f"(0) = 0. Since for each n € N, the slope of the line joining (a,,0) and
(bn,b3) is 1, any differentiable extension of f to [0, 1] will have at least one point in
each [an,bs] where the derivative is 1. Hence the derivative can’t even be continuous
at 0 let alone differentiable there.

4. EXTENDING PEANO DERIVATIVES

In this section we present a sufficient condition on the set H under which every
function f: H — R which is k times Peano differentiable on H relative to H can be
extended to a function F': [0,1] = R which is k times Peano differentiable on [0, 1]
so that Fi(z) = fi(z,H) on H for i =0,1,---k. The family of closed sets with this
property will be denoted by Py. For k = 1 Theorem 2.1 states that P, = {H C [0,1]:
H is closed}. For the case k > 2 not every perfect set is in P,. For the case k = 2,
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Buczolich provided an example of a perfect set, H, that is not in P,. (See [1].) In
[3] Denjoy gave an example of a perfect set, H, and a function, f, defined on H with
fi(z,H) = fa(z,H) = 0 and f3(z, H) = 1. The set, H, doesn’t belong to Pj, for if so
there would be an extension, F, of f so that F is three times Peano differentiable on
[0,1]. By a theorem in [5] there is a decomposition of H into a countable collection
of closed sets, {An}, so that H = |J A,, and F3(z) = Fj(z) on A,. Since F is an

n

extension of f, F3(z) = 0 and F3(z) = 1 on H which is contrary to the choice of
the sets An. The function f from Denjoy’s example can easily be modified so that -
H is not in Pk, k 2 3 odd. One common property of the Buczolich and the Denjoy
examples is that both are perfect sets which are extremely rare at each point of the
set in the sense that the symmetric porosity of each set at each of its points is 1. The
condition that we require could be stated in terms of porosity, but we use the notion
of the Denjoy index instead. The Denjoy index, a, of a set, H, at one of its points
is related to the symmetric porosity, p, of that set at the same point by the formula
a = T'-l-—p' The concept of index of a perfect set was introduced by Denjoy in [3,
page 285]. The reader can learn more about the relationship between the index of a
perfect set at a point of the set and the corresponding porosity in [2]. The condition
we require is essentially that the set have finite Denjoy index at each point, but with

some uniformity added.

Definition 4.1. Let H C [0,1] be closed. Then the Denjoy index of H is

inf{\ > 1: for some @ > 0 and for each z € H there is a sequence {kn}nen
with lHn kn, =0 and |k;| > 0 such that z + k, € H
and 1 < |kn|/|kn+1| < A for each n € N}.

It is possible that there is no ) satisfying the definition in which case we invoke the
convention that the infimum of @ is co. This is clearly the case if H has an isolated
point. The uniform 6 implies that the first term of the sequence {z + k,} is at least
a fixed distance, 8, from z. The uniform )\ guarantees that {z + k,} converges to z
no faster than A—"*! converges to 0. Since the § depends on ), the Denjoy index
itself need not be a A. However it may be. It is not hard to see that if H is the
Cantor set, then for A = 3 there is a corresponding 8; namely 6§ = 1/3, but not for
any A < 3. So the Denjoy index of the Cantor set is 3.

The purpose of this section is to prove that a closed set with finite Denjoy index is
in P, for every k. Note that such a set must be perfect. As noted above, our result
applies to the Cantor set. We use the ideas of the proof of Theorem 2.1, but with
substantial modification. There were two main ideas in the proof of Theorem 2.1.
First, to extend a function, f, to the entire interval [0,1], so that the extension,
G, is differentiable on H. It is here that finite Denjoy index will be used for the
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general case. The second step was to modify the extension so as to be differentiable
everywhere. This step generalizes to the case k > 2 with no restriction on H. (See
Lemma 4.6 below.) Concerning the first step, suppose (a,b) is a component interval
of H¢. Recall that in the proof of Theorem 2.1 we selected two sequences from H
at random one converging to each endpoint of (a,b). Then we reflected the terms
of each of these sequences in the endpoint to which the sequence converged and
defined the extension to be 2f(a) — f(x,) for the endpoint a and 2f(b) — f(y,) for
the endpoint b. Here we use the assumption of finite Denjoy index to select the two
sequences. These sequences are then reflected as before, but to define the function
between two reflected points we use a certain weighted average of the values of the
function at the endpoint and at k of the points of the original sequence. We begin
with two lemmas which give rise to the weights used for the extension.

Lemma 4.2. Let x;,z3,...,Zk, a,z € R be distinct. Then the system

k
(x—a)j=2a;(z;—a)j ji=1,...,k

=1
has a solution for (a4, ...,ax). Moreover
(z—a) [I(z—z;)

= Jj#i
o )
JF

Proof. The assertion follows from the fact that if £;,...,0: € R, then the
determinant of the matrix

Br-oveee Bk
ﬂ? ...... :
ﬂf ...... ﬂ,':
is H Bs H (ﬁa - ﬂJ) O

k>s21 k2s>j2>1

The next lemma shows that (z — w)’ can be represented in terms of the numbers

ai,...,o of the above lemma for any w € R; not just a.
Lemma 4.3. Let z;,z3,...,%%, a,z € R be distinct and let a;,...,a) be as in
. k .
the conclusion of Lemma 4.2. (Thus (z —a)’ = 3 ai(zi —a)’ for j = 1,...,k.)
t=1

Then for any w € R

k
(z — w)’ =Za,—(x.-—'w)j+ (1-—Za.~)(a—-w)j forj=1,...,k.
=1 3

=1
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Proof. Let w € R and let j € {1,2,---,k}. Then

(r-wy=@-a+a—-w)

= Z( ) (z —a)®(a — w)?~*

8=0

=(a-wy +Z ( ) (ia,(z, -a)* )(a_w)w

=1

- +za,(§() "

=(a-w +Zo¢l (zi — w)! - (a —w)?)

= gai(zzi—-w)" +(a—w)j(1 -—ia,-).

=1
O

Since the numbers, a;, of the previous two lemmas depend on the k + 2 numbers,
Z1,T2,...,Tk,q, T, in the next lemma we denote them by ai(zi,z2,:--,zk,a,z).
That lemma selects the sequences that will be reflected into the component intervals
of HE.

Lemma 4.4. Let H C [0,1] be a perfect set with finite Denjoy index and let (a, b)
be a component interval of H¢. Then there are a strictly increasing sequence {z,} in
H converging to a, a strictly deéreasjng sequence {y»} in H converging to b and a con-
stant, K, (depending only on the choice of A and 0 from the definition of Denjoy index
of H) so that for eachn € N andi = 1,...,k we have |a;(Tn+t1, .-+ Tntk, @, 2)| < K
for |z — a| < |zn — a| and |@i(Yn+1,- - -, Yntk, 0,y)| < K for |y — b| < |yn — b]. More-
over for i = 1,...,k we have |ai(z1, 2, .. ,a:k,a )| < K for |z — o] < %% and
|ei(y1,925- -+, Yk, 0,9)| < K for |y — b] < %52. (In case the component interval is
of the form [0,b) we assert only the ex1stence of the sequence {y»} with a similar

adjustment in the case (a,1].)

Proof. Since H has finite Denjoy index, there are A > 1 and 6 > 0 satisfying
Definition 4.1. If § < °—;—E (which is true for at most finitely many of the component
intervals), let m = 0. Otherwise let m € N satisfy 3% < 25% < si=r. It follows from
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D"ﬁmtlon 4.1 thﬂt there i 1s an increasing sequence, {z,}, in H converging to a so that

T < 0= n+1 < m— Suppose |z—a| < a—zn. Thenforj =n+1,... n+k

—z; - 4 4 6(A\% +1)
|z a:JI <z Q| 4q-— z; < |z - al+a—zp41 < S stz T ymten = Jrrsra
Alsoa—zj2a~, > ool whileforl =n+1,...,n+k 1 #, |z; -z >
Ttk = Tntk—1 X sooleomy — oty = r,..—o,é?-ﬁ%-v Let i € {1,...,k}. By

Lemma 4.2

(@ —a)(a = Tny1)*?

=1
9(A—
(@ = Tnyk) (rm‘:&na:w)
o(x?+1) | ¥1
Am;!fx!z—i ( Am n )

k-1

|ai(1‘n+1, . .,zn+kya?x). s

(sorrorre=T) (,\mo o )
_ ke (()‘2 + I)Azk—z)k—l

A-1
k-1
o [(A2 4+ 1)N% _
YR

Now suppose |z < g| 9;—“ If in addition 8 > b—;—“, then by an argument similar to
the one above we get

1 k-1
Ia;(xl,xz,...,zk,a,x)l < ,\ (;‘\+ ,\2k) =K2.

However, if § < 'L;—“, then a similar argument gives

1, _
lai(zy, z2, . . ., Tk, @, T)| < — ok=1)2k-1 (

20

22k—2 k-1
=)

Hence it is enough to take K = max{K;, K3, K3}.
Proceeding in an analogous fashion one can find a sequence {y»} that satisfies the
assertion of the lemma. 0

We observe that in the proof of the preceding lemma we used the finite Denjoy
index condition only for the endpoints of the component intervals of H¢. Indeed the
condition is not needed for the other points in H.

The following theorem is the major step toward accomplishing the goal of this
section.
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Theorem 4.5. Let H C [0,1] be a perfect set with finite Denjoy index and let f:
H — R so that fi(z, H) exists at every point z € H. Then there is a function, F':
[0,1] = R, so that Fi(z) exists for every « € H and F;(z) = fi(x, H) for z € H and
i=0,1,...,k. (Recall that fo(z,H) = f(z).)

Proof. Let (a,b) be a component interval of H® and let K, {z,} and {y,} be
as in Lemma 4.4. For z € (a,b) and for 1 < i < k define a;(z) by

@i(ZTnt1y- - Tntk,a,z) for z € (2a — Tpy1,2a —z,) and n €N

() @i(Ynt1s- - Yntk,b,z)  for z € [2b — yn,2b — ypny1) and n €N
ai(z) =
' a;(z1,z2,...,Tk,a, ) forz€(2a—-x1,3ﬂ]

@i(y1,¥2,- -, Yk, b, T) for z € (&2 b 2b—y1).

By Lemma 4.4, |o;(z)| < K for all z € (a,b).
Define the function F on (a,b) as follows:

(5 eule)f @) + (1= 3 @) f@) for o € (20= n11,20 - 2]

=1 i=1
and n € N
iz}’:c:lai(x)f(ynﬁ) + (1 - iZ; a;(x))f(b) for € [2b — Yn, 2b — Ynt1)
o= andn €N
,.Li (@) (i) + (1 - ‘,}_3 ai(z))fa)  for z € (2a -z, 25?)
\ é ai(2)f(s) + (1- éjl 0i(2))f(b)  forz € (22,2~ p).

(In case the component interval is of the form [0,b) eliminate the first and third
conditions and in the fourth condition replace (’12ﬂ’, 2b — y1) by [0,2b—y;). Make a
similar adjustment for the case (e, 1].) Having defined F on each component interval
of H¢, we set F = f on H and now have defined F on [0, 1].

We will prove that F satisfies the assertion of the theorem. The first step will be
to show that for each component interval, (a,b) of H¢, the Peano derivatives of F' at
the endpoints computed from within (a,b) agree with those of f at the endpoints.
The details will be given only for the endpoint a. Let € > 0. There is a §; > 0 such
that |z — a| < §; with z € H implies

|f() Z‘”” ’ fy(a )| < ele = af*.

3=0



Let § = min{6;,%52}. Suppose 0 < z —a < &. Then there is n € N with z €
(2a — zn+1,2a — 7,]. By the definition of F and by Lemma 4.2,

F(z) — F(a) - Z(‘”,“’ f5(aw H)}

i=1

(m)f(zn+.)+<I—Za.(z))f(a) f(a) - 2(‘” i@ H)’
=1

@) f(Ens) — (Zal(z))f(a) ZZ'-‘ N “”ma,fr)[

i=1

i=1 i=1
(@) (F(Ensd) — Fa) - E(“"*‘; st 29 o, )|
i=1
k k
€ Lolec(eelenss ol < 3 lei(@)iele ~af < kKele ~al.
=1 =1

Now let w € H. We will consider only approach to w from the right. So we may
assume that w is not the left endpoint of a component interval of H¢. We quickly
dispose of the situation where there is a w’ > w with [w,w'] C H. So assume that
w is the limit from the right of a sequence of component intervals of H¢. Let € > 0.

There is a d; > 0 so that |z — w| < §; with z € H implies

k 3
3) fla) =3 Eoh o, )| < el - wlt
j=0 ’

Let (c,d) be a component interval of H® so that w < ¢ < d < w + 36;. (Our
assumption guarantees that such an interval exists.) Set § = d—w. Let z € (w, w+4).
If z € H, then |z — w| < é;. So by equation (3) |f(z) — Eg—o Mf,(w, H)| <
el — w|*. Therefore suppose that there is a component interval (a, b) of H¢ so that
z € (a,b). By the choice of § we have that |z, — w| < §; and |y» — w| < &; for every
n € N where {z,} and {y»} are the sequences from Lemma 4.4 that correspond to
the interval (a,b). Assume first that z € (2a — Tn+1,2a — z,). By the definition of

401



F and by Lemma 4.3 we have

k

F(z) - F(w) - Z (2 ;!w)f fi(w, H).

i=1

k k
= | C @ en + (1- L esta)) 1@ - f(w)

i=1 i=1

_ Zk: Yiy oa(@)(z — w) + (1- Y ai(z))(a — w)?

J!

k i
@ (Flansd = ) -3 “’”—"t‘j{—w)—fj(w, m)

+(1_i§:;a;(x))(f(a)— Z(a fiw H’)l

ji=1

fy(w, )

i=1

k
< Y loi(@)lel@nri — wlF + (1 + Z Ia,-(:c)l)sla - w|*
i=1 =1
k
< KEZ |Znti — w|* + (1 + kK)ela — w|* < (1 + 2kK)e|lz — w|*
i=1
by Lemma 4.4 and since |z, — w| < |z — w)|.
Ifz € (2a - x4, “—‘2"—"—), then by essentially the same argument as above, we arrive
at the same estimate,

(:x:w

F(z) — F(w) Z

i=1

fi(w H)l < (14 2kK)e|z — w|*.

If £ € [2b — Yn,2b — Yn+1), then as above but with a replaced by b and with f(a)
replaced by f(b), we get

T—w
1F@) - F) - 3 2, 1)) < K3l = ol + (1 4+ KEelo —
i=1 i=1
Now [b—w| < b—z|+ |z —w| € 5% + |z - w| < 2z — w| and |ynti — w| <

|Yn+i — b| +|b— w| b=e 4 2lz —w| < 3|a: — w|. Thus we arrive at the estimate.

F(z) - F(w) - 2 (= ]w) fi(w, H)‘ < (L+ kK (3% +2%))e|lz — w]*.

j=1

We get exactly the same estimate in the final case, z € (%2,2b— y;). Hence Fi(w)
exists and equals f(w, H) which completes the proof. (]
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The final step toward proving the main theorem of this section is the next lemma.

Lemma 4.6. Let H C [0,1] be a closed set and F be a function defined on [0, 1]
so that Fy(z) exists for every x € H. Then there is a function, G, which is k times
Peano differentiable at every point z € [0,1] so that G; = F; on H fori =0,1,...,k.

Proof. First we replace the given function, F, with one having the same Peano
derivatives on H. To this end let (a,b) be a component interval of H® and let
Top =1Yo = 1‘{—". There are sequences {z,} decreasing to a and {y,} increasing to b
such that ,—1 — 2, = (zn —a)* and yn —yn—1 = (b — yn—1)* for each n € N. (If the
component interval is of the form [0, b), then let yo = 0 and select only the sequence
{yn} with a similar adjustment in case the component interval is of the form (a, 1].)
For each n € N let R(z,) = F(z,) and R(yn,) = F(yn). Extend R to be linear
on the intervals [zn,Z,-1] and [yn—1,¥Yn). Define R to be F on H. Now we show
that R is k-times Peano differentiable on H with R; = F; on H for ¢ = 0,1,...,k.
Let w € H and let € > 0. There is a 0 < § < € such that |z — w| < 4 implies
|F(z) — F(w) — Ek L'—”—_,—ELF (w)] < e(z —w)k. Let x € H¢ with |z —w| < 4. (We
need not consider the case £ € H.) Then z lies in one of the component intervals,
(a,b), of H. Furthermore for some n € N z lies in either [z,,Zn—1] OF [yn—1,¥n]. Let
[c,d] denote that interval containing z and note that |d — c| < |c— a|* and |d — ¢] <
|d—b|*. So |d—w| < |[d—z|+|z—w| < |d—c|+|r—w| < |z—w|* +|z—w| < 2|z —w|
and similarly |c—w| < 2|z —w|. For the sake of simplicity set a = d“"‘ and § = 5=£.
Then a + 8 =1 and R(z) = aF(c) + BF(d). Thus

(F(c) - F(w) - zk: (c - wy F'(w))
i)

=1

R(z) - R(w) — Z(” w)’ F(w)\

i=1

k i
+6(F@ - P - 3 U R w)
i=1

. Xk: a(c—w) + ﬂ(dj: w)i — (¢ — w) F, (w)\

< aglc — wk + Beld - w|'c +

zk: alc—w)i + ﬁ(dj; w) — (z — w) F,(w)‘

i=2

i alc—w) + Bd-w) - (z —w)ij(w)I.

il
j=2 J:

< ae2*|z — w|* + Be2*|z — w|* +
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To estimate the last term we note that from the conditions, |d — c| < |c — a|¥ and
|d - ¢| < |d— bl*, it follows easily that |d — c| < |c—w|* and |d - ¢| < |d—w|*. Thus

k . j _ _ .
E alc—w)y + ﬂ(dj? w) — (z — w)? Fj(w)l

i=2

k aié% (f)(c o)z -w) '+ ‘é‘f) ({)(d—— z)i(z — w) ¢ - (z — w)?

P> i riw)|
J=
IR B YRy PRY ERY
g Tic D= -w) (;1!(0 z)" + B(d — ) )Fj(w)l
<3 Dol ol ol

N i k i (I
_223.1(’”2: S Byl < o - w1 220y
j=2 j=2 7
ko k+1
<Yl - ulIF ).

j=2

Therefore

k oi
R(z) — R(w) — Z(’” w) F(w)l (e2k+z%s>]z—w]k.

i=1 j=2

From this estimate it is obvious that R is k-times Peano differentiable on H with
R;=F;on Hfor¢t=0,1,...,k Infact Ris k times Peano differentiable everywhere
except possibly at the endpoints of the subintervals [z,,z,-1] and {yn—1,y,] of &
component interval, (a,b), of H. Let [c,d] and [d, €] be two such adjacent intervals.
Let z; = d — {min{d — c,e — d} and zo = d + L min{d — c,e — d}. If the graph
of R on {c, €] is not a line segment, then there is a function G' defined on [z, z2] so
that G is infinitely differentiable on [21, 23], G (21) = Ri(z1) and GO (23) = Ri(z2)
for i = 0,1,...,k and such that the graph of G lies in the triangle with vertices
(21, R(21)), (d, R(d))-and (22, R(z2)). If the graph of R on [c,e€] is a line segment,
then R is already infinitely differentiable so in this case let G = R. Now define G on
the entire interval (a,b) to be G on each of the intervals of the form [z1, 23] and to
be R elsewhere on (a,b). Having now defined G on H® we define G to be R on H.

We now show that G satisfies the conclusion of the theorem. By definition G is
k-times differentiable in the usual sense at each w € H®. So let w € H. We need only
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consider an z in an interval of the form [z, z2] in one of the component intervals,
(a,b), of H¢. First note that |z; — 21| < |21 — a|* and |23 — 21| < |22 — b]F. For
the estimate to come, we need the following inequalities. Let z € [z1,23]. Then
proceeding as above |z — w| < 2|z —w| and |z —z] € (22 —21) < [t —w|*. Asin
the proof of Theorem 2.1, there are a, 3,7 € [0,1] with a + 8 + v = 1 such that
T = az; + fd+v2z2 and G(z) = aR(z1) + BR(d) + vR(z2). Thus employing estimates
similar to those used in the previous argument

bz —w)
IG(@) - G(w) - 3 T R;(w)| <

j—l

o|R(z1) - R(w) - Z("J  Ry(w )'

R - Rw) - 3 G20 = 2b Ry (w)

+ﬂ,R(d) CR@)-3 @_vlp, (w)' +o

=1 j=1
L () =) (ot =) + B =) 4ot =20) ("”l
J—2 J:
o| R(z1) — R(w) - Z(”J‘”)Mw)[w]md) R(w) - Z“’ Y pyw |
| R(z) - Rw) - 2“’2 R(w)]+z Iz — w1 | R; (w)].
=2

From this and the inequalities mentioned above it is obvious that G;(w) exists and
equals R;(w) for i = 0,1,...,k which completes the proof. O

Combining Theorem 4.5 and Lemma 4.6 we get the main theorem of this section.

Theorem 4.7. Let H C [0,1] be a perfect set having finite Denjoy index, Let
k € N\ {1} let f be a function defined on H so that fi(z,H) exists for every
z € H. Then there is a k-times Peano differentiable function, F': [0,1] — R, so that
Fi(z) = fi(z,H) foreveryz € H andi=0,1,...,k. In other words H € P;.

We end this article with an application of Theorem 4.7.

Corollary 4.8. Suppose that the assumptions of Theorem 4.7 hold. Let S C H
be closed. Then there is an interval I so that ® # SN I and that forevery0 < s < k
(fs)(p_s)(a: SN 1) exists for every x € SN I and (fs)(p-s){z,SNI) = fi(x, H) for
p=0,1,...,k—s.

Proof. The assertion follows directly from Theorem 4.7 and a generalization of
Theorem 2 in [5] which is Theorem 1.1.20 and can be found in the Ph. D. dissertation
of the first autho a
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Corollary 4.8 is a generalization of a result due to Denjoy. (See Theorem 2 in [3].)
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