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KYBERNETIKA CISLO 1, ROCNIK 6/1970

On Optimal Fault-Finding Strategy
of Element-Measurement Method for Systems
with Exactly One Failure

Ot1T0 HANS, LiBOR KUBAT, MILAN ULLRICH

Necessary and sufficient condition for the optimality of the strategy is given, provided the
method used is confined to measurements of single elements and the system is known to contain
exactly one failure.

Let the clements of the system be numbered by 1, 2, ..., n and let us denote by p;
(r:>0, ¥p = 1) the probability of the i-th element to be defective and by T;
i=1

(T; > 0) the cost of the measurement of the i-th element.

A strategy § is the n-tuple of indices 1, 2, ..., n that determines the order in which
the elements are to be measured. Since only systems with exactly one defective
element are considered, the fault-finding procedure ends whenever the defective
element is determined. Thus, at most n — 1 measurements are performed.

For every strategy

) 8 = (iys igyevms i)

the mean cost V(3) is defined by
n” i n-1 n
(2) V(5)=Zpi,Z Tik"pi,.Ti,,’_‘ZTiijik-
j=1 k=1 =1 %=
We say that the strategy § dominates the strategies d,, &, ..., 9, if

3 V()£ V(6;) for 1Zj<r.

Further, we say that the strategy §* is optimal, if it dominates all other strategies,
ie. if

) V(6*) = min V(9) .
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The problem of the present paper is to determine and characterize the optimal
strategy by pi, P2 ..., Py and Ty, T, .., T,
Such a characterization is given in [1], where the authors claim:

Kuznetsov-Ptchelintsev Theorem. The necessary and sufficient condition for
the strategy (1,2, ..., n) to be optimal is

() PPy oy Pt
TI_TZ_ _Tn—l

and

() T,2T, for 1£k<n—1.

However, this theorem is valid for n < 2 only; for n = 3 the condition is neither
necessary nor sufficient, what could be for n = 3 demonstrated by the following
counter-example.

Example 1. Let
()] Pa=3%, p=p.=%, Ta=3, Th=T.=2.
Then we have by (2)
® V(a, b,0)= V(a, ¢, b)= "2,
Vb, a,0) = V(c,a,b)= 7,
Vb, c,a)= V(c,b,a) =12,

Thus, setting a = 1, b = 2, ¢ = 3, the necessity is contradicted and settinga=3, b= 2,c =1,
the sufficiency is contradicted.

Though the characterization of the optimal strategy is simple and the proof of our
result requires only elementary algebra, we have decided to state even trivial results
as lemmas. It is hoped that such a detailed treatment will be appreciated by some
readers.

We will call every interchange between two neighbour elements i; and i;,, the
transposition, we will denote it by {i; «> i;,,» and will speak about a transposition
of the type 1if 1 £ j < n — 2 and about a transposition of the type ITif j = n — 1.

The difference between the mean costs of the transposed and the ongmal strategy
will be denoted by D({i; < i), ie.

(9) Do ije1d) = V(ins o bjots Ljans by Bjaa s oo B} = V(ip, iy e 1) «
Further, for the sake of brevity, we denote by 8, and ,J,, the following strategies:

(10) 3o =1(1,2,...,n);

(1) O = (i 02, 0riy)



where for 0 < k < m < n we set

(12) ij=j for 1<k,
=n for j=k+1,
=j—1 for k+2gjEm,
=j for m+1=j<n—-1,
=m for j=n,

andfor1 < m < k< n—1 weset

(13) ij=j for 1<j<sm-—1,
=j+1 for m£j<k-1,
=n for j=k,
=j for k+1gjsn—-1,
=m for j=mn.

Thus, in particular

(14 W=, .. knk+1l,...m=—1m+1,.,n—-1,m for k<m,
=(,...m—1m+ 1, knk+1.,n—-1m) for mgk,

(15) petOm=0 . om—1L,m+1,..,n,m) for Lsmgn-2,
(16) 05 = =195

and

(17) pe10y = .

Now, let us state the difference between mean costs of the transposed and the
original strategy for both types of transpositions.

Lemma 1. For 1 £j < n — 2 we have
(18) Dy« ije1d) = pi,Tipe, — Pipul Ty, -

Proof. Relation (18) follows immediately form (9) and (2).

Lemma 2. We have
(19) D(<iu—1 « in>) = (pin-l + pin) (Tln - Ti..—n) ]

Proof. Relation (19) follows immediately from (9) and (2).
These two trivial lemmas enable us already to state a necessary condition for the
strategy 0 to be optimal.



Lemma 3. If the strategy & is optimal then

(20) Puglus for 1gjsn-2
T, T;
b Ty
and
(21) L,zT,.,.

Proof. If 6 is optimal, then
(22) D((ijei;)) 20 for 1£j=n—1.

However, (22) yields for 1 £ j < n — 2 by Lemma 1 (20) and for j =n — 1 by
Lemma 2 (21).
Next lemma deals with strategies ,, ;6,, which are explicitly written out in (15).

Lemma 4. For 1 £ m < n we have

n n
(23) Vi-10m) = V@) =pn ¥ T = Tn X 0+ 2T
j=m i=m

Proof. The strategy ,-15,, can be obtained from the strategy d, by subsequent
transpositions {m e m + 1), (meom + 25, ..., {m+ n — 1>, {m < n), so that

(24) V(ia10m) — V(o) = Y DKmejd).

J=m+1
All transpositions being of the type I except for the transposition {m «s n) which
is of the type II, we have by Lemma 1 and Lemma 2

n

n—1

@) X Dmep)= ¥ (o= pTal + (on + 2 (T~ T,)
j=m i=m

which can be rewritten in the form (23).

To demonstrate that the element with the maximal cost has practically no relation
to the optimal strategy we give two examples, both of which can be used as counter-
examples for the Kuznetsov-Ptchelintcev Theorem for arbitrary n > 3.

The first example shows that the element with the maximal cost T can be on the
arbitrary place in the optimal strategy with the only exception to be the last but one.

Example 2. Let 1 = r =< u#— 2 and let

(26) pi=2, T;=1 for 1=igr—1,

p;=75c, T;=3 for i=r,

pi= ¢, T;=2 for r+1=i<n,



where
QN c=1/(n4 r+3).

Then the strategy (1, ..., n) is optimal and the element with the maximal cost is in the r-th place.
Proof. Since

(28) 2¢/1 > 5¢/3 > ¢/2

it follows from Lemma 3 that either d, or ,_ 8, must be optimal. However, using (26) we get
by (23)
29 V(y-10,) — V{do) = c[7(n — r) — 131 >0,

which proves the optimality of &;.

The next example shows that on the last place of the optimal strategy can be any
element except for the element with the minimal cost T.

Example 3. Let 1 = r < n— 1 and let

(30) pi=6c, T;=4 for 1=isr—1,
pi= ¢, T;y=2 for r=iZn—1,
pi= ¢, T;=3 for i=n,

where

@31 c=1/(n+ 5r—5).

Then the strategy (1, ..., 7) is optimal and on the last place is the element with the r-th greatest

cost.
Proof. Since

(32) 6c/4 > c/2 >3

it follows from Lemma 3 that either J, or ,_;6; must be optimal. However, using (30) we get
by (23)

(33) . V(16 — V()= cl8(n —1r)— 71 >0,
which proves the optimality of .
As yet we have dealt with rather simple subclass of {;8,} class of strategies, namely

with {,_18,,} strategies. Now we shall state two lemmas which give the mean cost of the
strategy ,d,, for arbitrary k and m.

Lemma 5. For every 0 £ k <m £ n — 1 we have

(34) V(idn) — V(%) =

n—1
= X L-nll+ 3 (T - 2] + (AT - 2Tl

J=k



64

Proof. Strategy ,0,, can be obtained from strategy é, by subsequent transpositions
h=—lon, (n=2on,. .  kt+len), (nem+ 1), dnem+ 2, ...,
{m e n — 1), so that

(39) V() — V(60) = -:,ilD«" o)+ i:‘;‘:lD((m D).

Since only the first and the last transposition is of the type II, all others being of the
type I, we get by Lemma 1 and Lemma 2 after simple modification the relation (34).

Lemma 6. For every 1 £ m S k < n— 1 we have
(36) V(i3n) — V(30) =

n-1 n-1
= Z [plT" - pnry] + Z [PmTi + piTm] + [(P,,, + pn) (Tn - Tm)] .
j=k+1 i=m+1

Proof. Strategy ,d,, can be obtained from strategy 6, by subsequent transpositions
meoem+ 1), (neom+2),..,(men), (n—1en, (n—2en),...
..., <k + 1 e n), so that

37 V(i8) — V(S0) =i:§:+1D(<m ) +j:k2_+jll D((j & n)).

Since only transposition {m <> n) is of type IL, all others being of type I, we get
directly by Lemma 1 and Lemma 2 the relation (36).

Now we have at our disposal all the auxiliary results for a rather simple proof
of the following

Characterization Theorem. The necessary and sufficient condition for the strategy
(1,2,...,n) to be optimal is the simultaneous fulfilment of

(38) Py gﬁz_ >,z Dn—-1
Tl TZ T;A—l
and
n-1 n~1
(39) min { > [T =pTl+ X [puTi — Tl + (2T, — PuTal +
0gksn—1 (j=k+1 i=m+1
1Emsn—1
k+1—-m
+ T, — p.y)ymax{ ———— 03 = 0.
(s = Ty s (== o))

Proof. Necessity. Let §, be optimal. Then by Lemma 3 for § = 8, we get directly
(38). Further 6, domainates all strategies ,0,,for0 < k <n —landl Smgn -1
so that (34) and (36) imply immediately (39).



Sufficiency. Let (38) and (39) hold and let us assume an arbitrary strategy o.
This strategy is dominated by the strategy ;0,,, where
(40) k= max j

pil Ti>pniTh

and m = i, because ,J,, can be obtained from é by subsequent transpositions, whose
differences D are all non-positive with respect of (38). However, by (34) or (36) and
by (39) ,,, is itself dominated by &,.

Though the Characterization Theorem gives the necessary and sufficient condition
for the strategy (1, ..., n) to be optimal, it is not quite convenient for the construction
of the optimal strategy. Therefore we will give another theorem, which requires
to calculate more simple expressions than those in (39).

Determination Theorem. Let

(41) PigPry 0
T T,
and let m be such that
» n " n
(“2) Po X T~ T, Y py=min{p; ¥ T~ T} p}
J=m+1 j=m 1T§>I%_" Jj=it1 J=i

Then the strategy ,_ 0, = (], com—1,m+1,..,n,m)is optimal.

Proof. By Lemma 3 it is evident that the class {,.,d,: 1 < i g n} contains the
optimal strategy, therefore it suffices to compare among themselves the mean costs
of these strategies only. By Lemma 4 we get directly from (23)

#3) V(18 = V(%) + ;. ZHT,' = TY pi+ T
j=i j=i

However, the first and the fourth term of the right hand side of (43) being constant
for all i, we get immediately (42).

Thus, to determine the optimal strategy one should proceed in the following
way:

Arrange and number the elements so that (41) holds. Calculate the expressions

(44) i Y Ti— Tf_Z.pj
=i

Jj=i+1

65
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for all i, for which
(45) T,2T,.
If the minimum is reached for i = m, then ,_ 0, is the optimal strategy.
(Received October 8th, 1969.)
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VYTAH

O optimalni strategii vyhledavani poruch pro metodu méfeni prvki
a systémy s pravé jednou poruchou

Ot110 HANS, LiBOR KUBAT, MILAN ULLRICH

O systému s n prvky je zndmo, Ze pravé jeden prvek je vadny. Méfenim se dd
zjistit stav jednotlivych prvki. Pravdépodobnost, Ze i-ty prvek je vadny, je p; (p; > 0,
i=1,2,...,n Y p; = 1). Naklady na m&feni i-tého prvku jsou T (T; > 0).

i=1

Strategie, tj. pofadi, v kterém jsou prvky méfeny, je optimdlni, je-li odpovidajici
stfedni hodnota ndkladt (2) minimalni.

Jsou dokdzdny dv& véty, z nichZ prvni ukazuje, Ze (38) a (39) je nutnd a postadujici
podminka pro to, aby strategie (1, 2, ..., n) byla optimélni, a druhd véta ukazuje,
jak vypadd pfi uspofdddni (41) optimadlni strategie.

RNDr. Otto Hans, CSc., Ing. Libor Kubdt, CSc., RNDr. Milan Ullrich, CSc., Ustav teorie
informace a automatizace CSAV, Vysehradskd 49, Praha 2.
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