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KYBERNETIKA ČÍSLO 4, ROČNÍK 1/1965 

Information, -̂Sufficiency 
and Data Reduction Problems 

ALBERT PEREZ 

Placing us in the frame of the Bayes model of statistical decision we try to estimate in information-
theoretical terms the average (respectively, Bayes) risk change caused by a modification of the 
probability law in action. Especially there are given some upper estimates of the Bayes risk 
increase on passing from an initial decision problem to a reduced one resulting from the first 
by a reduction of the sample space er-algebra as well as of the parameter space ff-algebra. The 
concept of e-sufficiency, previously introduced by the author as a natural extension of the concept 
of sufficiency applied in mathematical statistics, is in a certain sense automatically involved in the 
above estimates as the decrease of information implied by the reduction. 
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1. INTRODUCTION 

The present paper is inscribed in my general attempt to investigate the impact of 

information theory in data reduction problems. This line of investigation originates 

essentially in my paper [1], devoted to the study of statistical decision problems from 

the point of view of information theory, where the idea of maximal reduction of the 

decision space as well as of the information source space, reduction compatible of 

course with a given quality of decision or transmission, plays a fundamental role 

throughout the paper. 



A further development of these ideas was given in paper [2] by extending, namely, 
the application of the reduction procedure also to the sample or output signal space, 
We arrived, thus, at a new concept, the concept ofs-sufficiency, representing a natural 
generalization of the notion of sufficiency and of sufficient statistics so fundamental 
in mathematical statistics. A general expose of my conceptual model concerning data 
reduction as developed in papers [ l ] and [2] is contained in papers [3, 4, 5]. 

From the intuitive point of view it is clear that at the base of every data reduction 
problem lies (in an explicit or implicit manner) some decision problem or some class 
of such problems. The tendency to reduce the data to be processed in decision 
making arises from the fact that the different "capacities", "memories" and "delays" 
at our disposal for data processing are always limited. 

Obviously, every reduction of data, provided that the data are always exploited in 
the best way, is directed against the quality of the corresponding decision procedure. 
Thus, every reduction of data to be admissible must be compatible with the possibility 
to attain the required or prescribed quality of decision. 

When the data at our disposal are insufficient for obtaining the required decision 
quality in spite of the optimization of the decision procedure, there arises an opposite 
tendency to enlarge the sphere of data (constitution). In real decision processes both 
the procedures of constitution and reduction are applied in an alternate sequence in 
order to obtain the required quality of decision on the base of the most economic 
set of data. 

Just the same requirements and the same limitations led to the development of 
information theory, what is not always sufficiently appreciated in spite of the excellent 
example of communication theory. 

Theorems of Shannon's type on the transmissibility of an information source 
through a communication channel represent essentially particular criteria on the 
possibilities of decision, i.e. on the quality of decision or transmission obtainable in 
the decision problem under consideration, not requiring of course the prior solution 
of the problem. What we expect at the first place from information theory is, namely, 
to formulate such criteria on the possibilities of decision which would apply to a more 
and more large class of types of decision problems. 

As regards in particular data reduction problems, the ideal would be to be able to 
establish the admissibility or inadmissibility of a given version of reduction by apply­
ing on the respective decision problem the adequate criteria not requiring the prior 
solution of the problem. Otherwise the procedures of constitution and reduction 
could soon become too complicated and difficult to dominate if only because of the 
too great number of variants which must be usually explored. 

For the present, except of some few cases, namely if the fundamental equipartition 
property or information stability takes place (see, for instance, [6]), the existence of 
such criteria is rather a postulate than the true state of affairs. However, I think that 
information theory is destined in its development to play a growing role in the indicat­
ed direction. 



In the present paper some simple criteria of admissibility shall be presented con­
cerning reductions of the sample space cr-algebra as well as of the parameter space 
cr-algebra. We are placed in the frame of the classical model of statistical decision as 
considered in the theory of statistical decision functions. The existence of a probability 
law on the Cartesian product of the two spaces above, governing the decision problem 
under consideration, is supposed. However, the corresponding a priori probability 
distribution may be, for instance, known only on a reduced parameter space cr-alge­
bra while the corresponding system of probability distributions on the sample space 
is supposed to be known. Possible deviations of the probability law and of the 
weight function from the supposed ones could also be taken in account so that it 
would be possible at the same time to derive criteria concerning the stability of the 
applied decision procedures, but in this paper we shall not insist on this question. 

It is remarkable that the concept of a-sufficiency intervenes in the formulation of 
these criteria automatically and plays a fundamental role. 

2. INFORMATION AND e-SUFFICIENCY 

Let us consider the classical model of statistical decision introduced in the theory 
of statistical decision functions [7, 8]. 

Let, thus, (X, 36) be the measurable parameter space, where 36 is the input or 
parameter space a-algebra, i.e. a cr-algebra of subsets of the set X of the possible 
values, in general abstract, of the parameter. 

Let, similarly, (Y, $ ) be the measurable output or sample space. 
Let, further, {PY\X, x e X} be the class we consider of the probability distributions 

on the measurable sample space (Y *P). As ordinary, it will be supposed that for 
every set F e 5) the function PY\X(F) of x e X is 3c-measurable. In the terminology of 
information theory we then say that the observation channel (36j PY\X, ty) is given, 
through which the input space (X, 36) is observed by directly observing the output 
space Y at the precision or detail characterized by the output or sample space 
cr-algebra (p. 

Besides the observation channel (36, PY\X, $ ) , a probability distribution Px on the 
measurable parameter space will be supposed to be in action, representing the so-
called a priori probability distribution in the terminology of mathematical statistics, 
or the information source in the terminology of information theory, the latter being, 
of course, applied directly, i.e. without coding (other than the identical one) on the 
input space (X, 36) of the channel. 

The information source together with the observation channel generate on the 
Cartesian product (X x Y, 36 X *P) of the measurable input and output spaces 
a double source, i.e. a joint probability distribution PXY, defined as the unique 
extension on all the sets of the Cartesian product cr-algebra 36 x *%) of the set function 

(2.1) PXY(E x F) = f PYlx(F) 6Px(x) , E e 36 , P e g ) . 



In the sequel we shall suppose that always one such probability distribution is in 
action but not necessarily completely known. 

Let, finally, (D, X)) be the measurable decision space of the decision problem 
under consideration and w(x, d), x e X, de D, the weight or loss function, i.e. 
a 3; x 35 —measurable nonnegative function serving as a measure of the "loss" 
implied by taking a decision d while x is the realized value of the parameter at the 
input. By decision function or decision procedure we understand a function b(y) 
defined on the sample space Y and taking its values in the decision space D which 
is ^-measurable and, eventually, satisfies some further conditions. The set of all 
possible decision functions b will be denoted by 38. 

By risk corresponding to the parameter value xe X and to the decision procedure 
feef we understand the average value of the loss corresponding to them, i.e. the 
function 

(2.2) R(x, b) = Ex{w(x, b(y))} 

where by Ex{...} we denote the expectation of the quantity in brackets taken with 
respect to the probability distribution PYlx. 

In the sequel we shall use the Bayes principle of ordering of the decision procedures, 
i.e. that based on the concept of average risk 

(2.3) r(PXY, b) = [R(X, b) dPx(x) 

corresponding to the decision function b and to the a priori probability distribu­
tion Px. 

By optimal or Bayes decision procedure (if exists) we understand a decision 
function b0 e 38 which minimizes the average risk. By Bayes risk we understand the 
quantity 

(2.4) r0(PXY) = mir(PXY,b). 
bem 

Definition of information: Let (X x Y, 36 x *p, PXY) be a probability space of 
the Cartesian product type and let Px and PY be the marginal distributions induced 
by PXY on the measurable spaces (X, 3c) and (Y *P), respectively. 

Then the corresponding information I(PXY) is defined as follows: 

(2.5) I(PXY) = !logf(x, y) dPXY(x, y) if PXY < Px x PY 

I(PXY) = co if P„ *PxxPY 

where f(x, y) is the Radon-Nikodym density of the joint probability measure PXY 

with respect to the product measure Px x PY. 



In the sequel we shall suppose that the information is finite so that PXY will be 301 
absolutely continuous with respect to Px x PY, i.e. PXY < Px x PY. Hence the 
information will be expressed by the first formula (2.5). Moreover, the absolute con­
tinuity above implies the existence of a regular version of the conditional probability 
Py|x, i.e. of the channel (36, Py\x, ty) corresponding to PXY (see [9], p. 198). 

Let 36' <= 36 and ?)' <= %) be sub- c-algebras of the ff-algebras 36 and $ , respectively, 
and let P'XY be the restriction of PXY on 36' x <P', P'x and P'Y the corresponding 
marginal distributions and f'(x, y) the density of P'XY with respect to P'x x P'Y. 

For the corresponding information I(P'XY) we have [9] 

(2-6) I(P'XY) S I(Pxr) , 

the sign of equality taking place if, and only if, the reduced ff-algebra 36' x $ ' is 
sufficient (in the sense of mathematical statistics) with respect to the system of 
measures {PXY, Px x PY}, i.e. if, and only if, there exists a version of the density 
f'(x, y) which is equal to f(x, y) or, what is the same, if, and only if, f(x, y) is not 
only 36 x ^-measurable but also 36' x ^'-measurable. 
' In the special case where only ty is reduced to *P', for example, this condition for 
the equality is equivalent to the condition of sufficiency of SP' with respect to the 
system {PY\X, xe X, [P*]} of conditional probability distributions of the observation 
channel (36, P r |X , V) corresponding to PXY* It is well known that the reduction of 
the initial sample ff-algebra ty to a sufficient sub-a-algebra <P' has no influence on the 
quality of decision obtainable. In particular, the Bayes risk r'0 corresponding to *£)', 
i.e. taken with respect to all the decision procedures which are ^'-measurable, is in 
the case of sufficiency equal to the Bayes risk r0, obtained before reduction. 

The concept of e-sufficiency. We shall say that the reduced ff-algebra 36' x $ ' , 
where 36' <= 36 and $ ' <= sp, is e-sufficient (e ^ 0) with respect to the system of mea­
sures {PXY, Px x Py} if 

(2.7) I(PXY) - I(P'XY) ^ £ , 

where as before P'XY is the measure induced by PXY on 36' x $ ' and I(PXY) and l(P'XY) 
are the informations introduced above (see, in particular, (2.6)). 

This definition of s-sufficiency, introduced first in [2], is a natural generalization 
of the concept of sufficiency introduced in mathematical statistics, to which it reduces 
for 8 = 0. Clearly, it would be possible in defining the concept of e-sufficiency to part 
from other definitions of information, namely, the /— informations of Renyi and 
Csiszar [12], which also have the property to be conserved only with respect to 
sufficient transformations and other analogous properties as the information defined 
by (2.5). However, among them only the latter has the well-known fundamental 
properties in information theory related to the additivity properties of the informa-

* By [Px] we understand as usually: with the possible exception of a measurable set of 
measure Px equal to zero. 



tion density log/(x, y) (see (2.5)) corresponding to it. In any case it would be intere­
sting to try to improve the different criteria of admissibility of reduction by using the 
other definitions of information. 

Let us define on the er-algebra 35 x %) the probability measure PXY by 

P°xr(G)= [f'dPxx Pr, Ge3r x J ) , (2.8) P0xr(G)=ţf 

where/' is the density of P'XY with respect to P'x x P'Y. 
The probability measure PXY is absolutely continuous with respect to PXY, defined 

by (2.8), i.e. 

(2.9) PXY<PXy(Xxy). 

Indeed, let B be the following set: B = {(x, y) :f'(x, y) = 0}. Then from (2.8) we 
obtain 

P°xr(B) - Pxr(B) = 0 , 

since on 3c' x %)' the two measures PXY and PXY reduce both to P'XY and B e 35' x ^ ' . 
If now for some set E e 3c x ty we have PXY(E) > 0, then 

Pxr(E) = Pxr(E - B) + PXY(E n B) = PXY(E - B) > 0 , 

so that, according to PXY ~4 Px x PY, it also holds 

Px X PY(E - B) > 0 . 
But then 

P°XY(E) = P°XY(E - B) = ľ / ' d P x x P r > 0 
J E-B 

and thus (2.9) is proved. The corresponding density is given by 

(2-10) S-fe-I, 
7 d P ° y / ' 

where/is the density of PXY with respect to Px x PY a n d / ' that of P'XY with respect 
to P'x x P'Y. 

For the generalized entropy HpoXY(PXY) of PXY with respect to P^ r , defined as 
in [9] but with inversed sign, i.e. 

(2.11) HPoXY(PXy)=jlOg^dPXY, 

the following relation takes place according to (2.10) 

(2.12) HPoxr(PXY) - f log L dPXY = I(PXY) - I(PXY) = I(PXy) - I(Pxr) 



since, in particular, it holds 

(2-13) I(P°XY) = I(P'XY). 

In the case of e-sufficiency (see (2.7)) the following two inequalities take place 
for the total variation of the pair of probability measures PXY and PXY, 

(2.14) \\f - / ' ] dPx x PY = 2e + Ty/e , 

(2.15) f|/ - f\ dPx x PY^2B + C 

where T and c are two positive universal constants. (T is the constant introduced 
by Pinsker in [10]; T and c can be taken equal to 10 and 2e _ 1 respectively. We use 
natural logarithms in calculating informations according to (2.5)). 

These inequalities, proved first in [2], may be derived directly from the following 
more general entropy version 

Theorem 2.1. Let co and w be two probability measures on a measurable space 
(Z, 3) and let co <^ w, the corresponding density being f. 

If 3 ' <= $ is a sub-a-algebra of the a-algebra 3 and f is the density of co' with 
respect to w', where co' and w' are the restrictions on 3 ' °f 0) and w, respectively, 
then the following inequalities take place (natural logarithms) 

(2.16) f | / - / ' f d w g 2 f l o g ^ d w + r / f f l o g ^ d c o l , 

(2A7) \\f - / ' | dw ^ 2 f log L dco + c , 

where r and c are the positive constants introduced above. By defining the probabi­
lity measure co on $ as in (2.8), i.e. by 

(2.18) cv(G) = f / ' d w , G e 3 , 

we have co <4. co with dcojdco = / / / ' and the following relation takes place 

(2.19) Hw(co) - Hw.(co') = f log/dcu - f l o g / ' d a / = flogL^dco = E&(co). 

Proof. According to [9], pp. 194-195, we have in the case of natural logarithms 

(2.20) H&(co) = f log L dco - f ( / - / ' ) dw + K = 1 - cb(A) + K , 



304 where 

f A = {z: / (z)>0}, 

(2-21) 1 K = 1 [ ( L _ i V d < 5 

/' 
Here & is the probability measure defined by (218) and /z(z) is a real function on Z 
with values lying between/(z)//'(z) and 1 for z e A. 

Similarly, according to [9], relation (5.9'), we obtain 

(2.22) | | / - / ' | dw = J log L dco + K , 

so that, taking account of (2.20), we have 

(2.23) f | / - T | d w = f | / - / ' | d w + f f'dw = 
J JA Jz-A 

= log —\dco + K + l - co(A) = l o g L dco + [ log L dco . 

By applying the Lemma 3.1 of [6], based on the inequality (2.4.11) proved by 
Pinsker in [10], we can write 

(2.24) J l o g L dco S flog L dco + T / ( flog-C, dco^ 

and 

(2.25) J j l og^ dco = [\o%—, dco + c, 

where T and c are the constants introduced above. 
On the base of (2.24) we deduce from (2.23) that the total variation of the pair of 

measures co and co satisfies the inequality 

[\f - / ' | dw S 2 flog L dco + r ([ log L da\ = 2H&(co) + T ^(H^co)) 

(2.26) 

which coincides with (2.16). 
Similarly, on the base of (2.25) we deduce from (2.23) that the total variation above 

satisfies the inequality 

(2.27) 11/ - / ' | dw = 2 flog ^ dco + c = 2Ha(co) + c , 

which coincides with (2.17) and, thus, the theorem is proved. 



Note . The estimates of the total variation of cw and & given by Theorem 2.1 are 
a little better than the corresponding estimates we could derive by applying the 
Pinsker's inequality (2.3.14) in [10]. 

It would be possible to define the concept of e-sufficiency of 3 ' with respect to the 
system of measures {co, w] by the relation 

(2.28) Hw(ca) - Hw,((o') = H&(a>) ^ e, 

which coincides with (2.7) in the special case (Z, 3) = (X x Y, 36 x $ ) , 3 ' = 
= 3c' X <P', co = PXY, w = Px x Py . It is, of course, well known [9] and it results 
immediately from (2.19) that 

(2.29) Hw.(m') ^ Hw(w), 

the sign of equality taking place if, and only if, the reduced a-algebra 3 ' is sufficient 
with respect to the system of measures {co, w}, as in the case of (2.6). 

Obviously, (2.12) is a special case of (2.19), (2.14) is a special case of (2.16) and 
(2.15) is a special case of (2.17). 

As we shall see in the next sections, the concept of e-sufficiency of a reduced 
cr-algebra as defined in information terms by (2.7) or, more generally, in generalized 
entropy terms by (2.28), intervenes in a natural manner in the estimations of the 
Bayes risk increase caused by the corresponding reduction. In the special case of 
sufficiency (e = 0) this increase is zero. 

3. ESTIMATION OF AVERAGE RISK CHANGE CAUSED BY A MODI­

FICATION OF THE PROBABILITY LAW IN A STATISTICAL DECISION 

PROBLEM 

Let us consider, as in section 2, a classical statistical decision problem 77 with 
input (parameter) measurable space (X, 36*), output (sample) measurable space 
(Y (P), decision measurable space (D, 2>), probability law PXY on the Cartesian 
product measurable space (X x Y, 36 x fy) of the input and output, and weight 
(loss) function w(x, d), xeX, de D. As said in section 2, the weight function is 
supposed to be nonnegative and 36 x S-measurable. 

Let, further, ft be a decision function either of the pure type, i.e. a measurable 
transformation of the sample space (Y, $ ) to the decision space (D, D), or of the 
mixed type, i.e. a system of probability measures {PD\y, y e Y} on (D, X) such that, 
for every set EeX, PD\y(E) is an ^-measurable function of y e Y In other words, 
a decision function of the mixed type (randomized decision procedure) is represented 
by a channel (%), PD\y, X) (see section 2). In this case, to every sample value yeY 
there corresponds in general not a single decision d e D but a probability distribu­
tion PD\y on (D, X), so that the final choice of the decision d is made randomly ac­
cording to PD\r In the sequel, the set of all possible decision functions b will be denot­
ed by 38. 



As a consequence of the application of the decision function b there is induced 
by PXY on the Cartesian product (X x D, 3: x £)) a probability measure which will 
be denoted by Px y&_ 1 . Thus, the average risk r(lJ, b), related to the decision 
problem 77 and to the decision function or decision procedure b, is given by 

(3.1) r(n, b) = J w(x, d) dPxyb'1 . 
J XxD 

Let, now, 77 be a new decision problem differing from the above decision problem 77 
only in what concerns the probability law in action: in the place of PXY we have 
now PXY on 3c x <$. By applying to 77 the decision function b there is induced on 
(X x Y 36 x T>) by PXY a probability measure PXj-S_1 and the corresponding 
average risk is given by 

(3.2) r(Í7, B) = í w(x, 
J XxD 

d) dPxrB-

In the present section we give an upper estimate of the average risk change on 
passing from the decision problem 77 to the decision problem 77 or conversely, namely, 
under different conditions concerning the choice of the decision functions b and B 
applied in the two cases. We can, for instance, take B = b (decision function stability 
question) or, more generally, B = bT, where Tis a measurable one-to-one transforma­
tion of (Y, *P) onto (Y, *P) conserving, thus, the information. We can also consider 
the Bayes risk change on passing from 77 to 77. 

In face of such a task the direct method would be to solve in each case the cor­
responding decision problem. However, this method, if realizable at all, is not always 
economic to apply, so that every estimation of the decision possibilities (i.e. of the 
decision quality attainable) before beginning to solve a decision problem is always 
desirable. 

Lemma 3.1. For the average risks (3.1) and (3.2) the following inequalities take 
place 

(3.3) - y ( jv dPxyb-1) ypTf^- . t Jvs- 1 ) ] ^ 

^ r(fl, B) - r(n, b) = X/(JV dP^"1) ^pH^^P^fe-1)] 

where by Hjco) we denote the generalized entropy of the probability measure co 
with respect to the probability measure w, defined as in (2.11) in the case co < w 
and as + co otherwise, i.e. 

(3.4) Hjco) = log — dco for co <4 w , 
J dw 

77w(a>) = c o for co <j? w . 



Proof. Let us prove the second inequality (3.3). If the generalized entropy 3 0 7 

IlPxrS-'^xyfr-1) is infinite this inequality obviously holds. Let, thus, suppose that 
the generalized entropy above is finite. Then necessarily we have [13] PXYb~l <^ 
<̂  PXYB~l, so that, g being the corresponding density, we can write 

(3-5) H?xrb~-,(PXYb-1) - LloggdP^b-1 = 

= 1 - PXYb-i(A) + 1 f ( l ^ d P ^ b - 1 , 

where, similarly as in (2.20) and (2.21), h(x, d) takes its values in the interval between 1 
and g(x, d) provided that (x, d) e A with A = {(x, d) : g(x, d) > 0}. 

Further, by taking B = {(x, d) : 1 - g(x, d) > 0} and A' = X x D - A, we 
obtain on the base of (3.5) successively 

(3.6) r(LI, B) - r(n, b) = f w(x, d) d ( P „ 5 _ 1 - P ^ b " 1 ) ^ 
JxxD 

<; f w(x, d) [1 - g(x, d)] dPxr5-](x, d) ^ 

= /("f w2 d P ^ S - A / r f (1 - a)2 dP^b- 1 + f (1 - gf dPXY$-1'] ^ 

s j(j w2 dpXYB-^ y y s
 ( i ^ divs-1+pXYb-\A'i^= 

S J([ w2 dPxr--A /If ^ L ^ dPXYb~l + 2PXYb-\A')\ £ 

S JfL2 dPXYb-^-2HPxY^(PXYb-')] 
where h(x, d) is the positive function intervening in (3.5) and, thus, it does not takes 
values greater than 1 on the set A n B since for (x, d) e B we have g(x, d) > 1. 
Hence, in particular, the third inequality in (3.6) is justified on account of the 
additional fact that by denoting by A' the complement of the set A we have 
(3.7) f (1 - gf dPXYb-" = f dPXYb~l = PXYb-\A'). 

J/t'nB "" jA'nB 



308 Thus, the second inequality (3.3) is proved and in a completely similar manner it is 
possible to prove the first one, so that the lemma is proved. 

Lemna 3.2. If the decision functions b and b applied in the decision problems H 
andfl are related by the equality 

(3.8) B = bT, 

where T is a measurable one-to-one transformation of (Y ?)) onto (Y, ?)), then for 
the corresponding average risks (3.1) and (3.2) the following inequalities take 
place 

(3.9) - J(L2 dPXyb-*\ J[2HPxy(PXyT-1) ^ r(H, bT)] -

- r(H, b) < J([w2dPXYT-1b-i\j[2HPxYT.i(PXy)-] . 

Proof. In general, it holds (see [9] and [12]) that 

(3.10) H^T-^APxrb-1) ?k H~PXYT-L(PXY) , 

Hp^-^yT-'b-1) < HPxY(PXYT-') . 

By applying on (3.3) the inequalities (3.10) we obtain the inequalities (3.9) and the 
lemma is, thus, proved. 

Theorem 3.1. Let the weight function w(x, d) be uniformly bounded, i.e. w(x, d) ^ 
<; w0 < oo, x 6 X, d e D. 

If the decision functions b and b applied in the decision problems H and II are 
related by (3.8), i.e. ifb~ = bT, where T is a measurable one-to-one transformation 
of (Y $ ) onto (Y, ty), then for the corresponding average risks (3.1) and (3.2) the 
following inequalities take place 

(3.11) - J[2w0r(n, b) HPxY(PXYT-')] < r(n, bT) -

- r(n, b) rg N/[2w0r(/j, bT) Hf„T-t(P„)] . 

If r0(H) = inf r(n, b) and r0(Tl) = inf r(n, b) are the Bayes risks corresponding 
bsM be® 

to the decision problems 77 andfl, respectively, then it holds 

(3.12) - J[2w0r0(n) inf HPxY(PXyT~ -)] <; r0(Tl) - r0(H) < 
T 

gV[2w0r0(/7)infH?xyT-,(P^)]. 



Proof. Since by hypothesis w(x, d) = w0, xeX,de D, it follows that 

(3.13) f w2 dP^b'1 = w0r(n, b) , 

w2 dP^T-^b'1 = w0r(n, bT) . 

By applying on (3.9) of Lemma 3.2 the inequalities (3.13) we immediately deduce 
the inequalities (3.11). 

Let us now prove the second inequality (3.12). From the second inequality (3.11) 
it follows that for every decision function b e 38 for which r(n, bT) > 0 it holds 

HU\ r(JT, bT) - r(n, b) ,-

This is, in particular, the case if r0(Tl) > 0. If, on the contrary, r0(fl) = 0, then the 
second inequality (3.12) is trivially fulfilled. 

Let us, thus, assume that r0(n) > 0. Then it holds 

, 5) r0(n) - r(TI, b) r(n, bT) - r(n, b) 
{' ] vWj)] - Mn,bT)] 

for every be 38, since the function/(x) = (x — a)j*Jx (a >. 0, x > 0) is an increas­
ing function of x. Indeed, 

(3.16) /Xx) = A ^ \ = xA^>0 for x > 0 _ 
dx \ s/x J x 2x 

Combining the inequalities (3.14) and (3.15) we obtain 

{317) . o ( n ) - K ^ ) w 

VW-5] 

for every decision function be3% and for every transformation Tof the above type. 
The second inequality (3.12) is an immediate consequence of (3.17). In a similar 
manner it is possible to prove the first inequality (3.12) and this completes the 
proof of the theorem. 

Theorem 3.1, especially by taking in (3.11) the transformation T equal to the 
"identical" transformation so that b = bT = b, may be applied to problems of 
stability or sensibility of a decision procedure with respect to different deviations of 
the probability law from the supposed one. In the sequel we shall apply this theorem 
and, in particular, relation (3.12) in data reduction problems. 



310 4. REDUCTION OF THE OUTPUT (SAMPLE SPACE) a-ALGEBRA 

Let us consider, as in section 3, the statistical decision problem 77, corresponding 
to the probability space (X x Y 3c x $ , PXY), and suppose that the output (sample 
space) er-algebra $ is reduced to a <7-algebra $ ' <= $ . Let P'XY be the restriction on the 
Cartesian product ©--algebra 3c x %)' of the probability measure PXY and consider the 
statistical decision problem IT resulting from II and corresponding to the reduced 
probability space (X x Y 3c x %)', P'XY). 

(D, £)) being the measurable decision space (the same for both the problems) and 
w(x, d), x e X, d e D, being the weight function (the same for both the problems) 
let r(II, b) be the average risk (defined as in (3 A)) corresponding to 77 and to a decision 
function b e J , where @) is the set of all possible ^-measurable decision functions 
and let r(H', b') be the average risk corresponding to II' and to a decision function 
b' e 38', where J " is the set of all possible <P'-measurable decision functions. 

Let, further, r0(n) — inf r(n, b) be the Bayes risk corresponding to the problem 77 
be® 

and r0(II') = inf r(77', b') that corresponding to the problem 77'. 
b'em' 

Our task is to give an upper estimate of the Bayes risk change r0(II') — r0(77) 
resulting from the reduction of the sample a-algebra *$ to $ ' <=. $ . 

It is, however, impossible to apply directly in the present case the inequalities 
(3.12) of Theorem 3.1, for instance, since the probability measure P'XY is defined on 
the smaller a-algebra 3c x %)' and not on the initial a-algebra 3c x %), as do PXY 

and PXY. 
It is, thus, in the general case necessary to search for such an extension PXY of the 

measure P'XY to 3c x *$ that the reduced a-algebra ty' is sufficient with respect to the 
system of conditional probability distributions {PY\X, x e X, [Tx]} induced by PXY 

on 7̂ which is 3c-measurable in the sense that, for every set E e ty, the function 
PY\X(E) of x e X is 3c-measurable. In other words, PXY must be such that on the 
reduced a-algebra 3c x *$' it holds P'XY = P'XY and that the latter is sufficient (see 
section 2) with respect to the system {PXY, Px x PY] of measures, where Px = Px 

and PY are the marginal distributions induced by PXY on 3c and ?), respectively. 

As we have seen before in section 2, this sufficiency takes place if, and only if, the 
information I(PXY) corresponding to the probability space (X x Y 3c x ^), PXY) is 
equal to the information I(P'XY) = I(P'XY), corresponding to the reduced probability 
space (X x Y 3c x %)', P'XY) = (X x Y 3c x %)', P'XY), i.e. 

(4.1) 7(Pxy) = I(PXY) = I(P'XY) . 

The condition of sufficiency above or, equivalent!}', the condition of conservation 
of information (4.1) is necessary (at least in some cases; see [8], [11]), and sufficient 
for the conservation of the Bayes risk on passing from the decision problem 77' to the 
decision problem 77 resulting from 77' by extending V to ^ and P'XY to PXY, so that in 



particular also SS' is extended to 88, i. e. for the validity of the equality 

(4.2) r0(J7) = r0(n'). 

Provided that l(P'XY) < oo, the general form of an extension PXY of P'XY to 36 x $ 
satisfying (4.1) is given by the following theorem. 

Theorem 4.1. Let (X x Y 36 x $ , co) be a probability space of the Cartesian 
product type and let co' be the restriction of co to the sub-a-algebra 36' x ^)', where 
36' c 36 and V <= V-

Let, further, l(co') be the information corresponding to the reduced probability 
space (X x Y 36' x $ ' , co') and suppose that I(co') < oo, so that co' -4 pi' x v', 
where p! and v' are the marginal measures induced by co' on 36' and $ ' , respectively. 

Then the general form of every extension cd of co' from 36' x $ ' to 36 x V) 
conserving the information, i.e. for which it holds I(co) = l(co'), is given by 

(4.3) cb(G) = J / ' dp x v , G e 36 x $ , 

where f = dco'/(dfi' x v') is the Radon-Nikodym density of co' with respect to the 
product measure fi! x v' and fi and v are arbitrary extensions from 36' to 36 of the 
measure fi' and from ty' to ^ of the measure v', respectively. 

Proof. The conditions/(co) = I(co') and/(co') < oo imply that also l(cd) < oo and, 
consequently (see section 2), co <? p x v. Let/(x, y), x e X, y e Y be the correspond­
ing density. 

The condition I(co) = I(co') further implies that the density f(x, y) is 36' x ty'-
measurable (see section 2) and, thus, there exists such a version of f(x, y) which 
satisfies the equality 

(4.4) f(x, y) = f'(x, y), xeX, yeY, 

due to the fact that, by hypothesis, the restriction of co on 36' x ty' coincides with co'. 
From (4.4) it immediately follows that the general form of co is given by (4.3), 

where / ' is the density of co' with respect to fi' x v' and p and v are arbitrary exten­
sions of fi' and v' on 36 and $ , respectively. 

Indeed, if co is of the form (4.3), then its restriction on 36' x %)' coincides with co' 
and, due to the 36' x ^'-measurability of the density dco/(d/t x v) = / = f'[co], its 
information I(&) is equal to I(co') = I(co') and, thus, (4.1) is satisfied. This completes 
the proof of the theorem. 

Lemma 4.1. Conserving the notations and definitions of Theorem 4.1, let us suppose 
that l(co) < oo, from which it follows that also I(co') < oo. 

Then the relation of absolute continuity 

(4.5) co -4 co 



312 holds if, and only if, 

(4.6) n < fi and v <̂  v , 

where \i and v are the marginals of co on 3£ and ty, respectively, and a> is given 
by (4.3). 

The density of co with respect to co is then given by 

(4.7) dC0 - dc° I — 
dm dfi x v J dp' x v' 

Proof. Let, as in proving (2.9), B be the set {(x, y) :f'(x, y) = 0}. Then from (4.3) 
we obtain 

cb(B) = co(B) = 0 

since on 3c' x *$' the two measures co and to reduce both to co' and B e 3c' x %)'. If 
now for some set E e 3c x %) we have co(E) > 0, then 

co(E) = co(E - B) + co(E n B) = co(E - B) > 0 , 

so that, according to the relation co <t ji x v <4 fi x v, following from I(co) < co and 
from our hypothesis (4.6), it also holds 

fi x v(E - B) > 0 . 
But then 

&(E) = cd(E - B) = \ f dfi x v > 0 

and, thus, (4.5) is proved, the corresponding density being given by (4.7). On the 
other hand, the necessity of the condition (4.6) follows directly from the fact that 
(4.5) implies (4.6). Thus, the lemma is proved. 

Theorem 4.2. Conserving the notations and definitions of Theorem 4.1, let us 
suppose that I(co) < co, from which it follows that also l(co') < co. 

Let us denote by co0 that probability measure on 3c x ^ which results from (4.3) 
by taking fi = p. and v = v, where p. and v are the marginals of co on 3c and ty, 
respectively, i.e. 

(4.8) &0(G) = ľ / ' d p x v , G e 3 c x g ) . 

Let us further denote by tl the set of all the probability measures & on 3c x $ 
of the form (4.3), i.e. the set of all the probability measures on 3c x ^) having 
a restriction on 3c' x *$' equal to co' and conserving the information l(co') of co': 
I(&) = 7(c5') = I(co'). 

Then for the generalized entropy H&0(co) of co with respect to co0 (see definition 
(3.4)) the following relation takes place 



(4.9) H&0(co) = l(co) - I(co') = min Hs(co). 
<oeQ 

Proof. For every pair of extensions p, v of \i', v', through which is defined by (4.3) 
some co e Q having p and v as marginals, there are two possibilities: either (4.6) 
holds, i.e. fi -4 p and v <§ v, or not. According to Lemma 4.1, in the first case we 
have co -4 co with 

(4.10) d(° d w d(°' 
dco dp. x v I dp! x v' 

and in the second case we have co -g co, hence H&(co) = oo. 
Let us calculate the generalized entropy Hg,(co) in the first case. Besides (4.10) it 

holds 

dco dco d(i x v dco do. dv 
(4.11) 

dџ x v dџ x v dß x v d^ x v dД dv 

the existence of the densities dco/(dfi x v) and dco'/(dju' x v') being assured on the 
base of the assumption/(co) < oo implying l(co') < oo. 

From (4.10) and (4.H) we derive 

(4.12) He,(co) = log — dco = log — — dco - log ^ — dco = 
J dco J dp x v J du' x v' 

= log dco + log — d[i + log — dv - log dco' = 
J d/i x v J dp. J dv J dfi' x v' 

= /(co) - l(co') + Hfi(fi) + H~(v) ^ /(co) - l(co') = H&0(co). 

Thus, (4.9) holds and the theorem is proved. 

Let us now return to our question concerning the general form of an extension PXY 

ofP'XY to 36 x $ satisfying the relation (4.1) and thus assuring the equality (4.2). The 
following corollary of Theorems 4.1 and 4.2 gives an answer not only to this question 
but also to the question: what is the "better" among these extensions from the point 
of view of applying inequalities (3.12) of Theorem 3.1 in estimating the Bayes risk 
change r0(n') — r0(n) = r0(H) — r0(n) resulting from the reduction of the sample 
a-algebra %) to ty' <= $ . 

Corollary 4.1. Conserving the notations and definitions used for the formulation 
of the main problem of the present section, the general form of an extension PXY 

of P'XY to X x %) satisfying the relation (4.1), i.e. I(PXY) = l(P'XY) = I(P'XY), is 
given by 

(4.13) PXY(G) = Í / ' dPxxPY, G e 3E x $ , 



where f = dP'XYl(dPx x P'Y) is the Radon-Nikodym density of P'XY with respect to 
the product measure Px x P'Y and PY is an arbitrary extension from $ ' to ty of the 
measure P'Y. The existence of the density f is assured by the assumption that 
I(P'XY) < co. 

If, moreover, l(PXY) < co, then 

(4.14) min H~Pxy(PXY) = H~p0xr(PXY) = I(PXY) - l(P'XY) 

where & is the set of all the probability measures PXY of the type (4.13) and PXY 

is that special PXY which results form (4.13) by taking PY = PY. 
We are now in a position to formulate the main result of this section. 
Theorem 4.3. LetH and H' be the two decision problems formulated at the begin­

ning of the present section, the second resulting from the first by a reduction of the 
sample a-algebra *P to *P' c ty. 

Let the weight function w be uniformly bounded by vv0, i.e. w(x, d) <, w0 < oo, 
xe X, de D, and suppose that the information I(PXY) is finite. 

If r0(n) and r0(H') are the Bayes risks corresponding to the decision problems H 
and 77', respectively, then 

(4.15) 0 < r0(W) - r0(n) <. J{2w0r0(n') \l(PXY) - I(P'XY)]} . 

In other words, if the reduced a-algebra ty' is z-sufficient with respect to the 
system {PY\X, xeX, [ T J } of conditional probability distributions, corresponding 
to PXY (see section 2), then 

(4.16) 0 < r0(W) - r0(n) ^ V[2w08 r0(77')] . 

Proof. Defining the probability measure PXY as in Corollary 4.1, we obtain that 
simultaneously it holds 

(i) I(P°XY) = I(P'XY), 

(iij r0(77°) = r(77'), (H0 = H for PXY = P°Y), 

(iii) H?OXY(PXY) = I{PXY) - KP'XY) , 

according to Corollary 4A , since by hypothesis I(PXY) < oo. As we have seen (see 
relations (4.1) and (4.2)), the equality (ii) is an immediate consequence of equality (i). 

The relation (4.15) follows immediately from (ii), (iii) and Theorem 3.1, second 
inequality (3.12), where we replace PXY by PXY and we take as T the "identical" 
transformation. 

The relation (4.16) is derived from (4.15) on the base of the inequality l(PXY) — 
— I(P'XY) <: e, implied by the definition of e-sufficiency we suppose. Thus, the theorem 
is proved. 



R e m a r k 1. If, instead of the assumption that the weight function w is uniformly 
bounded, we suppose that 

(4.17) {w2dQXD = k l\wdQXD~\ 

for every probability measure QXD on S x S of the type QXD = PXYb~l resp. 
PXY^~~, where k is a given constant (obviously, k ̂  1), then from Lemma 3.2 it 
would be possible to derive, by following a similar procedure as that used in proving 
Theorem 3.1, the inequalities 

(4.18) - r0(H) ./[2fc inf HPxr(PXYT~*)] ^ r0(ff) - r0(JT) = 
T 

^r<Jitt)y/t2kinSRfxyT.JiP„)}, 
T 

instead of (3.12). Indeed, the role of (3.13) is here played by (4.17) and the role of the 
function f(x) by the function g(x) = (x — a)jx (a 2: 0, x > 0), which is also an 
increasing function of x since, as in the case of (3.16), we have 

(4.19) gXx)~±(X-^)-± = o.' 
dx\ xi / x~ 

In the place of Theorem 4.3, relation (4.15), it would be possible then to derive 
from (4.18) the relation 

(4.20) 0 = r0(H>) - r0(H) = r0(H') J{2k[l(PXY) - l(P'XYf]} . 

Remark 2. In [2] we have used the inequalities (2.14) and (2.15), derived as 
a special case of Theorem 2.1, for proving the following inequalities (AI = l(PXY) — 

~ l(P'xr)) 
( 4 2 1 ) f r0(H>) - r0(H) = w0 . (2A + r^AI) 

1 r0(W) - r0(n) ^ w0 . (2AI + c) 

under the assumption that the information I(PXY) is finite and that the weight 
function w is uniformly bounded by w0. 

The proof of (4.21) is made as that of Theorem 4.3. Namely in the place of P'XY we 
use its extension PXY on 3£ x <$ for which (i), (ii) and (hi) hold. Based on inequalities 
(2.16) and (2.17) of Theorem 2.1 and further on (3.10) we then successively obtain, 
for every decision function b e 38, 

(4.22) \r(n°, b) - r(n, b)\ = f w(x, d) d l R ^ " 1 - PXYb~l\ = 

JXXD 

= w0 U\pXYb-1 - p x r b - - \ ^ 

S W0(2HpoXYb-l(Pxyb-X) + r s/iHpo^-^Pxyb-1)-]) g 
=S w0(2H~P>XY(PXY) + rJ[Hp0xY(PXY)-]) = w0(2A/ + r V 'A/) 



and, similarly, 

(4.23) \r(n°, b) - r(n, b)\ < w0(2AI + c). 

The inequalities (4.21) follow directly from (4.22) and (4.23), respectively. 
Obviously, these estimates are less satisfactory than that given by Theorem 4.3, since 
in particular E = 10 for natural logarithms we use throughout the paper. 

5. REDUCTION OF THE INPUT (PARAMETER SPACE) cr-ALGEBRA 

Let us consider, as in sections 3 and 4, the statistical decision problem TI, cor­
responding to the probability space (X x Y 36 x *P, PXY) and to the weight function 
w, and suppose that the input (parameter space) cr-algebra 36 is reduced to a cr-algebra 
36' <= 36. This situation may arise, for instance, in the case we wish to "eliminate" 
the influence of a "nuisance parameter" and to conserve only the presence of the 
"essential parameter" (represented by the reduced cr-algebra 36'). A similar situation 
may arise if we wish to "compress" (by precoding, see [1]) a given information source 
in such an extent that the rounded off source thus resulting contains just the essential 
to be transmitted from the point of view of the receiver, i.e. from the point of view 
of the decision or transmission problem under consideration. 

Let P'XY be the restriction on the Cartesian product cr-algebra 36' x $ of the proba­
bility measure PXY. 

Let Px and P'x be the corresponding marginal distributions on 36 and 36', respecti­
vely, and (36, PY\X, *$) and (36', P'Y\X, $ ) the corresponding channels, i.e. the systems 
of conditional probability distributions corresponding to PXY and P'XY, respectively. 
The existence of these channels is here assured by I(PXY) < °° ( s e e P- 301). 

Obviously, it holds 

(5.1) P'Y[X(.) = E{PY]X(.)\X,X'}[PX-], 
Px 

where E{:'\ x, 36'} denotes the conditional expectation with respect to Px and to the 
Px 

reduced cr-algebra 36'. The channel (36', P'Y]x, ?)) is, thus, a rounded off version of the 
initial channel.(36, PY\„ $ ) . 

In a similar way we,define the rounded off version w' of the weight function w 
with respect to Px and to the reduced cr-algebra 36', i.e. 

(5.2) w'(x, .) = E{w(x, .) | x, 36'} . 

The weight function w'(x, d) being 36' x ©-measurable, we can define the rounded 
off decision problem H' corresponding to the initial decision problem iT as follows: 
measurable sample space (Y, $ ) and decision space (D, £)) those of iT; measurable 
parameter space (X, 36'); system of probability measures that represented by the 
rounded off channel (see (5.1)); weight function w' the rounded off weight function 



given by (5.2); a priori probability measure P'x, generating with the rounded off 
channel (36', P'Y\X, V) the restriction P'XY of PXY on the reduced cr-algebra 36' x V); 
decision function space 3D that of iT. 

Let r0(n) = inf r(H, b) be the Bayes risk corresponding to the problem 77 and 
be® 

r0(n') = inf r(77', b) that corresponding to the problem 77'. 
be® 

As in section 4, our task is to give an upper estimate of the Bayes risk change 
r0(77') — r0(77) resulting from the reduction of the parameter cx-algebra 36 to 36' c 36. 

As in section 4, it is also here impossible to apply directly such inequalities as the 
inequalities (3.12) of Theorem 3.1, for instance, since the probability measure P'XY is 
defined on the smaller cr-algebra 36' x %) and not on the initial cr-algebra 36 x %), 
as do PXY and PXY. Moreover, the weight functions w and w' are, in general, different, 
namely if w is not measurable with respect to the reduced cr-algebra 36' x £). 

In order to overcome these difficulties we proceed in a similar way as in section 4. 
We need for such an extension PXY of the measure P'XY to 36 x g) that the reduced 
cr-algebra 36' x %) is sufficient with respect to the system {PXY, Px

 x IV} of measures, 
where Px and PY = PY are the marginal measures corresponding to PXY and, moreo­
ver, where both these marginal measures (and not only the second) coincide with the 
corresponding marginal measures Px and P y of PXY. Without the latter condition 
the information 7(Pxy), corresponding to the new decision problem 77 derived from 77 
by only replacing PXY by PXY, still remains equal to that of 77', i.e. I(PXY) = 7(P^y), 
but in general this fact alone is not sufficient here (as opposed to section 4, where 
(4.1) implies (4.2)) for the equality of the corresponding Bayes risks, i.e. for the validity 
of the relation r0(fl) = r0(77'). 

However, the latter relation is valid if the supplementary condition above is satisfied 
as it results from the following theorem. 

Theorem 5.1. The general form of an extension PXY of P'XY from 36' x $ to 
36 x ?) satisfying the relation 

(5.3) I(PXY) = I(P'XY) (I(P'XY) < oo) 

is given by 

(5.4) PXY(G)= { fdPxx PY, Ge36 x Ў, 

where f = AP'XYj<iP'x x Pr is the Radon-Nikodym density of P'XY with respect to 
the product measure P'x x PY and Px is an arbitrary extension from 36' to 36 of the 
measure P'x. The existence of the density f is assured by the assumption 
that I(PXY) < oo. 

If, moreover, l(PXY) < oo, then 

(5.5) min H~xy(PXY) = H~p0xy(PXY) = 7(P x y ) - l(PXY) 
?xye& 



where & is the set of all the probability measures PXY of the type (5.4) and PXY is 
that special PXY which results from (5.4) by taking Px = Px, i.e. 

(5.6) PXr(G) = f / ' áPx x Pү , G є 36 x . 

For the average risk r(ff°, b) of the decision problem ff° = fl defined above for 
the special case we take PXY = PXY it moreover holds 

(5.7) r(n°, b) = r(W, b) 

where b is any decision function belonging to 39 and r(U', b) is the average risk cor­
responding to the decision problem J r . 

For the Bayes risks in particular it holds 

(5.8) r0(n°) = r0(II'). 

Proof. The proof of (5.4) under (5.3) results immediately from Theorem 4.1. The 
proof of (5.5) results from Theorem 4.2. 

It remains, thus, to prove (5.7) under (5.6) since (5.8) is an immediate consequence 
of (5.7). 

We have 

(5.9) r(JJ°, b) = f w(x, b(y)) dPXY(x, y) = 

= f w(x, b(y))f'(x,y)dPx x PY(x,y) = 

= f w'(x, b(y))f(x, y) dP'x x PY(x, y) = 

= L'(x,b(y))dP'XY(x,y) = r(n',b), 

where w' is the rounded off weight function defined by (5.2) and corresponding to the 
rounded off decision problem IT'. Thus, the theorem is proved. 

Let us now formulate the main theorem of this section. 
Theorem 5.2. Let II be the initial decision problem and W the rounded off decision 

problem formulated at the beginning of the present section, the second resulting 
from the first by a reduction of the parameter a-algebra 36 to 36' c 36. 

Let the weight function w of II be uniformly bounded by w0, i.e. w(x, d) ^ w0, 
xeX, deD, and suppose that the information l(PXY) is finite. 

If r0(ll) and r0(ll') are the Bayes risks corresponding to the decision problems II 
and II', respectively, then 

(5.10) r0(ff') - r0(n) = v/{2w0r0(77') [I(PXY) - J(P^)]} . 



In other words, if the reduced a-algebra 35' x $ is s-sufficient with respect to the 319 
system {PXY, Px x PY} of probability measures (see section 2), then 

(5.11) r0(W) - r0(n) g V[2w0e r0(/7')] • 

Proof. Defining the probability measure PXY as in Theorem 5.1 by (5.6), we obtain 
that simultaneously it holds 

(0 r0(n°) = r0(n'), 
(ii) H~PoXY(PXY) = I(PXY) - I(P'XY), 

according to (5.5) and (5.8) of Theorem 5.1, since by hypothesis I(PXY) < oo. The 
relation (5.10) follows immediately from (i), (ii) and Theorem 3.1, second inequality 
(3.12), where we replace PXY by PXY and we take as Tthe "identical" transformation. 
The relation (5.11) is derived from (5.10) on the base of the inequality l(PXY) — 
- I(P'XY) = B> implied by the definition of e-sufficiency we suppose. Thus, the theorem 
is proved. 

R e m a r k l . As in Remark 1 of section 4, we can derive from the assumption (4.17) 
a relation completely analogous to (4.20). 

Similarly, by a reasoning analogous to that used in Remark 2 of section 4, it is 
possible to prove the corresponding version of inequalities (4.21), (4.22) and (4.23). 

R e m a r k 2. It may happen that the probability law PXY of the decision problem II 
is only partially known in the sense, for instance, that only the channel (35, PY]x, V) 
and the restriction Px of Px on a smaller <r-algebra 35" <= 35 (not necessarily coinciding 
with 36') are known. Let in this case 3PXY be the set of all the probability measures QXY 

on 36 x %) generated (as in (2.1)) by the channel (35, PY]x,
 (P), on the one hand, and 

by all the extensions Px of the probability measure P"x from 36" to 35; on the other 
hand. Then in the place of inequality (5.10) we can use the inequality 

(5.12) r0(J7') - r0(n) £ J{2w0r0(II') sup (l(Q„) - I(Q'XY)]} 
QxYe&XY 

which obviously holds since PXY e 0>XY. 
It is clear that we can write down similar inequalities for all the cases considered 

in Remark 1 and that the set 3PXY in (5.12) may, in the general case, represent all we 
know about the probability law PXY. A necessary and sufficient condition for the 
validity in general of (5.12) is that PXY e SPXY. 

6. SIMULTANEOUS REDUCTION OF THE INPUT AND OUTPUT 
(T-ALGEBRAS 

Let us consider, as in sections 3, 4 and 5, the statistical decision problem U, 
corresponding to the probability space (X x Y, 36 x $ , PXY) and to the weight 
function w, and suppose that simultaneously the input (parameter space) er-algebra 36 
is reduced to a c-algebra 35' c: 35 and the output (sample space) tr-algebra $ is 
reduced to a cr-algebra $ ' c= s$. 



Let P'XY be the restriction on the Cartesian product a-algebra 3c' x $ ' of the 
probability measure PXY. 

Let Px and P'x and PY and P'Y be the corresponding marginal measures on 3c and 3c' 
and ty and $ ' , respectively, and (3c, PY\X, ty) and (36", P'^x, $ ') the corresponding 
channels, i.e. the systems of conditional probability measures corresponding to PXY 

and P'XY, respectively. 
Obviously, (36', P'^x, %)') is a restriction on $ ' of the rounded off channel (36', P'Y\X, 

p) defined by (5.1). 
Let, futher, w' be the rounded off weight function defined by (5.2) as the conditional 

expectation of the weight function w with respect to Px and to the reduced a-
algebra 3c'. 

Define the reduced decision problem II' corresponding to the initial decision 
problem II as follows: measurable parameter space (X, 36'); measurable sample 
space (Y %)'); measurable decision space (D, £>) that of II; decision function space J " 
that of all $ '-measurable decision functions b'; weight function w' the rounded off 
weight function given by (5.2); system of probability measures that represented by 
the channel (3c", PY\X, ?)'); a priori probability measure P'x. 

Theorem 6.1. Let U andW be the decision problems introduced above, the second 
resulting from the first by a simultaneous reduction of the parameter a-algebra 3c 
to 36' <= 36 and of the sample a-algebra %) to ty' <= g). 

Let the weight function w of H be uniformly bounded by w0, i.e. w(x, d) ^ vv0, 
x e X, de D, and suppose that the information l(PXY) is finite. 

Ifr0(n) = inf r(n, b) and r0(ll') = inf r(H', b') are the Bayes risks corresponding 
be® b'e.®' 

to the decision problems U and II', respectively, then 

(6.1) r0(n') - r0(n) ^ V{2w0r0(77') \I(PXY) - 1(P'XY)\} . 

In other words, if the reduced a-algebra 36' x ty' is z-sufficient with respect to 
the system {PXY, Px x PY} of probability measures (see section 2), then 

(6.2) r0(n
r) - r0(n) ^ J[2w0r0(II') £] . 

Proof. Let us define the probability measure PXY by 

(6.3) P°XY(G) = f f'dPx x PY, Ge3c x y , 

where j ' = dP'XYl(dP'x x P'Y), and let PXY be its restriction on 36 x 'P'. 
According to Theorem 4.1, it holds 

(0 I(PXY)=I(P°XY)=I(P'XY) 

and according Theorem 4.2, it holds 

(«) H~POXY(PXY) = I(PXY) ~ l(P'xr) • 



According to the second equality (i) and Theorem 5.1, relation (5.8), where only $ 
is replaced by ty' and 3S by $)', we have 

(6.4) r0(ll') = r0(n
0'), 

where r0(J70') is the Bayes risk of the decision problem PI0' corresponding to the 
Cartesian product probability space (X x Y, 36 x $ , PXY), to the weight function w 
and to the decision function space 38'. 

According to the first equality (i), implying the sufficiency of $ ' with respect to the 
system of conditional probability distributions {P°\x, xe X, [Px = Px]} correspond­
ing to PXY, we deduce that 

(6.5) r0(Ti0') = r0(n
0), 

where r0(n°) is the Bayes risk of the decision problem 77° resulting from II by only 
replacing PXY by PXY. 

By applying Theorem 3.1, second inequality (3.12), where we replace PXY by PXY 

and we take as Tthe "identical" transformation, we obtain 

(6.6) r0(7T°) - r0(n) rg V[2w0r0(/J°) HfoJPirJ] . 

On the base of (ii), (6.4), (6.5) and (6.6) we obtain (6.1). The relation (6.2) is derived 
from (6.1) on the base of the inequality I(PXY) - l(P'XY) _£ e, implied by the definition 
of 8-sufficiency we suppose. Thus, the theorem is proved. 

R e m a r k 1. It is analogous to Remarks 1 and 2 of section 4. 
R e m a r k 2. If PXY is only partially known in the sense, for instance, of Remark 2 

of section 5, and if 0>XY is the smallest set we know of probability measures on 
36 x <$ containing PXY, then we can use in the place of (6.1) the relation 

(6.7) r0(n')-r0(n)^J{2w0r0(n') sup [I(QXY) - l(Q'XY)]} , 

where Q'XY is the restriction of QXY on 36' x $ ' . Relation (6.7) results immediately 
from (6.1) on the base of the assumption that PXY e 3PXY. 

(Received February 3rd, 1965.) 
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Informace, e-suficientnost a problémy redukce dat 

ALBERT PEREZ 

Ve složitých rozhodovacích problémech, typických pro kybernetiku, se zvlášť 

ostře projevuje omezenost různých „kapacit", „paměťí" a „lhůt", jež jsou k disposici 

pro zpracování údajů nejrozmanitější povahy za účelem adekvátního rozhodování. 

Redukční tendence, které z toho nutně vyplývají, mají být zaměřeny k nalezení co 

nejúspornějšího souboru údajů (tzv. souboru podstatných parametrů), který je 

přípustnou redukcí, tj. slučitelný s požadovanou kvalitou rozhodování, ovšem za 

předpokladu, že tato kvalita je vůbec za daných podmínek dosažitelná. 

V rámci Bayesova modelu statistického rozhodování [7], [8] je v tomto článku 

formulováno několik informačněteoretických kritérií, která dovolují posoudit, zda 

prozkoumaná varianta redukce je přípustná, aniž by bylo nutno předem řešit 

odpovídající variantu rozhodovacího problému. Poslední postup by totiž vedl, za 

podmínek, kdy se uvažuje o velkém počtu takových variant, k nepřekonatelným 

obtížím. 



V § 1 (Úvod) je dán stručný přehled o vzniku a vývoji problematiky redukce dat 
z hlediska teorie informace a naznačeny sledované cíle. 

V § 2 (Informace a s-suficientnost) je zaveden klasický model statistického rozho­
dování a definován pojem informace (viz. (2.5)). Dále je pomocí pojmu informace 
zaveden pojem e-suficientnosti (e-postačitelnosti, viz (2.7)) jako přirozené rozšíření 
pojmu postačitelnosti z matematické statistiky. Při postačitelné redukci informace 
se zachová. Při e-postačitelné redukci informace klesá nejvíce o e. Nerovnosti (2.14) 
a (2.15) jsou speciální případy teorému 2.1. 

V § 3 (Odhad změny průměrného rizika způsobené modifikací pravděpodob­
nostního zákona v statistickém rozhodovacím problému) základem je lemma 3.1, 
která přes nerovnosti (3.10) pro zobecněné entropie, dovoluje dokázat teorém 3.1, 
dále systematicky používaný. 

V § 4 (Redukce a-algebry výběrového prostoru) je dán odhad zvýšení Bayesova 
rizika r0(H') — r0(lí) při přechodu z rozhodovacího problému TI k rozhodovacímu 
problému TI' s redukovaným výstupním (výběrovým) prostorem (viz zejména 
teorém 4.3, kde v nerovnostech (4.15) a (4.16) důležitou roli hraje pojem 8-postači-
telnosti, tj. snížení informace, které z redukce vyplývá). 

V § 5 (Redukce a-algebry parametrového prostoru či prostoru hypotéz) roli 
problému 77' hraje jakýsi „zaokrouhlený" rozhodovací problém vyplývající z problé­
mu TI po redukci vstupního (parametrového) prostoru. Teorém 5.2 je analogický 
teorému 4.3. 

V § 6 (Simultánní redukce vstupní a výstupní a-algebry) k odhadu zvýšení Bayeso­
va rizika, vyplývajícího z redukce jak vstupního tak i výstupního prostoru, slouží 
zejména teorém 6.1, analogický teorémům 4.3 a 5.2. Je uvažován také případ neúplné 
znalosti působícího pravděpodobnostního zákona PXY (viz např. (6.7)). 

Ve všech zde uvažovaných případech redukce, informačněteoretický pojem e-posta-
čitelnosti vystupuje jaksi automaticky při hledání nejlepšího (v jistém smyslu) odhadu 
(viz zejména teorém 4.2, vztah (4.9)). 

Dr. Albert Perez, DrSc, Ústav teorie informace a automatizace ČSA V, Vyšehradská 49, Praha 2. 


		webmaster@dml.cz
	2012-06-04T11:32:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




