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WEAK AVERAGING 

OF STOCHASTIC EVOLUTION EQUATIONS 

IVO VRKOČ, P r a h a 

(Received July 15, 1994) 

Summary. A theorem on continuous dependence of solutions to stochastic evolution equa
tions on coefficients is established, covering the classical averaging procedure for stochastic 
parabolic equations with rapidly oscillating b o t h the drift and t h e diffusion t e r m . 
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1. INTRODUCTION AND M A I N RESULTS 

This paper is devoted to integral continuity type results on continuous depen
dence of solutions of stochastic evolution equations on coefficients, in which, roughly 
speaking, the convergence of coefficients is defined via pointwise convergence of their 
indefinite integrals. Such theorems are known to be fairly general and, in particular, 
they provide justification for the averaging procedures for equations with rapidly 
oscillating coefficients. As a motivation let us consider a stochastic differential equa
tion 

(1.1) dxe = ae(t,xe)dt + b€(t,xe)dw(t), xe(0) = x0 

in Rd, w(t) being a standard Wiener process in Rd defined on a probability space 

(Q,&, P), and ae, be being, roughly speaking, lipschitzian in the space variable 

uniformly in s > 0. It was proved in [12] and [4] that if 

(1.2) lim / ae(s,x)ds= I a0(s,x)ds, xeRd,t^0, 
£ _ > 0 + J0 J0 
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and 

(1.3) lim [ \\bs(s,x)-b0(s,x)\\2ds = 0, xeRd,t>0, 
E_>0+ J0 

then xe(t) —> x0(t) in L2(Q). Obviously, the assumption (1.3) excludes rapidly os

cillating diffusion coefficients, but, as shown in the quoted papers, is essentially indis

pensable for the L2-convergence. On the other hand, as shown by R. Z. Khas'minskiT, 

under (1.2) and 

(1.4) lim / bs(s,x)b*(s,x)ds= I b0(s,x)b*,(s,x)ds, x€Rd,t^0, lim / bє(s,x)b*є(s,x)ds = / b0(s,x)b*,(s,x)ds, 
E _ ł 0 + J0 J0 

the finite-dimensional distributions of the process x€ tend to those of x0 in law (see 

[5], [6]; cf. [11] for additional information). 

The results on L2-convergence were extended to semilinear stochastic evolution 

equations in [10], [7], [8]. In the present paper we establish a result on the convergence 

in law under hypotheses similar to (1.2) and (1.4), thus covering, in particular, the 

case of stochastic parabolic equations with both the drift and the diffusion coefficient 

rapidly oscillating. 

To state our results let us introduce some notation. Let U, H be real separable 

Hilbert spaces with norms \-\H, | | t / , respectively, let (•, •) denote the inner product in 

H. (If there is no danger of confusion we will omit the subscript H.) Let L(U, H) be 

the space of all bounded linear mappings from U to H, whose norm will be denoted 

by | • \L(U,H)- If A G L(H) then A* denotes the adjoint operator. Further, | A | ^ 

stands for the nuclear norm of A e L(H), provided A is a nuclear operator, that is 

| A | ^ = s u p | V J | ( A e i , / i ) | ; {e;}, {f,} orthonormal bases of H\. 

The space of all //-valued continuous functions on [0,T] will be denoted by 

C([0,T],H). As usual, if (<ua)Qer is a net of Borel probabilities on a separable 

metric space M, T a. right directed ordered set, we say that iia —> p, weakly in M 

provided 

/ fdna • / fdn 
JM <*er JM 

for any bounded continuous function / : M —> R. Iffn : (fi„,&n,Pn) — • M a r e M -

valued random variables, then £n —> f0 weakly in M means that £ n (P n ) —> ?o(Po) 

weakly in M, where the probability measures £ n (P n ) are defined by 

UPnKC) = P n{£ n e C} 
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for any Borel set C C M. 

We will consider stochastic evolution equations 

= (Axc(t) + ae(t,xc(t)))dt + be(t,xe(t))dwe(t), 
(1.5) 

J dxє(t) = (A. 

1 xє(0) = nє 

for e e [0,e 0), assuming 

(Al) A: Dom(A) —> H is an infinitesimal generator of an analytic Co-semigroup 

(eAt) on if. 

(A2) The mappings ae: R+ x H —• H, bc: R + x H —> L(U, H) are measurable 

and there exists a constant L such that 

\ae(t,x)\H + \bc(t,x)\HU,H) <. L( l + \x\H) 

for all r- > 0, x 6 H, and e e [0,e0). 

(A3) The mappings ae, be are Lipschitz continuous uniformly in s, i.e. 

\ae(t,x)-ac(t,y)\H + \bc(t,x)-be(t,y)\HUM)^L\x-y\H 

for all t ^ 0, x, y e if, and e e [0, e 0 ) . 

(A4) wc(t) are I/-valued Wiener processes with nuclear covariance operators We 

such that 

sup trWc < oo, 
£e[o,£o) 

tuE being defined on a filtered probability space ( i ? E , ^ E , ( ^ / ) t ^ 0 , Pe) and 

(^ t
E)-adapted. 

(A5) ne are if-valued &§-measurable random variables, s 6 [0,eo). 

The solutions of (1.5) will be understood in the mild sense, i.e. as the solutions of 

the integral equations 

xe(t) = eAtT]e + f eA<t~s'>ae(s,xe(s))ds+ f eA<-t-s>bc(s,xe(s))dwe(s). 
Jo Jo 

By Theorem 7.4 in [2] or Theorem 1.4 of [9] there exists a unique mild solution 

xe = xe(-,ne) of (1.5) and xc e C([0,T],H) almost surely. 

Theorem 1.1. Let the assumptions (A1)-(A5) be fulfilled. Let T > 0 be 

arbitrary but fixed and suppose that 

(1.6) lim f eA^-s)ae(s,x)ds= f eA{t-s)oo(s,x).ds in H 
£->0+ Jo Jo 
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for any x e H, t e [0, T]; and 

(1.7) lim \[teA^-^U£(S,x)eA'^-^ds\ = 0 
*-*°+ | Jo l̂ f 

for aiJ a; e 1/, t e [0, T], where 

f7£(t,i) = ft^t.^Web^t,!) - &0(t,z)Wo&S(t,:r). 

Ifr)s —> % weaic/y in H as e -+ 0+ then x.(-,n€) —> x0(-,rfo) weakiy in C([0,T], # ) 
as £ -> 0+. 

Due to the analyticity of the semigroup (eAi) the rather complicated assumptions 
(1.6), (1.7) may be replaced by more restrictive but verifiable hypotheses. 

Proposition 1.2. Assume (Al) and (A2). If 

(1.8) lim / a.(s,:r)ds = / a0(s,x)ds in H 
'-*o+ Jo Jo 

for any t e [0,T], x e H then (1.6) is satisfied. Analogously, if 

(1.9) lim / be(s,x)W€b*e(s,x)ds- / b0(s,x)W0b0
,(s,x)ds\ = 0 £-»°+1 Jo Jo \yy 

for all t e [0,T], x e H then (1.7) is fulfilled. 

It will be shown in Example 2.9 that the assumptions (1.6), (1.7) are weaker than 
(1.8), (1.9). 

As we have already mentioned, Theorem 1.1 contains the classical averaging pro
cedure as a particular case, as can be shown in a standard way (see e.g. [10], Theorem 
4). Because of its importance we state this corollary as a separate theorem. Let us 
consider equations 

(110) { àxS)=e{Axe(t) + o.(t,xє(t)))àt + , 

\ x.(0) = 

V2Ь(t,xc(t))dw(t), 

for e e (0,e0), where 

(B2) the mappings a: R+ x H —• H, b: R+ x H —> L(U,H) are measurable and 

there exists a constant L such that 

\a(t,x)\„ + \b(t,x)\L{UtH) ^ L(\ + \x\H), 

\a(t,x) - a(t,y)\H + \b(t,x) -b(t,y)\L(u,H) ^L\x-y\H 
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for all x, y 6 H, t > 0; 

(B3) w(t) is a {/-valued (^t)-adapted Wiener process with a nuclear covariance 

operator W, defined on a filtered probability space ((!,&, (^ t ) t>o ,P) ; 

(B4) nE: fl — • H,e€ [0,eo), are ^b-measurable random variables. 

T h e o r e m 1 .3 . Assume (Al) , (B2), (B3) and (B4). Suppose further that there 

exist Lipschitz continuous functions a: H — • H and b: H — • L(U, H) such that 

T-too 

for any x e Я , and 

1 ÍT 

lim — / a(s, x) ds = a(x) in H 
"-KJO T J0 

lim 1^ / b(s,x)Wb*(s,x)ds-'b(x)Wb'(x)\ = 0 
-*°°\1 Jo \v 

for aJJ x Є Я . Set 

x E ( t , r k ) = x £ ( ^ , . k ) , t > 0, £ Є (0,e 0 ) , 

X£(-,J7E) being the miid soJutions to (1.10). Let xo(-,»7o) be the mild solution of the 

problem 

(i i i ) / d*o(t) = {Axo{t) + a (xo( f ) ) ) dt + ~b{xo{t)) du,w> 
1 X0(0) = 7,0-

IfVe — • % weaJcJyin H ase -> 0+ then xe(-,ne) — • x0(-,n0) weakly in C([Q,T],H) 

as e - • 0 + for any fixed T > 0. 

2. P R O O F S 

To start with, let us recall a few well-known results. 

Propos i t ion 2 . 1 . Let /»„, n >. 0, be centered Gaussian measures on a separable 

Hilbert space Y with covariance operators Tn. Then un — • UQ weakly in Y if and 

only if \Tn - ToU — • 0, n - • oo. 

For the proof, see e.g. [1]. We will need the following criterion for weak convergence 

of measures. Let (M, d) be a separable metric space, denote by BL(M) the space of 

all bounded Lipschitz functions on M, that is 

BL(M) = { / : M —> R; | | / | | B 1 B sup | / ( x ) | + sup ^MfJM < oo} . 
1 xeM x.yeM d(x,y) > 

*#» 
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Let un, u be Borel probabilities on M, then fin —> u weakly in M if and only if 

lim / fdun= I fdu 
n-*°°JM JM 

for any / 6 BL(M), see e.g. [3], Theorem 11.3.3. Moreover, by the same theorem, 

the metrics (3, defined for probability measures on M by 

/3Ui,) = sup{ |^/d( M - l / ) | ; | | / | | s t ^l} , 

metrizes the weak convergence. 

The next proposition looks almost obvious, nonetheless, it will be, very useful in 

the sequel. 

Let U, V, H be real separable Hilbert spaces, let w be a [/-valued (Sft)-adapted 

Wiener process with a nuclear covariance operator W, defined on a filtered proba

bility space (J? ,0 , (34)t>o, P), let 0 <. s < t. 

Proposit ion 2 .2 . Let a: H —> V be a Lipschitz continuous mapping, let o: 

[s, t] x H — • L(U, V) be a measurable mapping such that 

\°(r,x)\L(u,v) ^ M(\ + \x\H), \o(r,x) - o(r,y)\L{uy) <. M\x - y\„ 

for a constant M and any r € [s, t), x, y e H. Let g e BL(V), define 

f(y) = Eg (a(y) + J o(r, y) dw(r)j, y e H. 

Let u: Q —> H be a &s-measurable random variable with E l u ^ < oo. Then 

(2.1) E\g(a(u)+ J cr(r,u)dw(r)\ys\=tl>(u) P-almost surely. 

P r o o f . To simplify notation, we will treat the case a = 0; it can be seen easily 

that this leads to no loss of generality. 

Take an arbitrary 7 > 0, let {z,; i 6 N} be a dense subset of H and define a Borel 

partition {A(i), i € N] of H by 

A(l) = {£ e H; K - *i | < 7} , A(i + 1) = {£ 6 H; \t - zw\ < 7} \ ( J A(j). 



We may assume that Zj € A(j) for any j 6 H. Define 

U T M = 23 XAd) ("(w))zi> w 6 J?, 
i=l 

V>7(£) = f>A(0(£)Eff(f ff(r,-,)dt«7(r)Y $ 6 ff, 

where X/i(i) stands for the indicator function of the set A(j). Obviously, 

E|u-u7 |2„<7
2 

and 

g(j <т(r,u7)dш(r)J = Ş2xA(i)(u)g( a(r,Zi)dw(r)\ P-a.s.. 

Therefore 

E g(J <7(r,u7)du,(r))|%] = £**(.) (")-[-*(/ ff(r,-,•) du»(r)) |sf,] 

= X)Xi4(ť)(«)Eff(y <T(r,Zť)du;(r)) 

= *»(«). 

Furthermore, 

E K / *(*•»»»)dwW) " » ( / »(r,«)d»(r))| 

<llí«kE|/[»(»-,ttT)-ff(r,«)]dw(r)| 
Us Iv 

< \\9\\ltto(W)J E|<7(r,u7)-cT(r,u)|2L(í/^dr 

^\\9\\2
BLM

2tr(W)J E|u-u7 |2
Hdr 

^\\gfBLM2tx(W)(t-sh\ 

hence 

-ti í ( 7 a(r,u7)du>(r)WJ ^ 4 E^fV <r(r,u) dw(r)) |íř,] in L2(/2). 
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Analogously, take £ 6 H, then there exists jo G N such that £ e A(jo), so 

l ^ ( f l - ^ ( f l l 2 = lEsf f <x(r,^„)du,(r)) -Eg( f a(r,i)Aw(r 

^||5 | |2
B LM2tr(w)(t-S)7

2 . 

This yields 

V>7(0
 1 ^ 0 ( 0 for all C G ff 

and (2.1) follows. • 

We are prepared to return to the equation (1.5). From now on, the hypotheses of 

Theorem 1.1 are assumed to be fulfilled. 

L e m m a 2 .3 . For every T > 0 and p € [2, op) there exists a constant K such 

that for any s € [0, e0) we have 

B\x,(t)\''H^K(l + \v,\PH), O^t^T, 

provided the right-hand side is finite. 

Since the estimate in (A2) is uniform in s, Lemma 2.3 follows virtually from [2], 

Theorem 7.4, or [9], Theorem 1.4, as tracing the proofs of these theorems one can 

observe easily that the constant K can be obtained independent of e 6 \0,so). 

Given N e N, let us define 

{ x if \x\ < TV, 

Nx 
—-— otherwise, 
\AH 

and set rff = gN(r)s)- By assumption, % —• J?0 weakly in H, so the continuity of 

gN yields that t?f —* Vo weakly in H for any N 6 H. 

Let us fix T > 0 and an arbitrary sequence sn e (0,e0), sn \ 0. For brevity we 

set 
aCn = an, bEn = bn, wEn = wn, P£r, = P n 

and so forth. Further, set 

*»- . . - . . ( • ,* . ) , <=XEn(;r}»J, XN=Xo(;VS). 

We denote the integral with respect to the measure Pe simply by E with omitted 

subscript as it leads to no ambiguity. 



Proposit ion 2.4. For any N e N and 7 > 0 there exists g > 0 such that 

sup E max \xn (t) - x"(s)\ < 7. 
n>% o^s.t^r1 " ° W | ' 

P r o o f . Let us denote by Kt generic constants independent of n >. 0. Choose 

p > 2 and A € (0, 5 — - ) . By Remark following Theorem 1.1 in [9] we have 

(2.2) 
sup \ f eA(t-T)bn(r,x^(r))dwn(r) - f'eA(s-T)bn(r,x^(r))dwn(r)\ 

sCs.t^T |./o Jo 
\t->\« 

< ^ iC 2 A 

for any C > 0. Indeed, 

E sup 
0<s,t<T 
|t-«KC 

f0e
A^-T)bn(r,x^(r))dwn(r) - $° eA(s-T)bn(r,x»(r))dwn(r) 

< E 
0^ 
l*-«l<c 

^ E sup 
0<s,t^T 
i*-«кc 

sup C " A | / e / l ( ' - r ) 6 n ( r , i n

/ ( r ) ) d w n ( r ) 
;«,t<T| (Jo 
-«|<C 

- / e ^ s - r ' 6 „ ( r , ^ ( r ) ) d « ) ? l ( r ) M 

- f eA(s-T)bn(r,x^(r))dwn(r) 
Jo 

C(\) J E(tr{bn(r,x^(r))Wnbn(r,x^(r))))p/2dr) 

^K2tr(Wn)(j E(l + \x^(r)\")dr\ 

and (2.2) follows by (A4) and Lemma 2.3. By an analogous procedure we obtain 

E sup / eAit-r)an(r,x^(r))dr- f eA{s-r)an(r,x^(r))dr 
o^s,t^r |yo Jo 

\VP 

(2.3) 
í-»KC 

<K3C
2 
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First, we prove that there exists _i > 0 such that 

(2.4) sup E sup \x%(t) - r)^\2 sc _ _ 4 7 

n>0 0 < t ^ 2 e i 

(with a constant i_4 independent of gi, of course). In fact, by the definition of a 

mild solution 

*» (*)-»/« = bAt~l]vn+ / eA{t-)an(s,xn'(S))ds 
Jo 

• / eA^-^bn(s,x^(s))dwn(s) 
Jo + 

= Jl + J 2 + Jз 

By (2.2) and (2.3) we have 

(2.5) sup E sup { |J 2 | 2 + | J 3 | 2 } s, iYsC
2A 

nj;0 0 < t « 

for any ( > 0. Since the random variables t)% weakly converge, they are tight by the 

Prokhorov theorem, hence there exists a compact set C C H such that 

sup Pn{r)% i C} sC 7 . 
nJsO 

As is well known, eAtx — • x as t \ 0 uniformly in _ e C, hence we can find 

_i G ( 0 , 7 1 / 2 A ) such that 

sup sup \eAtx - xI < v^7. 
0 < t < 2 _ i i G C 

Then 

-At-ЛГ _Лř|2 ,- _ , p _ , „ , , _ ,_ | „ _ t _ л - _Лř|2 E sup | e ^ ^ - ^ | ^ 7 + E X w ^ C } sup e ^ i t f - i t f 
o<-<2ei o<t< 2 e i 

< 7 + ^ e E X { t f ,jc}|«R. | a < 7 + KeN
2Pn{^ $ C} < K7y. 

This estimate together with (2.5) yields (2.4). 

The semigroup (eAt) is analytic by (Al), hence the L(__)-valued function 11-+ e 4 ' 

is uniformly continuous on [QI,T] (cf. e.g. [2], Theorem A.7). So we can find __ G 

(0,7 X / 2 A ) such that 

(2.6) suvJeAt-eAs\HH)<VT-
e i < t , s sgT 

S - t K . 2 
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Takes,te [e2,T], t > s, then 

^ ( t ) - ^ ( « ) = ( e ^ - e A « ) ^ 

+ { / e- 4< t - r ' a n ( r ,^(r ) )dr- T e ^ - ^ a n ^ ^ ^ J d r } 

+ lf e / t( '-^6„(r,^(r))d l U n(r) 

- re/*(s-r'6n(r,^(r))du;n(r)} 

= Qi+Q2 + Qs-

Obviously, 
supE sup {\Q2\

2 + \Q3\2}<Ksí>lxšKsl 
n>0 | í-sKe2 

by (2.2) and (2.3). Finally, 

E sup \(eAt-eAa)ri?fšN27 
|t-«l<« 

by (2.6), so we have obtained 

(2.7) supE sup W»(t) -xZ(s)r<K6y. 
n^O e i < s , t < T 

|s-*Ke2 

Combining the estimates (2.7) and (2.4) we complete the proof of Proposition 2.4. 
D 

Corollary 2.5. For any N £ M and 7 > 0 there exists a partition {0 = t0 < 
... <tk^T} of the interval [0, T] such that 

(2.8) sup E I max max \x"(t) - x^(U)\2) <. 7. 
1 ' n/0 V=0,•.•.*-! 8(<«<t.+ll " W " * " / 

To proceed further we need a suitable discretization in time of the process 2;^. 
Let 11 = {0 = to < . • • < tk = T} be a partition of the interval [0, T]. Define 

(2.9) 

* - l /-tí+iAt 

^ ( Í ) = e ' 4 t ^ + V / e^'-^Onia.^iiOJda 
;=o -l4^' 
* - l rti+l/\t 

+ VJ/ eA<*—>M«, *» (<<)) <*«>»(«) 
i = 0 JtiAt 
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for any t £ [0,T] and n >. 0, where, as usual, a A b = min(a, 6). (Note that the 

process x£ depends on N as well.) We have the following estimate: 

L e m m a 2.6. For every N € N and 7 > 0 there exists a partition II = (0 = t0 < 

...<tk^T} of the interval [0, T] such that 

sup max E\x^(U)-x"(U)\2 ^j. 
n^o i=o,-,fc ' 

P r o 0 f . Take 7 > 0 and find a partition 77 = {0 = t0 < ... < tk = T} such that 

(2.8) holds- By (2.9) we obtain 

E|x^+i)-x?(*;+1)|2 

< 2 T / ' I + 1 | e ' 4 ( f ' + 1 - s ) | 2 

* *- Jo r \L(H) 

x E | ^ X [ i i , t i + 1 ) M K ( s , x ^ ( « i ) ) - an(s,x»(s))}\ ds 
'«=o I 

+ 2tr(Wn)f"1\eA^-*\2
L(H) 

x B\j2x[ti,u+1)(s){bn(s,x^(U))-bn(s,x^(s))}\ ds 
l i=o I 

<--»5 . , [+l Ekn(ti)-^nM|2ds 
i=0 •!*• 

^2i.-10x;r+1E|^(t.)-^(*.)|2d8 
i=0 • ' ' , 

+ 2A"10^ r+1E|o;n
/(«i)-^(s)|2ds 

i = 0 •!'* 

<_ 2tf10T7 + 2K10 j ^ r + 1 E\x"(U) - n̂ (ti)|2 ds. 
i = 0

 Jt' 

Define 

fn(t) = E\xn
1(U)-xn

i(U)\2, U < * < * . + ! , i = 0 , . . . , j b - i . 

The above estimate implies 

/„(*)< 2ir10r7 + 2/f10 f fn(s)ds, 
Jo 

and K10 is independent of n, so Lemma 2.6 follows by the Gronwall inequality. D 
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The crucial step in the proof of Theorem 1.1 is to establish that the finite dimen
sional distributions of the process xn converge weakly as n ~> 00. 

Proposition 2.7. Let N € N and a partition n = {0 = t0 < ... < tk = T} be 
given. Let vn, n ^ 0, be Borel probabilities on Hk+1 defined by 

un=(xn
I(to),...,xn

r(tk))(Pn), 

that is 
f„(Q) = P„{wi {x^(t0),...,xH(tk))&Q) 

for any Borel set Q in Hk+1. Then vn —> v0 weakly in Hk+1 as n -> oo. 

Proof. The proof proceeds by induction. By assumptions of Theorem 1.1 we 
have xn(t0) —> x0(t0) weakly in H. Assume that for some ., 0 < I < k - 1, the 
convergence 

(2.10) un = un(Pn) —> Mo = «o(Po) weakly in Hl+1 

has beeen established, where we set 

un = {x^(t0),...,xZ(ti)). 

Let us define 

an:H
t+1—>H,+2, 

(&, • • . ,6) —> L» • • • ^ . . e ^ ' + ' - ^ S + J '+I e ^ ' + ' - ^ s , ? . ) ds) , 

and 

Bn:H
,+1 —>• £!(]?", # / + 2 ) , 

(&,•••, 6) - + U ..., 0, Jj+1 eA^+^s)bn(s, (t) dw„(s)) . 

Obviously, 

x?(tl+1) = e^C'+'- t ' )^(i,) + / " + 1 eA ( i '+'- s)a n(5,^(i i)) ds 
Jt, 

+ ft,+1 eAit,+'-s)bn(s,xH(t,))dwn(s), 
Jt, 
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thus 

(«?(-a), • • • ,*?(-i+i)) = a„(«») + -*»(«»)• 

Take g e BL(Hl+2) arbitrary and set 

My) = E<KMlO + Bn(y)), y e ff'+1. 

Proposition 2.2 yields 

E»(.-?(ta),...,«?(*i+i)) = E M M = / MOdMO. 

It follows 

|Eff(i-?(lo),... ,*?(««+.)) - Eff(if (to),... ,«f («j+i))| 

< / | M 0 - MO| d M 0 +1 / M O d M O - / M O d M o | 

= Mi(n) + M2(n). 

To proceed further, we check that hn 6 BL(Hl+l) and 

(2.11) sup | | M | B L < oo. 
„^o 

Indeed, 

IMO - MOI < H5llBtE|a„(0 - M O + M O - BB(C)|jf.« 

^^ I INIBL |C-CIH '+ , 

for any £, £ g if'+1 by (A3). Therefore, M2(n) —+ 0 as n -+ oo due to (2.10). Now, 

note that 

(2.12) l i m M O = M O forany£e.ff'+1. 
n—*oo 

First, 

Q „ ( 0 - a o ( 0 = (o , . . . ,0 ,^ ' + ' e A ( t '+ 1 - ) [ a n ( s , f / ) -a 0 ( s ,C; ) ]d S 

222* 0 in ff'+1 

by (1.8). Further, , i+ j 

l'+V<''+'-'>M«,6)dH;„(*) 
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is a centered Gaussian random variable in H with a covariance operator 

I '+ 1 e A ( t '+ 1 - s )6 n ( s ,^ )W„6;(s , f / )e A *( t '+ ' - s ) As, 
Jt, 

so Bn(£) —> B0(Z) weakly in H'+2 by (1.9) and Proposition 2.1. Hence an(0 + 

Bn(€) — • «o(f) + -Bo(f) weakly in H,+2 for any £ e Hl+1 and recalling the definition 

of hn and of the weak convergence we see that (2.12) holds. 

Take S > 0 arbitrary, there exists a compact set K C Hl+1 such that 

(2.13) inf M * 0 > 1 -<S 

since the measures {/i„} are weakly convergent. Due to the compactness of K, (2.12) 

and (2.11) the functions hn converge to h0 uniformly on K, hence 

lim / | M ð - M Є ) | d M f ) = 0 . n-*ooJк 

Finally, 

/ I M O - ho(0\ d M f ) *S 2sup sup \hn\6 
JH'+*\K n^O Hl+l 

by (2.13), so Mi(n) —> 0 as well and Proposition 2.7 follows. D 

C o r o l l a r y 2.8. Let N 6 N and a partition yl = {0 = s0 < ... < sq = T} of the 

interval [0,T] be given. Then 

(x^(s0),...,x^(sq))(Pn) - ^ > (x»(s0),...,x»(sq))(P0) weakly in H"+\ 

In other words, x ^ ' s converge in law to x0 in the sense of finite dimensional 

distributions. 

P r o o f . Take 7 > 0 arbitrary. According to Lemma 2.6, there exists a partition 

n = {0 = t0 < ... < tk = T} refining the partition A and such that 

sup max E\x^(ti)-x^(U)\2 ^ -±-. 
n>0 «=0,..,*= 9 + 1 

In particular, 

sup E | ( a £ ( 5 o ) , . . • . - £ ( - , ) ) - (*-(*>),• • . , * ? ( • , ) ) | | U » 
n^O 

(2.14) , 
= sup E ^ l * ^ ) -x^(si)\ ^l2-

"^o Й 
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Let g e BL(Hi+l) be a bounded Lipschitz function, then 

\Eg(x^(s0),.. .,*?(*.)) - Eg(x»(s0),.. .,x»(sq))\ 

^ E\g(x»(s0),.. „«*(«,)) - g(x^(sQ),.. .,xZ(sq))\ 

+ \Eg(x^(s0),..., .-»(»,.)) - E g ^ K ) , . . . , . - ? ( • , ) ) | 

+ .E|^x0
7(*o),...,Xo7K))-ff(x0

v(So),..., :roVK))| 

= J1(B) + / .(n)+J1(0). 

We have 

h(n)^\\g\\BL(E\{x^(So),...,x^(sq))-(x^(so),...,xS(sq))\
2^+iy

/2 

$ MBL-T 

for any n >. 0 by (2.14). Moreover, Proposition 2.7 yields 

(xH(t0),...,x^(tk))(Pn)^^{xS(t0),...,x^(tk))(P0) weakly in Hk+\ 

so also 
lim I2(n) = 0 

n-Kx, 

as i7 is a refinement of the partition A. Therefore, for any 7 > 0 and g e BL(Hi+i) 
we have 

M - r ^ s o ) , . . .,**(*,)) - E<?«(*0), • • . ,<(« , ) ) ] < (2||fl||flt + 1)7 

for all n sufficiently large, which proves the corollary. • 

P roo f of T h e o r e m 1.1. Take an arbitrary 7 > 0. Note that there exists 
N e N such that 

(2.15) sup Pn{ui; sup \xn(t) - x%(t)\ > 0) < 7. 
nJsO *• O^t^T > 

Indeed, we use again the Prokhorov theorem and the weak convergence of i7n's to 
find a ball K(0,N) = {z e H; \z\ sC N} such that 

supPn{.7„£.fi:(0,.V)}<7. 
nJsO 

Then a standard local uniqueness argument (see e.g. [9], Lemma 4.2) and the conti
nuity of sample paths yield 

P»({».„e.fir(o,.v)}n{ sup \xn(t)- x%(t)\ > o}) = 0, 



hence (2.15) holds true. Using Corollary 2.5 we find a partition {0 = t0 < ... < tk = 

T} of the interval [0, T] such that 

(2.16) s u p E f max sup \x%(t) - a £ ( t , ) | ) 
n^O Vi=0 , . . . ,* - ! ti^t<ti+1 ' 

<?». 

Let / £ BL(C([0,T],H)) be a bounded Lipschitz function. Denote by & the space 

of all functions ip: [0, T] —• H which are right continuous with left limits on [0, T] 

and continuous on (0,T) \ {h,. • . ,£/t_i}; endow @> with the sup-norm. There exists 

a Lipschitz function / ' 6 BL(&>) such that / I = / on C([0,T],H) and \\MBL = 

II / I IBL (see e.g. [3], Theorem 6.1.1 and Proposition 11.2.2). Define 

A f f w - n i , » = (w,,...,v*)-+/*(y)> 

where y e 3» is defined by y(t) = yi, U <. t < ti+1. Then f 6 BL(Hk+1) and 

I I / I I B I < ll/llfii- Further, set x„(*) = .-*(«.), t. < t < ti+1, i = 0 , . . . , * - l ; 

obviously, i n is a stochastic process with paths in 0>. 

Consequently, 

\Ef(xn) - E / M | < E | / ( s „ ) - f(xN
n)\ + E\f(xN

n) - f\xn)\ 

+ \Ef\xn)-Ef\x0)\ 

+ E|/*(*0) - f(*g)\ + E\f(x») - f(x0)\ 
= Zx(n) + Z2(n) + Z3(n) + Z2(0) + ^ i (0) . 

Setting V(n) = { sup \xn(t) - x%(t)\ > 0} we get 
0<t£T 

Zi(n) = EXv{n) \f(xn) - f(x%)\ < 2 | | / | | B i P n ( V ( n ) ) ^ 2 | | / | | B L 7 

for any n >. 0 by (2.15). Furthermore, 

Z2(n) = E | / » ( - £ ) - / * ( x n ) | «= | | / s | | B i E sup |**(«) - £n(t)\ 
0<.<T 

< WBLI 

f o r a l l n > . 0 b y (2.16). Finally, 

Z3(n) = \E?(xn
i(t0),...,xn

1(tk))-E?(x»(t0),...,x"(tk))\^>0 

by Corollary 2.8, so we have established that, given arbitrary 7 > 0 and / G 

BL(CQ0,T],H)),anehaa 

\Ef(xn)-Ef(x0)\<(6\\f\\BL + lh 
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for all n sufficiently large. This means that 

(2.17) x,„(;Tkn)—+Xo(;rio) weakly in C([0,T],tf) 

for any sequence en \ 0. Due to the metrizability of the weak convergence, (2.17) 
is equivalent to the assertion of Theorem 1.1. The proof is complete. O 

P roo f of Proposition 1.2. Fix x e tf and set 

ks(s) = ae(s,x) — ao(s,x), Ke(s) = / ks(u)du. 
Jo 

Note that by (A2) we have 

L= sup sup \ke(s)\ <oo, sup sup \Ke(s)\ <, LT. 
ee[0,Eo) s£[0,T] eS[0,£o) s£[0,T] 

Take <5 > 0, then 

[ eA^-she(s)ds= f eA<(-s>Ms)ds+ / eA^-s'k£(s)ds 
Jo Jo Jt-s 

= h + h-

First, integrating by parts we obtain 

rt-6 
h = eASKe(t -&)+ AeA^-s>Ke(s) ds. 

Jo 

The semigroup (eAt) is analytic, so the operators AeAt are continuous and (1.8) 
yields 

£Um eASKe(t-5) = Q 

and 

lim AeA(t-s>KAs) = 0 , s 6 [0, t - S\. 

Therefore, for any <5 > 0 fixed we get h —> 0 as s -f 0+ by the dominated 
convergence theorem. Moreover, 

|/2| ^ sup \eAt\L(H)L5, 

so h can be made arbitrarily small (uniformly in e) by choosing <5 sufficiently small, 
and the first statement of Proposition 1.2 follows. The second assertion can be proved 
in a similar way. D 
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The following example shows that the assumptions on the convergence of coeffi

cients adopted in Theorem 1.1 are strictly weaker than those used in Proposition 1.2. 

E x a m p l e 2.9. Let A: Dom(A) —y H be a selfadjoint operator such that 

there exists an orthonormal basis { / n j ^ i consisting of eigenvectors of the operator 

A, Afi = Xifi, where 0 > A; —> - c o . As is well known, A is an infinitesimal 

generator of an analytic selfadjoint C0-semigroup (eAt) given by 

eAt = VV"7n®/n, tJsO. 
n = l 

Let us define o„: [0, T] x H —• H by 

an(s,x) = fn, s € [0,T], _ € H, n £ 1. 

Then 

I /V('-s>a„(S,_)ds| = £ /V(t-s)(/*,a„(s,_))/fcd 
I-/0 Itf fc=l-'0 

= |/V(<-*>/ndS| = | f (V"'-l)/n 

On the other hand, 

|A„| 

/ an(s,x) ds\ = ; 
\Jo \H 

for every n >. 1. 

Further, let us consider a Wiener process w in i? of the form w(t) = /3(*)/i i w n e r e 

/3 is a standard one-dimensional Brownian motion. The covariance operator of the 

process ui is W = / i ® / i (i.e., wft = (f t , / i ) / i for ft 6 ff). Obviously, W = w1/2 

and Wfk = <5u/i for k >. 1. Define operators 6„(s,_) e _ (H) by 

6 „ ( s , a ; ) f t s 6 n ň = ^ ( f t , / i i ) / k + „ _ l , s € [ 0 , T ] , _ , f t € # , n > l . 
IÍ=I 



Noticing that bnfi = fn for n > 1 and using the positivity of the operator 

e'*<t->6»W&;e'*('-*> we obtain 

1/ e^-^ЬnWb^W-s) ds\ =iґíľ^*-)bnWbnб
A^ds 

= £ ( ( / ' •A(t-)ь»игь;eA(i-) ds) л, л 

= Г £ (eA(t-s)ЬnWЬne
A^h, Л) ds 

•lo fc=l 

= fFlw1!^;^-)/*!2^ 
•l° èí 

= ГEИ;eл(t-s)л|2dS 
I° fc=l 

= ГÊИ^bnИtлfds 
J° fe-1 

= /V(t-s)Ьn/i|2ds = Г|eЛ(ť"s)Л|2ds 
Jo Jo 

At the same time, 

t 

;ds| ^tlЬnWò^l^^ttríònИ7;);) |/oW 
= ťVJ|ònwл|2 = t|л|2 = t ^ o 

j = i 
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