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EXTENDING PEANO DERIVATIVES 
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Summary. Let H C [0,1] be a closed set, k a positive integer and / a function defined 
on H so that the fc-th Peano derivative relative to H exists. The major result of this paper 
is that if H has finite Denjoy index, then / has an extension, F , to [0,1] which is k times 
Peano differentiable on [0,1] with fi = F{ on H for i = 1,2,..., k. 
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1. INTRODUCTION 

Throughout this paper R will denote the real line and M, the positive integers. The 
letter fc will denote a element of N and H will denote a closed subset of [0,1] with 
Hc = [0,1] \ H. Let / be a function defined on H having a fc-th derivative relative 
to H. In this paper we consider the problem of extending / to the entire interval 
[0,1] so that the new function, F, is fc times differentiate on [0,1] with F^ = /W 
on H for i = 0,1,. . . , fc. A solution for the case fc = 1 was given in [9] as well as in 
[10] and [8] with the added assumption that H is perfect. In the second section we 
provide a new proof of the result in [9]. For the rest of the paper we consider the 
case fc ̂  2. In Section 3 we recall an example (given by the second author) of a set, 
# , and a function, /, defined on H which is twice differentiable there but having no 
twice differentiable extension to [0,1]. The nature of this example demonstrates the 
futility of pursuing the problem for the ordinary fc-th derivative. So we consider the 
fc-th Peano derivative instead and prove a theorem giving conditions on the function 
that assure its extendability to a function having a fc-th Peano derivative rather than 

Professor Jan Mařík died on January 6, 1994. 
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a &-th ordinary derivative. (The pertinent definition is given in that section.) In the 
fourth section we turn our attention to the underlying set H. There is a perfect set 
H, and a function, / , defined on H having a second Peano derivative, /2, relative to 
H but for which there is no twice Peano differentiable function, F , on [0,1] whose 
Peano derivatives agree with those of / on H. (See Buczolich [1].) We will show 
that the desired extension does exist if H is a perfect set having finite Denjoy index 
(defined in the section). In particular there is an extension for any such function 
defined on the Cantor set since its Denjoy index is 3 as can be easily verified. 

2. EXTENDING FIRST DERIVATIVES 

In this section we will give a new proof of the result proved by Mafik, in [9]; 
namely Theorem 2.1 below. For the case H perfect, the theorem was proved in [10] 
and [8]. Although Mafik's proof is elementary in the sense that it uses no advanced 
theorems, it is very complicated. Here we give a relatively simple proof. 

Theo rem 2 .1 . Let H C [0,1] be closed and / : H -> R. Suppose that / ' , com­

puted relative to H, exists at every point x G H. (In case x is an isolated point of 

H} the value of ff(x) is arbitrary.) Then there is a function F differentiable on [0,1] 
so that F = f andF1 = / ' on H. 

P r o o f . We describe how to define an initial extension, G, of the function / 
to each component interval of Hc—the complement of H. If Hc has a component 
interval of the form [0,6), set G(x) = f(b) + (x - b)ff(b) for each x G [0, b). Proceed 
similarly if Hc has a component interval of the form (a, 1]. Let (a, b) be a component 
interval of Hc with a, 6 G [0,1]. For the left endpoint, a, we distinguish two cases. 
If a is an isolated point of if, then there is a component interval of Hc of the form 
(c,o) (unless a = 0). Choose da G (a, ^ ) so that 

A <- • í (h-a? ( q - c ) 2 \ 

(d0 — a ^ \+\}?)a)\ -f « = 0), If a is not an isolated point, then there is a strictly 

increasing sequence {xn} in H converging to a with a - x\ < ^ . In this case for 

each n € N w e let xn = 2a — xn\ that is, the point symmetric to xn in a. Similarly 

either b is an isolated point of H in which case there is a component interval (b, d) 

of Hc (unless 6 = 1 ) and we choose cfe G (9^, b) so that 

h A < m . n / ( 6 ~ a > 2 V-W 
o — db ^ mm <* Чîí • + 1/'(fc-)ľ-+ ./'(*)!. 
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(with the obvious modification if b = 1) or there is a strictly decreasing sequence 
{yn} in H converging to b with yi — b < | (6 — a) in which case we set yn =• 26 — yn. 
Define G on (a, 6) as follows. First let 

G(x) = 

2f(a) — f(xn) if x = x'n for some n Є 

2/(6) - fІУn) iîx = yn for some n € I 

f(a) + (x -a)f'(a) iîxe(a,da) 

f(b) + (x-Ь)f'(b) if xe(dь,b). 

Note that the set where G is not yet defined consists of open subintervals of (a, 6). 
On each of these intervals define G to be linear on the corresponding closed interval. 

Having defined G above on Hc we define G(x) = f(x) for x € H. We will show 
that G is differentiate everywhere on [0,1] except possibly at points in a component 
interval, (a, 6), of Hc of the form x'n, yn, da or d\, and that G' = / ' on H. To this end 
let w <E H and e > 0. Set M = max{7,6 + 4|/'(w)|}. By the differentiability of / and 
by the definition of G, there is a Si > Osothat \G(y)—G(w) — (y—w)f'(w)\ < jtf\y-~ H 
whenever y £ H and |y — iu| < o\. One can choose 0 < 5 ^ -f-j so small that if (a, 6) 
is a component interval of Hc so that if 1) w ^ a < b with 6 — w < <S, then 
6 + ^ - W < 5i, or if 2) a < 6 ̂  tu with w - a < 6, then it; - (a - ^ ) < S\. Let 
x E Hc and assume w < x. (The case .r < w is similar.) Let (a, 6) be the component 
interval of Hc containing x. First suppose x = x'n for some n eN. Then 

|GO) - G(w) - (x - w)f'(w)\ = \2(f(a) - f(w) -(a- w)f'(w)) 

-(f(Xn)-f(w)-(xn-w)f'(w))\ 

<2ji\a-w\ + ±\xn-w\ 

< 3—:\x — w\ < e\x - w\. 
M 

Next suppose x — y'n for some n eM. Then similarly 

\G(x) - G(w) -(x- w)f'(w)\ < 2-j-\b -w\ + ±\yn - w\ 

= 2±\b-w\ + -L(\b-w\ + \b-x\) 

^A±\b-x\ + 3±\x-w\ 

< 7-rj|x - w\ .^ e\x - w\. 

389 



Now suppose that x G [a,da]. Then 

|G(*)-G(u>)- (x-u>)TH| 

= |/(o) - f(w) -(a- w)f'(w) - (x - a)(f'(w) - f'(a))\ 

<±\a-w\ + \x-a\(\f'(a)\ + \f'(w)\) 

< -^|x - u>| + |d„ - o|(|/'(o)| + |/'(u>)|) 

<-^ |x-u>| + |o-u>|2(l + | / ' H | ) 

<-^ |x-u>| + |x-u>|2(l + | T H | ) 

<-^ |x-u>| + -^|x-u>|(l + | T H I ) 

<-g|x-U>|(2 + | T H I ) < ^ - H -

Next suppose that x € [db,b]. Then as above 

|G(x) - G(w) - (x - w)f'(w)\ < jj\b - w\ + \b - w\2(l + \f'(w)\). 

Since |6 - u>| <. \b - a\ + \a - w\ <. 2|* - o| + |a - u>| < 2|* - u>|, 

|G(x) - G(w) -(x- w)f'(w)\ < 2-^-\x -w\ + 4|x - u>|2(l + |/'(io)|) 

< 2-L\x -w\+ 4-L\x - H(i + l / 'HI) 

< -^|* - u>|(6 + 4 |TH|) < e\x - till-

Consequently in all four cases, 

(1) |G(x) - G(u>) - (x - u>)TH| < e|x - u>|. 

Finally any x 6 (a, b) not covered by one of the four cases above is in an interval 
(c, d) where both c and d are one of the four types discussed above. Then there are 
a, /3 G [0,1] with a + $ = 1 such that x = ac + /3d and G(x) = aG(c) + 0G(d). Thus 
we have 

|G(x) - G(u>) - (x - u>)TH| = a|G(c) - G(u>) - (c - u>)T(u>)| 

+ p\G(d) - G(w) -(d- w)f'(w)\ 

< ae(c - w) + 0e(d - w) = e\x - w\. 

Therefore G is differentiate on H with G' = / ' on H. 
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In fact G is differentiate everywhere except possibly at the points of the first 
four types discussed above since these are the points which are simultaneous the 
endpoints of two intervals on which G is linear. The objective now is to redefine G in 
small neighborhoods of such points so that the new function, F, is differentiable on 
[0,1]. To accomplish this goal let c be such a point and let (a, b) be the component 
interval of Hc with c G (a, b). Let z\ be the midpoint of the interval to the left of 
c on which G is linear and z2 the midpoint of the interval to the right on which 
G is linear. There is a function G differentiable on [z\,z2] so that G(z\) = G(z\), 
G(z2) = G(z2), G'(zx) = G'(zi), G'(z2) = G'(z2) and the graph of G lies in the 
triangle with vertices (zi,G(z\)), (c,G(c)) and (z2,G(z2)). Now define a function -F 
on [0,1] to be this function, G on each of the intervals, [21,22] ai-d to be G otherwise. 
Clearly F is differentiable on Hc. So it remains only to check that F is differentiable 
on H with F' = / ' on H. For this purpose let w G H and e > 0. There is a 5 > 0 
so that I a; — w\ <S implies 

(2) \G(x) - G(w) -(x- w)f(w)\ < e\x - w\. 

If x belongs to one of the intervals [z\, z2], (Employing the notation of the previous 
paragraph, c G [21,22] denotes a common endpoint of two intervals on which G is 
linear.) then there are a,/3,7 G [0,1] with a + /?+7 = 1 such that x = azi+/3c+jz2 

and F(x) = aG(zx) + f3G(c) + yG(z2). Thus 

\F(x) - F(w) -(x- w)f(w)\ = \aG(zx) + f3G(c) + jG(z2) -(a + f5 + -y)G(w) 

- (azi + (Jc + 'yz2- (a + fi + y)w)f(w)\ 

<a\G(z1)-G(w)-(zl-w)f(w)\ 

+ P\G(c)-G(w)-(c-w)f(w)\ 

+ 7\G(z2)-G(w)-(z2-w)f(w)\ 

^ e(a(zi -w)+ /3(c -w)+ 7(23 - w)) = e(x — w). 

Since e was arbitrary, we see that the function F satisfies the assertion of the theorem. 

• 

3. EXTENDING fc-TH DERIVATIVES 

We became interested in the problem of extending higher order derivatives through 
a question posed by Professor Richard O'Malley. He asked if a function which is de­
fined and say twice differentiable on a perfect set, H, relative to H can be extended 
to a function defined on [0,1] which is twice differentiable on [0,1]. We begin this 
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section by discussing an example given in [9] showing that in general the answer to 
O'Malley's question is no. In [9] Mafik started with any sequence {xn} converging 
monotonically to 0 and constructed a sequence {[xn,yn]} of disjoint, closed subin-

oo 

tervals of [0,1] and put H = U [xn, yn] U {0}. Clearly H is a perfect set. He defined 
n = l 

/ on H by /(0) = 0 and for each n € N and each x G [xn,yn] by f(x) = xn. It is 
obvious that for each n e N and each x G [xn ,yn] f'(x) = 0. Since the graph of / 
lies betweeny = x2 and y = 0, it is easy to see that / ' (0) = 0. Consequently, for 
each i G N (in particular for i = 2) /W = 0 on H. In [9] it is shown that / can 
not be extended to a twice differentiable function on [0,1] by showing that any such 
extension would have a first derivative that is unbounded on any neighborhood of 
0. What this example illustrates, besides its intended purpose, is that for functions 
whose domains are not connected, the usual notion of differentiation is not the cor­
rect one to use for higher order differentiation. One which is considerably better is 
the notion of the fc-th Peano derivative whose definition we recall next. 

Definition 3.1. Let H C [0,1] be closed, let fc G N, let / : H -> R and let 
x G H. Then / is fc times Peano differentiable at x relative to H means there are 
numbers f\(x, H),..., fk(%, H) so that y G H implies 

f(y) = f(x) + (y-x)f1(x,H) + ---+i^^-(fk(x,H)+ek(y)) 

where lim £k(y) = 0. The number fk(x,H) is called the fc-th Peano derivative 
y€H,y->x 

of / at x relative to H. It will be convenient to denote f(x) by f0(x,H). When H is 
an interval we simply write fk(x, H) = /*(#). If / is fc times Peano differentiable at 
each x G H, we say that / is fc times Peano differentiable on H relative to H. At an 
isolated point x G H the choice, of the numbers, f\(x, H), . . . , / * (a;, H), is completely 
arbitrary. 

For more information about the theory of fc-th Peano derivative, the reader is 
referred to [4] and [11]. Here we only note that it follows from the classical form 
of Taylor's Theorem that if / is defined on a neighborhood of x and is fc times 
differentiable at x in the usual sense, then / is fc times Peano differentiable at x and 
/(*)(#) = fk(x). For this equality to hold it is essential that the domain of / contains 
a neighborhood of a; as is demonstrated by the example presented above. It is not 
hard to show that if, in that example, one selects xn = —---, then /2(0, H) = 2. This 
observation gives another way to conclude that no extension of / is possible. For if 
F is such an extension, then since /"(0) = 0, we must have F"'(0) = 0. But since 
/ 2 (0 , i f ) = 2, we must have F2(0) = 2. However by Taylor's theorem, F"(0) and 
F2(0) must be equal. By a similar argument it can be seen that a necessary condition 
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for extendability of a fc-th ordinary derivative is the existence of the first k Peano 
derivatives and their agreement with the first k ordinary derivatives. This condition 
is not sufficient for extendability to a A: times differentiable function as will be shown, 
but is sufficient for extendability to a A; times Peano differentiable function. 

Lemma 3.2. Let H C [0,1] be closed, let k € N and let g: H -> R be A; times 
Peano differentiable on H relative to H. Suppose that for each i € N with i < fc, 
gi = 0 on H. Then there is a function G: [0,1] —> R which is k times Peano 
differentiable on [0,1] such that G\H = g> 

Proof . The assumption simply states that for each x E H we have g(y) = 
g(x) + (y - x)ke(y) for y £ H where lim e(y) = 0. (The k\ is absorbed into the 

y£H,y-+x 

function e.) To define the extension let (a, b) be a component interval of Hc. There 
is a unique polynomial, p, of degree 2fc H-1 defined on [a, 6] such that p(d) = g(d), 
p(b) = g(b)y and for each i € N with i ^ fc, p^(d) = p^(6) = 0. (If the component 
interval is of the form [0,6), then simply set p(x) = g(b) + (6 — x)k+1. Proceed 
similarly if the component interval is of the form (a, 1].) Let G• = p on (a, 6) for each 
component interval (a, 6) of Hc and let G = g on if. Clearly G is k times (and hence 
k times Peano) differentiable on Hc. It remains to show that for each a; € [0,1], 
Gi(x) exists and Gi(x) = 0 for i = 1,2,..., k. To do so we must first investigate the 
polynomial p more closely. Since the first A; derivatives of p are 0 at both a and 6, it 
follows that for each y E (a, 6), p'(y) = A(y - a)fc(y - b)k where .A is a number to be 
determined. So 

p'(y) = Жг/-a) f c (ţ/-a + a-Ь) f c 

= A(y - а)kJ2 (k\ (y - аү(а - b)k^ 
j=0 

fc 
* £ ( í ) (a-*)*-'(»-o)*« 

£ 5 ^ 

Integrating once gives 

i = 0 
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Since p(a) = g(a), B = g(a), and since p(b) = 0(6), 

•<«-•w--£C)^('-*,*M+, 

Ofc\ (-1)*--

3=0 

= A(b-a)2k^__ 
3=0 

jjk + j + l 

Thus A = ffffiflCfc where C* = £* = 0 ( j ) 1 ^ - d e P e n d s o n l y o n *• H e n c e 

Letur e H. It will be shown that Gx(x) = G2(x) = ••• = G*(x) = 0; that is, 
lim G$Z$ix) = 0. Since ft (a) = g2(x) = • • • = fffc(rc) = 0, we need only consider 

TeHc. 
Suppose (a, 6) is a component interval of Hc with x < a < b. The case of o < 6 < x 

is dealt with in a similar fashion. Then 

I (O-.-)*! G(y)-G(x) 
- Ж Ì * ( î / - я ) 

G ( V ) - О Д flf(û) - ø(ж) 

(a - x)k 
(y - s)* (y - z) f c 

Since o — x < y — x, and since pi(x) = g2(x) = • • • = gk(x) = 0, the second term 
tends to 0 as y -+ .r. So we estimate the first term. 

g ( ÿ ) - g ( Q ) 
(y - x)k 

9(Ь)- 9(0) v (k\ (a-b)k i _ k+j+1 

(y-x)k(b- a)-*+- °* ^ \jj k + j + l 1 " ' 

(6-ж)fce(6) + (a - ж)*e(a) 
(y-ж)f c(6-o)-*+-

„ A /ifc\ (a - 6)fc-J , fc+І+1 

( 
(6-x) f c(y-a)Ҷ6-af + 1|e(6)| 

(y-x)k(b-a)2k+l 

(а-х)к(Ъ-а)*к^Ш\\г f A \ 1 
(y-.r) f c(6-a)- f e+i / fc^ťW* + j + l ' j=0 

Since a — x -̂  1/ — x, the second term in the parentheses above tends to 0 as y -> x. 
So we consider the first term. There are two cases. First assume that x - a ^ 6 - o. 
Then 6 - x = 6 - o + o — £ < 2(6 - a). Since y - a -$ t/ - x, the first term is no 
more than {fEfjr{fEf|rk(6)| ^ 2k\e(b)\. The other case is 6 - a ^ x - a. Then 
6 — x = 6 — a + a — x ^ 2(a — x) < 2(y — x) and so in this case since y — a ^ 6 — a, 
the first term is no more than {jE|}rk(6)| < 2fc|e(6)| and hence the first term also 
tends to 0 as y -+ x, which completes the proof of the lemma. • 
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Theorem 3.3. Let H C [0,1] be closed, let k € N and let / : H -> R be k times 
Peano differentiate on H relative to H. Suppose in addition that f is k times 
differentiable in the usual sense on H relative to H and that for each t, j ENU {0} 
with i + j ^ fc /W is j times Peano differentiable on H relative to H and (f^)j = 
y(t-fi). Then there is a function F: [0,1] -> R which is k times Peano differentiable 
on [0,1] such that F\H = / . 

Proof . We proceed by induction on fc. For fc = 1 the assertion is just that 
of Theorem 2.1. So suppose the assertion is true for fc — 1 and let / satisfy the 
hypotheses for fc. Then / ' satisfies the hypotheses for fc — 1. Consequently there is 
a function S: [0,1] -» R which is fc - 1 times Peano differentiable on [0,1] such that 
S\H = / '• Let T be any antiderivative of S. Then for each i = 1,2, • • • fc on H we 
have (/ - T)i = fi-Ti = f{ - ( T V i = h - $ - i = /< - (/')<-i = /<- /< = 0. 
Thus the function / - T satisfies the assumptions of Lemma 3.2. Hence there is a 
function G: [0,1] -> R fc times Peano differentiable on [0,1] such that G\H = / - T. 
Let F = T + G. Then F | H = / and the proof is complete. • 

We close this section with an example showing that the extension whose existence 
was just proved in general need not be fc times differentiable for fc ^ 2. In fact the 
example is for fc = 2. 

For each n G N let bn = ----- and let an = bn - bn. It is routine to show that 
bn+i < an, and that the line joining (an, 0) and (6n, bn) has slope 1. For each nGN 

, oo 

let dn = an °n+l. Let H = {0} U IJ [6n+iA+i + dn] U [an - dn,an]. Define / on 
n=l 

H by /(0) = 0 and for each n € N f = bn+1 on [&n+i,6n+i + dn] while / = 0 on 
[an — dn, an]. Since the graph of / lies between y = x3 and y = 0, /i(0) = /2(0) = 0. 
Moreover for each n G N / ' = / " = 0 on [6n+i, &n+i+dn]U[an-dn, an]. Consequently 
/'(0) = /"(0) = 0. Since for each n G N , the slope of the line joining (an,0) and 
(&n, &n) *

s 1J a n v differentiable extension of / to [0,1] will have at least one point in 
each [an, bn] where the derivative is 1. Hence the derivative can't even be continuous 
at 0 let alone differentiable there. 

4. EXTENDING PEANO DERIVATIVES 

In this section we present a sufficient condition on the set H under which every 
function f:H->R which is fc times Peano differentiable on H relative to H can be 
extended to a function F: [0,1] -> R which is fc times Peano differentiable on [0,1] 
so that Fi(x) = fi(x, H) on H for i = 0,1, • • fc. The family of closed sets with this 
property will be denoted by P*. For fc = 1 Theorem 2.1 states that Pi = {if C [0,1]: 
H is closed}. For the case fc ̂  2 not every perfect set is in P*. For the case fc = 2, 
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Buczolich provided an example of a perfect set, H, that is not in P2. (See [1].) In 
[3] Denjoy gave an example of a perfect set, H, and a function, / , defined on H with 
/i (x, H) = f2(x, H) = 0 and /3(x, H) = 1. The set, H, doesn't belong to P3, for if so 
there would be an extension, F, of / so that F is three times Peano differentiate on 
[0,1]. By a theorem in [5] there is a decomposition of H into a countable collection 
of closed sets, {An}, so that H = \JAn and F3(x) = F%(x) on An. Since F is an 

n 

extension of / , F2(x) = 0 and F3(x) = 1 on if which is contrary to the choice of 
the sets An. The function / from Denjoy's example can easily be modified so that 
H is not in Pfc, fc ̂  3 odd. One common property of the Buczolich and the Denjoy 
examples is that both are perfect sets which are extremely rare at each point of the 
set in the sense that the symmetric porosity of each set at each of its points is 1. The 
condition that we require could be stated in terms of porosity, but we use the notion 
of the Denjoy index instead. The Denjoy index, a, of a set, if, at one of its points 
is related to the symmetric porosity, p, of that set at the same point by the formula 
a = YTJ- The concept of index of a perfect set was introduced by Denjoy in [3, 
page 285]. The reader can learn more about the relationship between the index of a 
perfect set at a point of the set and the corresponding porosity in [2]. The condition 
we require is essentially that the set have finite Denjoy index at each point, but with 
some uniformity added. 

Definition 4.1. Let H C [0,1] be closed. Then the Denjoy index of H is 

inf{A ^ 1: for some 0 > 0 and for each x € H there is a sequence {fcn}ntcN 
with lim fcn = 0 and Ifcij ^ 0 such that x + kn € H 

n—•<» 

and 1 < |fcn|/|fcn+i| ^ A for each n € N}. 

It is possible that there is no A satisfying the definition in which case we invoke the 
convention that the infimum of 0 is oo. This is clearly the case if H has an isolated 
point. The uniform 0 implies that the first term of the sequence {x + fcn} is at least 
a fixed distance, 0, from x. The uniform A guarantees that {x -f fcn} converges to x 
no faster than A~n+1 converges to 0. Since the 0 depends on A, the Denjoy index 
itself need not be a A. However it may be. It is not hard to see that if H is the 
Cantor set, then for A = 3 there is a corresponding 0; namely 0 = 1/3, but not for 
any A < 3. So the Denjoy index of the Cantor set is 3. 

The purpose of this section is to prove that a closed set with finite Denjoy index is 
in Pk for every fc. Note that such a set must be perfect. As noted above, our result 
applies to the Cantor set. We use the ideas of the proof of Theorem 2.1, but with 
substantial modification. There were two main ideas in the proof of Theorem 2.1. 
First, to extend a function, / , to the entire interval [0,1], so that the extension, 
Cr, is differentiable on H. It is here that finite Denjoy index will be used for the 
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general case. The second step was to modify the extension so as to be differentiable 
everywhere. This step generalizes to the case k ^ 2 with no restriction on H. (See 
Lemma 4.6 below.) Concerning the first step, suppose (a, b) is a component interval 
of Hc. Recall that in the proof of Theorem 2.1 we selected two sequences from H 
at random one converging to each endpoint of (a, b). Then we reflected the terms 
of each of these sequences in the endpoint to which the sequence converged and 
defined the extension to be 2/(a) — f(xn) for the endpoint a and 2/(6) — f(yn) for 
the endpoint 6. Here we use the assumption of finite Denjoy index to select the two 
sequences. These sequences are then reflected as before, but to define the function 
between two reflected points we use a certain weighted average of the values of the 
function at the endpoint and at k of the points of the original sequence. We begin 
with two lemmas which give rise to the weights used for the extension. 

Lemma 4.2. Let xi,X2,... ,Xk, a,x € R be distinct. Then the system 

(x - a)э = ^ ai(xi -a)э j = 1,..., к 
i = l 

has a solution for ( a x , . . . , a/t). Moreover 

(x-a) YKx-Xj) 
jj£i  

(xi-a) n(zi-Zj)' 
Í9-Í 

« І = 

Proof . The assertion follows from the fact that if ft,...,ft € R, then the 
determinant of the matrix 

• f t ft 

PI ft 

ßì ßì 
is n A n (&-&•)• • 

k^s^l k^s>j^l 

The next lemma shows that (x — w)3 can be represented in terms of the numbers 
a i , . . . , Ok of the above lemma for any w £ R; not just a. 

Lemma 4.3. Let xi,x%,... ,Xk, a,x € R be distinct and let a i , . . . ,a* be as in 
k 

the conclusion of Lemma 4.2. (Thus (x - a)3' = £ ai(xi - a)3 for j = 1, . . . , k.) 
i= l 

Then for any w € R 
k / fc \ 

(x-w)3 = ] r a £ (^ -w)^+ fl-^TaiHa-ti;)'* for j = 1,... ,fc. 
i= i ^ i= i ' 
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Proof . Let w G R and let j € {1,2,•••,&}. Then 

(x — wy = (x — a + a — w)i 

= (a -«;)-»+y; a« E fJ) (*« - °)'(° - wy~s 

i=i ,=i w 

= (a - w)j + Ea* ( E 0(:ri " a ) 8(a ~ WV~" ~ (o " w ) i ) 
k 

= (a - u))̂  + E a* ((x* - WY ~ (a~ WV) 
t= i 

= ]P a.(x. - w)' + (a-w)jll-^2ai)-

D 

Since the numbers, a*, of the previous two lemmas depend on the fc + 2 numbers, 
xi,X2,**><>Xkia,x, in the next lemma we denote them by ai(xi,X2, • •• ,xk,a,x). 
That lemma selects the sequences that will be reflected into the component intervals 
ofiIc . 

Lemma 4.4. Let H C [0,1] be a perfect set with finite Denjoy index and let (a, b) 
be a component interval ofHc. Then there are a strictly increasing sequence {xn} in 
H converging to a, a strictly decreasing sequence {yn} in H converging to b and a con-
stant, K, (depending only on the choice ofX and 6 from the definition of Denjoy index 
ofH) so that for each n € N and i = 1,.. .,k we have |ai(a;n+i,.. .,xn+k,a,x)\ < K 
for \x - a\ ^ \xn - a\ and \ai(yn+x,.. .,yn+k,b,y)\ ^ K for \y-b\^ \yn - b\. More­
over for i = l,...,k we have \cti(xi,X2,.. .,xk,a,x)\ < K for \x - a\ ^ ^=2. ^d 
lat(yi,?/2,...,2/fc,b,y)| < K for \y - b\ ^ *=--. (In case the component interval is 
of the form [0,6) we assert only the existence of the sequence {yn} with a similar 
adjustment in the case (a, I].) 

Proof . Since H has finite Denjoy index, there are A ^ 1 and 8 > 0 satisfying 
Definition 4.1. If 9 < £-=£ (which is true for at most finitely many of the component 
intervals), let m = 0. Otherwise let m € N satisfy ^ < ^ ^ p!=T. It follows from 
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Definition 4.1 th^. t h e r e i s ^ increasing sequence, {xn}, in H converging to a so that 
A^T2«TT < a - . x n + i ^ - j ^ . . Suppose \x-a\ ^ a-iCn- Then for j = n + l , . . . , n + * 

I X - ^ K I X - Q I . a - x . < U - a | + o - x 4.1 < !- + e - g ( A 2 * l) 

' J I + a Xj ^ |X a| + O X n + i ^ ^ m + 2 n - 2 ^ ^m+2n ^m+2n * 

A l s o a " X i ^ a ^ a ; n + ^ X m T ^ + ^ 
sn+fe - xn+fc-i \ Am+affw.s - Am+atf+al,.a -= ^ + ^ 1 - 2 . Lett € {1, . . . ,*}. By 
Lemma 4.2 

Irv.U M ^ ( x - o ) ( o - a : n + i ) * ; - 1 

(a - xn+k) ^Am+waLa J 

Xm+2n+2Jb-l l ^m+2n I 

( A m+2n+2Jk-l ) ( Am+2n+2fc-2 ) 

= A»+i ^ t i ^ j " 

fc-1 

)k--T 

Now suppose |x - o| < *=*. If in addition 0 ^ &=*, then by an argument similar to 
the one above we get 

к-1 

\<Xi(xi,X2,...,xkia,x)\ ^ A2 I YZj*?kJ = K2. 

However, if 0 < £—--, then a similar argument gives 

j / ^2k-2\k~l 

\<Xi(zltx2,...,xk,afx)\ ^ —2fc-1A2fc~1 ijZi) = K*' 

Hence it is enough to take K = max{Ki, #2 ,#3}. 
Proceeding in an analogous fashion one can find a sequence {yn} that satisfies the 

assertion of the lemma. D 

We observe that in the proof of the preceding lemma we used the finite Denjoy 
index condition only for the endpoints of the component intervals of Hc. Indeed the 
condition is not needed for the other points in H. 

The following theorem is the major step toward accomplishing the goal of this 
section. 
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Theorem 4.5. Let H C [0,1] be a perfect set with Suite Denjoy index and let f : 

H -* R so that fk(x,H) exists at every point x e H. Then there is a function, F: 

[0,1] -> R, so that Fk(x) exists for every x e H and Fi(x) = fi(x, H) for x e H and 

i = 0 , 1 , . . . , fe. (Recall that f0(x, H) = f(x).) 

P r o o f . Let (a,6) be a component interval of Hc and let K, {xn} and {yn} be 

as in Lemma 4.4. For x e (a, b) and for 1 ^ i -̂  fe define ai(x) by 

щ(x) = < 

r ou(xn+i,... ,xn+k>a,x) for x e (2a - xn+\,2a - xn] and n e 

oti(yn+i,...,yn+k,b,x) for x e [26 - yn,2b- t/ n + 1 ) and n G ^ 

OLi(xi,x2,...,Xk,a,x) for x e ( 2 a - xi,9^] 

,oti(y1,y2>.-.,yk,b,x) for x e ( ^ , 2 6 - y i ) . 

By Lemma 4.4, |a t(#) | < K for all x e (a,b). 

Define the function F on (a, 6) as follows: 

E «i(ж)/(o:n-f-i) + (1 - E <*i(x))f(a) for ж Є (2a - s л + l ł 2 a - xn] 
І = I

 ч
 І = I ' 

аnd n Є ÍҸ 

E <*i(x)f(yn+i) + ( l - E oti(x))f(b) for x Є [26 - yПł 26 - tfn+1) 
І = I

 ч
 І=I ' 

аnd n Є N 

E Û І ( « ) / ( ^ ) + ( l - Ż ^ І W ) / ( « ) for x Є (2a - ï ь f ] 
І = I

 ч
 І = I

 7 

E oц(x)f(yi) + ( l - £ ai(x)) /(6) for x Є (s±Ł, 20 - tfl). 
4
 І = I

 v
 І = I

 7 

F(x) = ^ 

(In case the component interval is of the form [0,6) eliminate the first and third 

conditions and in the fourth condition replace ( ^ , 2 6 - y\) by [0,26 - yi). Make a 

similar adjustment for the case (a, 1].) Having defined F on each component interval 

of Hc, we set F = / on H and now have defined F on [0,1]. 

We will prove that F satisfies the assertion of the theorem. The first step will be 

to show that for each component interval, (a, 6) of Hc, the Peano derivatives of F at 

the endpoints computed from within (a, 6) agree with those of / at the endpoints. 

The details will be given only for the endpoint a. Let e > 0. There is a <5i > 0 such 

that \x — a| < Si with x e H implies 

m-t^-f^н) 
k 

i 
j=0 

< ф - a | f c . 
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Let 6 = min{*i, -^2^}. Suppose 0 < x - a < 6. Then there is n € M with x € 
(2a — xn+i, 2a — xn]. By the definition of F and by Lemma 4.2, 

\ғ(x) - F(a) - J2 ^-^-fM И) 
k k k 

J2 <*i(x)f(xn+i)+(i - Ê <*(*)) /(«) - /(«) - £ ^7Г^/І(°>
 я ) 

i = l ^ i = l ' i = l ^* 
* -c-лfc 

5>(*)д* n + i ) - (£«.(*))/(«) - £ Eí=1 ttf(Æ -fn+i a)3fл°>н) 
i=l м = i ' i = i ^* 

(жn + i - a)J* |^«,(*)(/(*n + ť) - f(a) - £ ^ + ' , "; L(a,iř)) 
' i = l Í = l J ' 

k k 

< ] T \ai{x)\e\xn+i -<Ak <^Y1 \a&)\e\x ~ a\ ^ ^ ^ " " °l 
i = l i = l 

Now let w G H. We will consider only approach to w from the right. So we may 
assume that w is not the left endpoint of a component interval of Hc. We quickly 
dispose of the situation where there is a w' > w with [wtw

l] C if. So assume that 
w is the limit from the right of a sequence of component intervals of Hc. Let e > 0. 
There is a 6\ > 0 so that \x — w\ < 5\ with x € H implies 

(3) fix)-£(JLz!ÙLMWtH) 
i=o 

< ф - w\k 

Let (c,d) be a component interval of Hc so that w ^ c < d < w + ^6i. (Our 
assumption guarantees that such an interval exists.) Set S = d—w. Let x € (w> w+S). 
If x e H, then \x-w\< Sx. So by equation (3) \f(x) - £* = 0 ^ ^ ^ ( u ; , / ? ) ! < 
e|a; - w\k. Therefore suppose that there is a component interval (a, b) of i / c so that 
x G (a, 6). By the choice of 6 we have that \xn — w\ < S\ and \yn — w\ < 5\ for every 
n € N where {a;n} and {yn} are the sequences from Lemma 4.4 that correspond to 
the interval (a,b). Assume first that z € (2a — xn+i ,2a — xn]. By the definition of 

401 



F and by Lemma 4.3 we have 

F ( s ) - F ( « , ) - _ - í - - Ą > ) Я ) | 
j = i •>' ' 

fc , fc ч 

£ <*.(*)/(*«+.) + (1 - _ ] oчO)) /(в) - f(w) 
ť = i ^ <=i ' 

-r^ S?=i««(»)(» - «>)' + (i - SŽ-i«.(»))(« - ™Y,, m - _ TJ /дw, я ) 
j = i J -

= I £ *<*) (/<*-+*) - /(») - Ľ ^ - ^ / І K я)) 
I i= l ^ i = l ^* ' 

k k 

+(i - _.«,(«)) (лв) - /(«) - è ц ^ / > , я)) 
\ i= l ' ^ i = l ^* ' 

^ __ |a ť(x)|є|a;n + i - w\k + ( l + __ | a « ( * ) | ) ф - Ч * 
І=I ^ І=I ' 

k 

^ Kє __ \XП+І - w\k + (1 + kK)є\a - w\k < (1 + 2fc. ")Ф -
i = l 

by Lemma 4.4 and since |xn +i — to| ^ \x — tu|. 
If x £ (2a — #i, ^l"), then by essentially the same argument as above, we arrive 

at the same estimate, 

F ( x ) - F H - _ ^ - ^ / > , Я ) 
j = l J ' 

< ( l + 2 Щ ф - H * . 

If x G [26 - 2/n, 26 — yn+i), then as above but with a replaced by 6 and with f(a) 
replaced by /(6), we get 

\F(x)- F(w)-^{^^-fj(w,H)\^KeJ2\yn+i-w\k + (1 + kK)e\b - w\k. 
i = i i = l 

Now |6 - w\ ^ |6 - x\ + \x - гü| ^ 2_« + |* - w| ^ 2k - H and |yn+i - гu| ^ 
\yn+i - 6| + |6 - IÜ| ^ Ł=-- + 2|x - tť| ^ 3|x - w\. Thus we arrive at the estimate. 

ад-ғн-^Í ^лкя) 
j = i 

< (l + kK(r + 2k))e\x-w\k. 

We get exactly the same estimate in the final case, x € ( ^ , 2 6 - yi). Hence Fk(w) 
exists and equals f(w,H) which completes the proof. • 
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The final step toward proving the main theorem of this section is the next lemma. 

Lemma 4.6. Let H C [0,1] be a closed set and F be a function defined on [0,1] 
so that Fk(x) exists for every x G H. Then there is a function, G, which is k times 

Peano differentiate at every point x G [0,1] so that G{ = F{ on H for i = 0 , 1 , . . . , k. 

P r o o f . First we replace the given function, F , with one having the same Peano 
derivatives on H. To this end let (a, b) be a component interval of Hc and let 
xo = 2/0 = ^2^- There are sequences {a;n} decreasing to a and {yn} increasing to b 

such that xn-i - xn = (xn - a)k and yn - yn-\ = (b — yn-\)
k for each n EN. (If the 

component interval is of the form [0,6), then let yo = 0 and select only the sequence 
{yn} with a similar adjustment in case the component interval is of the form (a, 1].) 
For each n E N let R(xn) = F(xn) and R(yn) = F(yn). Extend R to be linear 
on the intervals [xn)xn-i] and [yn-x,yn]. Define R to be F on H. Now we show 
that R is A;-times Peano differentiate on H with _R, = F{ on H for i = 0 , 1 , . . . , k. 

Let w G H and let e > 0. There is a 0 < S < e such that \x — w\ < 6 implies 
\F(x) - F(w) - _ r } = 1 ^=f^Fj(w)\ < e(x - w)k. Let x G Hc with \x-w\< 5. (We 
need not consider the case x G H.) Then x lies in one of the component intervals, 
(a, 6), of H. Furthermore for some n £N x lies in either [xn, xn_i] or [yn- i , yn]. Let 
[c, d] denote that interval containing x and note that \d — c\ ^ |c — a\k and |d — c\ ^ 

\d-b\k. So | d - w | s$ |d-a?| + | x -u ; | ^ | d - c | + |a ; -w| < \x-w\k + \x-w\ ^ 2 |x - tu | 
and similarly \c-w\ < 2|a: —iu|. For the sake of simplicity set a = j ^ and /3 = ~f̂ . 
Then a + /? = 1 and ii(a:) = aF(c) + /3F(d). Thus 

JK» - R(w) - j ^ £-z&-Fs(w)\ = \aÍF(c) - F(w) - £ {±^-Fj(w)) 
j= i •>' I I V j = 1 J- / 

+/^(d)-FM-£(^F>)) 
V j= i •>• ' 

JU a ( c - _)J' + /3 (d - _)>' - ( x - _)-* .I + £ -i -—-- i _.Fj(w) 
j=2 J' ' 

it I - r - a (c -« ; ) •* +fl(d — _V — (x — tw)J' , . 
< a e | c - u i | * + j_e |d- w|* + 5 _ ~ ., LEi(«>) 

'j=2 J - I 

., lfc I - r - a(c — wV'+ 0(d — wV' — (x — w)j _ . , 
^ae2k\x-w\k+0e2k\x-w\k+ £ -i- - - - — ! - F » 

'j=2 •'• 
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l b estimate the last term we note that from the conditions, \d — c\ < \c - a\k and 
\d- c\ < \d - 6|\ it follows easily that \d- c\ ^ |c - w\k and |d - c\ < |d - w|*. Thus 

E 
І=2 

a(c - w)j + /?(d - u;)-1' - (x - tü) j 

*iM 

* " Ż ß)(* ~ x)Қx - «;)'-' + /? £ ß')(d - x)Қx - u;)''-< - (* - w)* 
C - 4 »=0 i=0 

î! 
Fj(w) 

1 = 2 

£ SŹ-i (fl(« - wV^ (g(c - * ) ' + /?(<« ^ *)') ад 

І=2 J * 

< £ SŽ-i tøi* - И ^ H* - "1* + fl* - Hц) | f j ( ш ) | 

i = 2 3' 

<=2 '• .•=9 •'" J=2 І = 2 

2' 
•^E-îг^-н^iадi. 

í ä ' 
Therefore 

Д(x) - Я(«) - 2 ^Г^-FjiJ ţ (e2» + £ | e ) |s -
i=l Jщ * ^ i = 2 J * ' 

TÍ; 

Prom this estimate it is obvious that R is fc-times Peano differentiable on H with 
Ri = F| on if for i = 0 , 1 , . , . , k. In fact J? is fc times Peano differentiable everywhere 
except possibly at the endpoints of the subintervals [xn}xn-i] and {yn-i,2/n] oi a 
component interval, (a, 6), of Hc. Let [c,d!] and [d,e] be two such adjacent intervals. 
Let z\ = d — |min{d — c,e - d} and 22 = d + |min{d — c,e - d}. If the graph 
of R on (c,e] is not a line segment, then there is a function G defined on [21,22] so 
that G is infinitely differentiable on [zi,z2], G^(z\) = Ri(zx) and G^(z2) = Ri(z2) 
for i = 0 , 1 , . . . , k and such that the graph of G lies in the triangle with vertices 
(zi,R(zi)), (dyR(d)) and (22,-8(22))- If the graph of <R on [c,e] is a line segment, 
then R is already infinitely differentiable so in this case let G = R. Now define G on 
the entire interval (a, 6) to be G on each of the intervals of the form [zi, z%] and to 
be R elsewhere on (a, 6). Having now defined G on _ffc we define G to be Ron H. 

We now show that G satisfies the conclusion of the theorem. By definition G is 
fc-times differentiable in the usual sense at each w € Hc. So let w E H. We need only 
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consider an x in an interval of the form [.£1,22] in one of the component intervals, 
(a,6), of Hc. First note that \z2 - z\\ ^ \z\ - a\k and \z2 - Z\\ < \z2 - b\k. For 
the estimate to come, we need the following inequalities. Let z 6 [Z1-Z2]- Then 
proceeding as above \z — w\ ^ 2\x - w\ and |z — x\ ^ (2,2 — 21) ^ |# — H** As -n 

the proof of Theorem 2.1, there are a,/3,7 € [0,1] with a + /? 4- 7 = 1 such that 
x = azi +/3d+722 and G(x) = afi(zi) 4- 0R(d) + jR(z2). Thus employing estimates 
similar to those used in the previous argument 

| е д - G(w) - 2 í i ^ л ^ ! , , ) ! ^ a\R(Zl) - Я( w ) - £ {zi / У Rj(w) 

+ß 

i = i i= i 
k 

R(d) - R(w) - £ ^ - Ţ Г ^ Ä ; W | + ~ *(*-) - Ä M - É ^2 ;W)ІRЛv) 
І=I Г- i = i 

І = 2 

E i i (fl(* - to)'"* (<»(-i ~ «)' + /?(<* - * ) ' + 7(^2 ~ -0') 

J! 
Л J И 

< a 
k k • 

Яtø) - Я ( » - £ ( г i " w ) , Д j ( W ) + ß R(d) - R(w) - £ ţ*^LRj(w) 

Яtø) - R(w) - £ -^ J Í ^ ^ H + Ž Ş | x - w\k+ҶRj(w)\. i = i І=2 

From this and the inequalities mentioned above it is obvious that G{(w) exists and 
equals Ri(w) for i = 0,1,. . . , A; which completes the proof. • 

Combining Theorem 4.5 and Lemma 4.6 we get the main theorem of this section. 

Theorem 4.7. Let H C [0,1] be a perfect set having finite Denjoy index, Let 
k £ N\ {1} let f be a function defined on H so that fk(x,H) exists for every 
x € H. Then there is a k-times Peano differentiable function, F: [0,1] -* R, so that 
Fi(x) = fi(x,H) for every x € H and i = 0,1,...,k. In other words H € P*. 

We end this article with an application of Theorem 4.7. 

Corollary 4.8. Suppose that the assumptions of Theorem 4.7 hold. Let S C H 
be closed. Then there is an interval I so that 0 ^ SnI and that for every O ^ s O 
(/s)<p-«)(s, SnI) exists for every x € SnI and (fs)(P-s)(x1 SnI) = fk(x, H) for 
p = 0 ,1 , . . . ,k — s. 

Proof . The assertion follows directly from Theorem 4.7 and a generalization of 
Theorem 2 in [5] which is Theorem 1.1.20 and can be found in the Ph. D. dissertation 
of the first autho- D 
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Corollary 4.8 is a generalization of a result due to Denjoy. (See Theorem 2 in [3].) 
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