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KYBERNETIKA CiSLO 4, ROCNIK 1/1965

Information, e-Sufficiency
and Data Reduction Problems

ALBERT PEREZ

Placing us in the frame of the Bayes model of statistical decision we try to estimate in information-
theoretical terms the average (respectively, Bayes) risk change caused by a modification of the
probability law in action. Especially there are given some upper estimates of the Bayes risk
increase on passing from an initial decision problem to a reduced one resulting from the first
by a reduction of the sample space o-algebra as well as of the parameter space g-algebra. The
concept of e-sufficiency, previously introduced by the author as a natural extension of the concept
of sufficiency applied in mathematical statistics, is in a certain sense automatically involved in the
above estimates as the decrease of information implied by the reduction.
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1. INTRODUCTION

The present paper is inscribed in my general attempt to investigate the impact of
information theory in data reduction problems. This line of investigation originates
essentially in my paper [ 1], devoted to the study of statistical decision problems from
the point of view of information theory, where the idea of maximal reduction of the
decision space as well as of the information source space, reduction compatible of
course with a given quality of decision or transmission, plays a fundamental role
throughout the paper.
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A further development of these ideas was given in paper [2] by extending, namely,
the application of the reduction procedure also to the sample or output signal space,
We arrived, thus, at a new concept, the concept of e-sufficiency, representing a natural
generalization of the notion of sufficiency and of sufficient statistics so fundamental
in mathematical statistics. A general exposé of my conceptual model concerning data
reduction as developed in papers [1] and [2] is contained in papers [3, 4, 5].

From the intuitive point of view it is clear that at the base of every data reduction
problem lies (in an explicit or implicit manner) some decision problem or some class
of such problems. The tendency to reduce the data to be processed in decision
making arises from the fact that the different “capacities”, “memories” and “delays”
at our disposal for data processing are always limited.

Obviously, every reduction of data, provided that the data are always exploited in
the best way, is directed against the quality of the corresponding decision procedure.
Thus, every reduction of data to be admissible must be compatible with the possibility
to attain the required or prescribed quality of decision.

When the data at our disposal are insufficient for obtaining the required decision
quality in spite of the optimization of the decision procedure, there arises an opposite
tendency to enlarge the sphere of data (constitution). In real decision processes both
the procedures of constitution and reduction are applied in an alternate sequence in
order to obtain the required quality of decision on the base .of the most economic
set of data. .

Just the same requirements and the same limitations led to the development of
information theory, what is not always sufficiently appreciated in spite of the excellent
example of communication theory.

Theorems of Shannon’s type on the transmissibility of an information source
through a communication channel represent essentially particular criteria on the
possibilities of decision, i.e. on the quality of decision or transmission obtainable in
the decision problem under consideration, not requiring of course the prior solution
of the problem. What we expect at the first place from information theory is, namely,
to formulate such criteria on the possibilities of decision which would apply to a more
and more large class of types of decision problems.

As regards in particular data reduction problems, the ideal would be to be able to
establish the admissibility or inadmissibility of a given version of reduction by apply-
ing on the respective decision problem the adequate criteria not requiring the prior
solution of the problem. Otherwise the procedures of constitution and reduction
could soon become too complicated and difficult to dominate if only because of the
too great number of variants which must be usually explored.

For the present, except of some few cases, namely if the fundamental equipartition
property or information stability takes place (see, for instance, [6]), the existence of
such criteria is rather a postulate than the true state of affairs. However, I think that
information theory is destined in its development to play a growing role in the indicat-
ed direction.



In the present paper some simple criteria of admissibility shall be presented con-
cerning reductions of the sample space g-algebra as well as of the parameter space
a-algebra. We are placed in the frame of the classical model of statistical decision as
considered in the theory of statistical decision functions. The existence of a probability
law on the Cartesian product of the two spaces above, governing the decision problem
under consideration, is supposed. However, the corresponding a priori probability
distribution may be, for instance, known only on a reduced parameter space ¢-alge-
bra while the corresponding system of probability distributions on the sample space
is supposed to be known. Possible deviations of the probability law and of the
weight function from the supposed ones could also be taken in account so that it
would be possible at the same time to derive criteria concerning the stability of the
applied decision procedures, but in this paper we shall not insist on this question.

It is remarkable that the concept of e-sufficiency intervenes in the formulation of
these criteria automatically and plays a fundamental role.

2. INFORMATION AND &SUFFICIENCY

Let us consider the classical model of statistical decision introduced in the theory
of statistical decision functions [7, 8].

Let, thus, (X, 33) be the measurable parameter space, where ¥ is the input or
parameter space d-algebra, i.e. a g-algebra of subsets of the set X of the possible
values, in general abstract, of the parameter.

Let, similarly, (Y, {l)) be the measurable output or sample space.

Let, further, {Py),, x € X} be the class we consider of the probability distributions
on the measurable sample space (¥, 9). As ordinary, it will be supposed that for
every set F € ) the function Py (F) of x € X is ¥-mecasurable. In the terminology of
information theory we then say that the observation channel (¥, Py., ) is given,
through which the input space (X, %) is observed by directly observing the output
space Y at the precision or detail characterized by the output or sample space
o-algebra 9.

Besides the obscrvation channel (¥, Py, D), a probability distribution Py on the
measurable parameter space will be supposed to be in action, representing the so-
called a priori probability distribution in the terminology of mathematical statistics,
or the information source in the terminology of information theory, the latter being,
of course, applied directly, i.e. without coding (other than the identical one) on the
input space (X, %) of the channel.

The information source together with the observation channel generate on the
Cartesian product (X x Y, ¥ x 9) of the measurable input and output spaces
a double source, ie. a joint probability distribution Pyy, defined as the unique
extension on all the sets of the Cartesian product o-algebra ¥ x %) of the set function

(2.1) PulE x P) :JP“,(F) dPy(x), Ec¥, FeD.
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In the sequel we shall suppose that always one such probability distribution is in
action but not necessarily completely known.

Let, finally, (D, D) be the measurable decision space of the decision problem
under consideration and w(x, d), x€ X, de D, the weight or loss function, ie.
a ¥ x D—measurable nonnegative function serving as a measure of the “loss”
implied by taking a decision d while x is the realized value of the parameter at the
input. By decision function or decision procedure we understand a function b(y)
defined on the sample space Y and taking its values in the decision space D which
is P-measurable and, eventually, satisfies some further conditions. The set of all
possible decision functions b will be denoted by 2.

By risk corresponding to the parameter value x € X and to the decision procedure
b e # we understand the average value of the loss corresponding to them, i.e. the
function

(2.2) R(x, b) = E.{w(x, b(»))}

where by E,{...} we denote the expectation of the quantity in brackets taken with
respect to the probability distribution Py,,.

In the sequel we shall use the Bayes principle of ordering of the decision procedures,
i.e. that based on the concept of average risk

@3) H(Pyys b) = J R(x, b) dPy(x)

corresponding to the decision function b and to the a priori probability distribu-
tion Py.

By optimal or Bayes decision procedure (if exists) we understand a decision
function b, € # which minimizes the average risk. By Bayes risk we understand the
quantity

(24) ro(Pxy) = inf r(Pxy, b) .
beB

Definition of information: Let (X x ¥, £ x 9, Pyy) be a probability space of
the Cartesian product type and let Py and Py be the marginal distributions induced
by Pyy on the measurable spaces (X, %) and (Y, D), respectively.

Then the corresponding information I(Pxy) is defined as follows:

(2:5) I(Pyy) = Jlogf(x, ¥) dPyy(x, ¥) if Pyy < Py x Py

I(Pxy) = o if Pyy € Py x Py

where f(x, ¥) is the Radon-Nikodym density of the joint probability measure Pyy
with respect to the product measure Py x Py.



In the sequel we shall suppose that the information is finite so that Pyy will be
absolutely continuous with respect to Py x Py, i.e. Pyy € Py x Py. Hence the
information will be expressed by the first formula (2.5). Moreover, the absolute con-
tinuity above implies the existence of a regular version of the conditional probability
Py, ie. of the channel (%, Py,,, D) corresponding to Py (see [9], p. 198).

Let ¥ < Xand 9’ < 9 be sub- g-algebras of the g-algebras X and 9, respectively,
and let Pyy be the restriction of Py, on X' x %), Py and Py the corresponding
marginal distributions and f’(x, y) the density of Py, with respect to Py x Pj.

For the corresponding information I(Pjy) we have [9]

(2.6) I(P&y) £ I(Pyy),

the sign of equality taking place if, and only if, the reduced o-algebra ¥’ x 9’ is
sufficient (in the sense of mathematical statistics) with respect to the system of
measures {Pyy, Px x Py}, i.e. if, and only if, there exists a version of the density
S'(x, y) which is equal to f(x, y) or, what is the same, if, and only if, f(x, y) is not
only ¥ x Y-measurable but also ¥’ x ¥’-measurable.
* In the special case where only 9 is reduced to 9)’, for example, this condition for
the equality is equivalent to the condition of sufficiency of 9’ with respect to the
system {Py,,, X € X, [Px]} of conditional probability distributions of the observation
channel (%, Py)x ) corresponding to Pyy.* It is well known that the reduction of
the initial sample o-algebra %) to a sufficient sub-c-algebra )’ has no influence on the
quality of decision obtainable. In particular, the Bayes risk r; corresponding to ',
i.e. taken with respect to all the decision procedures which are U)’-measurable, is in
the case of sufficiency equal to the Bayes risk r,, obtained before reduction.

The concept of e-sufficiency. We shall say that the reduced o-algebra ¥’ x %),
where ¥’ < % and 9’ < ), is e-sufficient (¢ = 0) with respect to the system of mea-
sures {Pxy, Py X Py} if

(2-7) I(PXY) - I(P),(Y) e,

where as before Pyy is the measure induced by Pyy on £’ x 9’ and I(Pxy) and I(Pyy)
are the informations introduced above (see, in particular, (2.6)).

This definition of &-sufficiency, introduced first in [2], is a natural generalization
of the concept of sufficiency introduced in mathematical statistics, to which it reduces
for ¢ = 0. Clearly, it would be possible in defining the concept of e-sufficiency to part
from other definitions of information, namely, the f—informations of Rényi and
Csiszdr [12], which also have the property to be conserved only with respect to
sufficient transformations and other analogous properties as the information defined
by (2.5). However, among them only the latter has the well-known fundamental
properties in information theory related to the additivity properties of the informa-

* By [Px] we understand as usually: with the possible exception of a measurable set of
measure Py equal to zero.
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tion density log f(x, y) (see (2.5)) corresponding to it. In any case it would be intere-
sting to try to improve the different criteria of admissibility of reduction by using the
other definitions of information.

Let us define on the o-algebra % x ) the probability measure P2, by

(2.8) PYL(G) =ff’ dPy x Py, Ge¥ x D,
G

where f” is the density of Py, with respect to Py x Pj.
The probability measure Pyy is absolutely continuous with respect to E‘zy, defined
by (2.8), i.e.

(2.9) Pyy < P3y (2 x D).

Indeed, let B be the following set: B = {(x, y) : f(x, y) = 0}. Then from (2.8) we
obtain
P}?Y(B) = PXY(B) =0,

since on %’ x 9’ the two measures Pyy and P2, reduce both to Pyyand Be ' x 9.
If now for some set E€ ¥ x ¥ we have Py,(E) > 0, then

Pyy(E) = Pxy(E — B) + Pxy(E n B) = Py,(E — B) > 0,
so that, according to Pyy < Py X Py, it also holds

Py x P{E —B) >0,
But then

PYY(E) = PY(E — B) = '[ f'dPy x Py >0
E-B

and thus (2.9) is proved. The corresponding density is given by

dPyy _ f
aPy, s

B

(2.10)
where f is the density of Pyy with respect to Py x Py and f’ that of Py, with respect
to Py X Py.

For the generalized entropy Hpo,,(Pxy) of Pyy with respect to Py, defined as

in [9] but with inversed sign, i.e.

dP
@.11) Hyopo(Pry) = f tog S ap,

XY

the following relation takes place according to (2.10)

(212)  Hpop(Pxy) = '[ Iog}f—/dny = I(Pyy) — I(PRy) = I(Pxy) — U(Pyy)



since, in particular, it holds 303
(2'13) I(ng) = I(P;n') .
In the case of essufficiency (see (2.7)) the following two inequalities take place

for the total variation of the pair of probability measures Pyy and F;},,

(2.14) Jf‘[f ~ f|dPy x Py £ 26 + I'\/e,

(2.15) . ﬁf —f]dPx x Py £ 26 + ¢

where I and ¢ are two positive universal constants. (I is the constant introduced
by Pinsker in [10]; T and ¢ can be taken equal to 10 and 2e™! respectively. We use
natural logarithms in calculating informations according to (2.5)).

These inequalities, proved first in [2], may be derived directly from the following
more general entropy version

Theorem 2.1. Let w and w be two probability measures on a measurable space
(Z, 3) and let & < w, the corresponding density being f.

If 3’ < 3 is a sub-o-algebra of the o-algebra 3 and f' is the density of o' with
respect to w', where ' and w' are the restrictions on 3’ of w and w, respectively,
then the following inequalities take place (natural logarithms)

(2.16) ﬁf ~fdw < 2flog Lo+ F/[flogidw],
S f
(2.17) ﬁf —fdw = 2jlog§dw +c,

where I and ¢ are the positive constants introduced above. By defining the probabi-
lity measure & on 3 as in (2.8), i.e. by

(2.18) @(G):J‘f’dw, Ge3,
¢
we have & < @ with dw/d® = f[f" and the following relation takes place
(2.19) H,(0) - H (o) = flogfdw - f]ogf' do' = Jvlog%dw = Hy(w).
Proof. According to [9], pp. 194195, we have in the case of natural logarithms

(2200  Hy{w) = Jlog%dw = J.A(f —f)dw + K =1-d4) + K,
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where

(2.21) o { K=%L<%~ 1)zdh_“~"

Here & is the probability measure defined by (2.18) and h(z) is a real function on Z
with values lying between f(z)/f’(z) and 1 for z € 4.
Similarly, according to [9], relation (5.9"), we obtain

(2.22) Llf — f'|dw gj

Iogilldco+K,
f

so that, taking account of (2.20), we have

(2.23) f[f—f’[dw:f[f—f’]dw+f frdw <
A Z-4A
§jlogj4, do + K + 1 —(T)(A)=J‘10g% dw:—l—J]og%dw‘

By applyiné the Lemma 3.1 of [6], based on the inequality (2.4.11) proved by
Pinsker in [10], we can write

(2.24) ﬂlog% do £ log—ff—ldw + T N/(jlog% dw) .
and
(2.25) ﬁlog% do < ]og% do + ¢,

where I" and ¢ are the constants introduced above.
On the base of (2.24) we deduce from (2.23) that the total variation of the pair of
measures @ and @ satisfies the inequality

.flf — 7 dw =2 [log fi do + T «/ ( j log fidw) = Hy(w) + I J(Ho(w))
(2.26)

which coincides with (2.16).
Similarly, on the base of (2.25) we deduce from (2.23) that the total variation above
satisfies the inequality

(2.27) ﬁf —f| dws Z[IOg%da) + ¢ =2H (w) + ¢,

which coincides with (2.17) and, thus, the theorem is proved.




Note. The estimates of the total variation of w and @ given by Theorem 2.1 are
a little better than the corresponding estimates we could derive by applying the
Pinsker’s inequality (2.3.14) in [10].

It would be possible to define the concept of e-sufficiency of 3’ with respect to the
system of measures {w, w} by the relation

(2.28) H (o) — H,{0') = Hy(w) S &,

which coincides with (2.7) in the special case (Z,3) = (X x ¥, £ x 9), 3’ =
=% x Y, = Pyy, w= Py x Py. Itis, of course, well known [9] and it results
immediately from (2.19) that

(2.29) H, (0} £ H,(w),

the sign of equality taking place if, and only if, the reduced g-algebra 3’ is sufficient
with respect to the system of measures {@, w}, as in the case of (2.6).

Obviously, (2.12) is a special case of (2. 19) (2.14) is a special case of (2.16) and
(2.15) is a special case of (2.17).

As we shall see in the next sections, the concept of e-sufficiency of a reduced
g-algebra as defined in information terms by (2.7) or, more generally, in generalized
entropy terms by (2.28), intervenes in a natural manner in the estimations of the
Bayes risk increase caused by the corresponding reduction. In the special case of
sufficiency (¢ = 0) this increase is zero.

3. ESTIMATION OF AVERAGE RISK CHANGE CAUSED BY A MODI-
FICATION OF THE PROBABILITY LAW IN A STATISTICAL DECISION
PROBLEM

Let us consider, as in section 2, a classical statistical decision problem IT with
input (parameter) measurable space (X, %), output (sample) measurable space
(Y, ), decision measurable space (D, D), probability law Py, on the Cartesian
product measurable space (X x ¥, £ x 9)) of the input and output, and weight
(loss) function w(x, d), x€ X, deD. As said in section 2, the weight function is
supposed to be nonnegative and £ x D-measurable.

Let, further, b be a decision function either of the pure type, i.c. a measurable
transformation of the sample space (Y, %)) to the decision space (D, D), or of the
mixed type, i.c. a system of probability measures {Pp,,, y € Y} on (D, D) such that,
for every set E€®, Pp,(E) is an 9-measurable function of y € Y. In other words,
a decision function of the mixed type (randomized decision procedure) is represented
by a channel (9, Pp),, D) (see section 2). In this case, to every sample value ye Y
there corresponds in general not a single decision d € D but a probability distribu-
tion Py, on (D, D), so that the final choice of the decision d is made randomly ac-
cording to Ppy,. In the sequel, the set of all possible decision functions b will be denot-
ed by 4.
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As a consequence of the application of the decision function b there is induced
by Pyy on the Cartesian product (X x D, X x D) a probability measure which will
be denoted by Pyyb~*. Thus, the average risk r(II, b), related to the decision
problem IT and to the decision function or decision procedure b, is given by

(3.1) W, b) = .[ w(x, d) dPyyb? .

XxD

Let, now, [T be a new decision problem differing from the above decision problem IT
only in what concerns the probability law in action: in the place of Pyy we have
now Pyy on £ x 9. By applying to [T the decision function § there is induced on
(X x Y, ¥ x D) by Pyy a probability measure Pyy5~! and the corresponding
average risk is given by :

(3.2) i, B) = f w(x, d) dByyb "

XxD -

In the present section we give an upper estimate of the average risk change on
passing from the decision problem IT to the decision problem [T or conversely, namely,
under different conditions concerning the choice of the decision functions b and b
applied in the two cases. We can, for instance, take 5 = b (decision function stability
question) or, more generally, b = bT, where T is a measurable one-to-one transforma-
tion of (Y, V) onto (¥, ¥) conserving, thus, the information. We can also consider
the Bayes risk change on passing from IT to f].

In face of such a task the direct method would be to solve in each case the cor-
responding decision problem. However, this method, if realizable at all, is not always
economic to apply, so that every estimation of the decision possibilities (i.e. of the
decision quality attainable) before beginning to solve a decision problem is always
desirable.

Lemma 3.1. For the average risks (3.1) and (3.2) the following inequalities take
place

(33) = (W dPyyb™) /[2Hp, - (Prrb )] <
< o(f1, B) — r(IT, b) £ /(Jw? dPyy™ ") /[2H3,3-(Pxyb™ "]

where by H,(w) we denote the generalized entropy of the probability measure ®
with respect to the probability measure w, defined as in (2.11) in the case w < w
and as + © otherwise, i.e.

(3.4) H,(0) = flogiﬂdw for m<w,
W

H (o) =« for w&w.



Proof. Let us prove the second inequality (3.3). If the generalized entropy
Hy, 5-(Pxyb™") is infinite this inequality obviously holds. Let, thus, suppose that
the generalized entropy above is finite. Then necessarily we have [13] Pyyb ™' <
< ?Xyg_l, so that, g being the corresponding density, we can write

(3:5) Hii-(Pyyb™t) = jg log g dPyh ™t =
— 2 ~ ~
=1 = Pyyb () + L ud}’xyh",
2], h
where, similarly as in (2.20) and (2.21), h(x, d) takes its values in the interval between 1
and g(x, d) provided that (x, d)e 4 with 4 = {(x, d) : g(x, d) > 0}.

Further, by taking B = {(x,d):1 — g(x,d) >0} and A'=X x D — 4, we
obtain on the base of (3.5) successively

(36) W, B) - (11, b) = f w(x, d) d(Peyb ™! — Pyb™?)

XxD

< j w(x, d)[1 — g(x, d)] dPxyb 7 i(x, d) <

() J-or)-
= Y et ) JJ,fo = oremt o] -0 ] <
) [ )
< J( j W Py ) 25 (P )]

where h(x, d) is the positive function intervening in (3.5) and, thus, it does not takes
values greater than 1 on the set 4 N B since for (x,d)€ B we have g(x, d) > 1.
Hence, in particular, the third inequality in (3.6) is justified on account of the
additional fact that by denoting by A’ the complement of the set A we have

%

3.7 j (1 — g)?dPyyb? =f dPyyb™t = Py b (4.
A’ . A'nB

‘nB
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Thus, the second inequality (3.3) is proved and in a completely similar manner it is
possible to prove the first one, so that the lemma is proved.

Lemna 3.2. If the decision functions b and b applied in the decision problems IT
and [T are related by the equality

(3.8) : b =»T,

where T is a measurable one-to-one transformation of (Y, ) onto (Y, V), then for
the corresponding average risks (3.1) and (3.2) the following inequalities take
place

(3.9) - J (fwz dPXyb‘l) VI2Hp (P T™Y) < #(I1, bT)] —
— {1, b) 2 J (le dT’X,T"b“> V2Hpyr-(Pxy)] -

Proof. In general, it holds (see [9] and [12]) that

(3.10) Hpypro1p-(Pxyb™!) £ Hpyyr-(Pxy) >
HP”»-'(nyTvlb_l) = Hny(PxYT~1) .

By applying on (3.3) the inequalities (3.10) we obtain the inequalities (3.9) and the

lemma is, thus, proved.

Theorem 3.1. Let the weight function w(x, d) be uniformly bounded, i.e. w(x, d) <
Swo< 0, xeX,deD.

If the decision functions b and b applied in the decision problems IT and T are
related by (3.8), i.e. if b = bT, where T is a measurable one-to-one transformation
of (Y, D) onto (Y, D), then for the corresponding average risks (3.1) and (3.2) the
following inequalities take place

(3.11) — /[2wer(IT, b) Hp, (PryT™H)] < (I, bT) —
— /{11, b) < /[2wer(f1, BT) Hy,r-:(Pxy)] -

If ro(IT) = li:g w1, b} and r(If) = gﬂf ({1, b) are the Bayes risks corresponding

to the decision problems IT and II, respectively, then it holds
(3.12) = /[2woroIT) int Hp, (PxyT™1)] S rofT1) = rof1T) <
T

= \/[Zworo(ﬁ) i;‘fHnyT-‘(PXY)] :



Proof. Since by hypothesis w(x, d) < w,, x € X, d € D, it follows that

(3.13) f w2 dPyyb=t < worlll, b),
vaz dPyy T~ 71 < wor(fl, bT) .

By applying on (3.9) of Lemma 3.2 the inequalities (3.13) we immediately deduce
the inequalities (3.11).

Let us now prove the second inequality (3.12). From the second inequality (3.11)
it follows that for every decision function b & % for which ({1, bT) > 0 it holds

{Tl, bT) — r(I1, b)
3.14 A7) R T < J2Hs, ped(Pyy) ol -
( ) \//[r(IIs bT)] V [ PxyT ‘( XY) 0]
This is, in particular, the case if rg(ﬁ) > 0. If, on the contrary, ro(f) = 0, then the
second inequality (3.12) is trivially fulfilled.

Let us, thus, assume that ro(fl) > 0. Then it holds

ro(Il) — (11, b) < #(T1, bT) — (11, b)

VIl T I bT)]

for every b € 4, since the function f(x) = (x — a)/\/x (a 2 0, x > 0) is an increas-
ing function of x. Indeed,

(3.15)

(3.16) 1= (" - “) _VEXEA g o xso0.
X

Jn
Combining the inequalities (3.14) and (3.15) we obtain

ro(Il) — #{(I1, b)

V()]

for every decision function b € # and for every transformation T of the above type.
The second inequality (3.12) is an immediate consequence of (3.17). In a similar
manner it is possible to prove the first inequality (3.12) and this completes the
proof of the theorem.

Theorem 3.1, especially by taking in (3.11) the transformation T equal to the
“identical” transformation so that b = bT = b, may be applied to problems of
stability or sensibility of a decision procedure with respect to different deviations of
the probability law from the supposed one. In the sequel we shall apply this theorem
and, in particular, relation (3.12) in data reduction problems.

(3.17) < \/[ZWOHF“T-!(PXY)]
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4. REDUCTION OF THE OUTPUT (SAMPLE SPACE) 0-ALGEBRA

Let us consider, as in section 3, the statistical decision problem II, corresponding
to the probability space (X x Y, ¥ x 9, Pyy), and suppose that the output (sample
space) o-algebra 9 is reduced to a o-algebra %)’ = 9). Let P}y be the restriction on the
Cartesian product ¢-algebra ¥ x 9’ of the probability measure Pyy and consider the
statistical decision problem I1’ resulting from IT and corresponding to the reduced
probability space (X x Y, ¥ x 9, Pyy).

(D, D) being the measurable decision space (the same for both the problems) and
w(x, d), xe X, d e D, being the weight function (the same for both the problems)
let (11, b) be the average risk (defined as in (3.1)) corresponding to I and to a decision
function b € 4, where 4 is the set of all possible 9-measurable decision functions
and let (I, b") be the average risk corresponding to II and to a decision function
b’ € #', where 4’ is the set of all possible 9)'-measurable decision functions.

Let, further, ry(JT) = mf (11, b) be the Bayes risk corresponding to the problem IT

and ro(Il') = mf r(H’ b) that corresponding to the problem I1°.

Our task is to give an upper estimate of the Bayes risk change ro(11') — ro(Il)
resulting from the reduction of the sample o-algebra 9 to 9’ < 9.

It is, however, impossible to apply directly in the present case the inequalities
(3.12) of Theorem 3.1, for instance, since the probability measure Py is defined on
the smaller g-algebra £ x %)’ and not on the initial g-algebra ¥ x %), as do Pyy
and Pyy.

It is, thus, in the general case necessary to search for such an extension ﬁxy of the
measure Pyy to £ x ) that the reduced o-algebra 9’ is sufficient with respect to the
system of conditional probability distributions {Py,. x € X, [Py]} induced by Pyy
on ) which is X-measurable in the sense that, for every set E€ ), the function
Py (E) of x € X is X-measurable. In other words, Pyy must be such that on the
reduced o-algebra ¥ x %’ it holds Pyy = ny and that the latter is sufﬁczent (see
section 2) with respect to the system {ny, PX X PY} of measures, where PX Py
and Py are the marginal distributions induced by Pyy on ¥ and 9, respectively.

As we have seen before in section 2, this sufficiency takes place if, and only if, the
information I(Pyy) corresponding to the probability space (X x Y, % x D, Pyy) is
equal to the information I(Pyy) = I(Pjy), corresponding to the reduced probability
space (X x Y, & x 9, Pyy) = (X x ¥, ¥ x U, Py), ie.

(4-1) I@XY) = I(E’H) = I(P},(Y) .

The condition of sufficiency above or, equivalently, the condition of conservation
of information (4.1) is necessary (at least in some cases; see [8], [11]), and sufficient
for the conservation of the Bayes risk on passing from the decision problem I1’ to the
decision problem [T resulting from IT’ by extending 9’ to P and Pjy to Pyy, so that in



particular also &' is extended to 4, i. e. for the validity of the equality
(4~2) ro(ﬁ) = ro(ﬂ') .

Provided that I(Pyy) < o, the general form of an extension Pryof Piyto ¥ x 9
satisfying (4.1) is given by the following theorem.

Theorem 4.1. Let (X x Y, ¥ x 9, w) be a probability space of the Cartesian
product type and let o' be the restriction of w to the sub-c-algebra X' x Y', where
¥ cXand D <.

Let, further, I(w’) be the information corresponding to the reduced probability
space (X x Y, ' x ', ') and suppose that I(w') < o0, so that @' < ' X V',
where y' and v’ are the marginal measures induced by o' on X" and Y’ respectively.
. Then the general form of every extension & of @' from X' x 9 to X x 9
conserving the information, i.e. for which it holds I(®) = I(w’), is given by

(4.3) m®=ffdﬁxv,GeXxw,

where ' = dw'/(dy’ x ') is the Radon-Nikodym density of ' with respect to the
product measure p' x v' and fi and ¥ are arbitrary extensions from %' to X of the
measure p' and from V)’ to Y of the measure v', respectively.

Proof. The conditions I(@) = I(w’) and I(w’) < oo imply that also I{@) < oo and,
consequently (see section 2), & < @ x 7. Let f(x, y), x € X, y € ¥, be the correspond-
ing density.

The condition I(®) = I(w') further implies that the density f(x, y) is ¥ x '~
measurable (see section 2) and, thus, there exists such a version of f(x, y) which
satisfies the equality

(4.4) fx,»)=f(x,y), xeX, ye¥Y,

due to the fact that, by hypothesis, the restriction of & on £’ x 9’ coincides with ',

From (4.4) it immediately follows that the general form of @ is given by (4.3),
where f’ is the density of @’ with respect to g x v' and ji and ¥ are arbitrary exten-
sions of u’ and v’ on ¥ and 9), respectively.

Indeed, if @ is of the form (4.3), then its restriction on £’ x 9’ coincides with o’
and, due to the ¥ x 9)'-measurability of the density d@/(dg x ¥) = f = f'[&],its
information (&) is equal to I(®") = I(w') and, thus, (4.1) is satisfied. This completes
the proof of the theorem.

Lemma 4.1. Conserving the notations and definitions of Theorem 4.1, let us suppose
that I(w) < o, from which it follows that also I(w') < co.

Then the relation of absolute continuity

(4.5) : <@
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holds if, and only if,
(4.6) u<i oand v<¥,

where p and v are the marginals of w on ¥ and %), respectively, and & is given
by (4.3).
The density of w with respect to & is then given by

(@7

do_ do | do’
de dix ¥/ dg' x v

Proof. Let, as in proving (2.9), B be the set {(x, y) : f'(x, ) = 0}. Then from (4.3)
we obtain
@(B) = o(B) =0

since on £’ x )’ the two measures w and & reduce both to w’ and Be £’ x ', If
now for some set E€ ¥ x 9 we have w(E) > 0, then

w(E)=a)(E—B)+w(EmB)=w(E—B)>6,

so that, according to the relation @ < pu x v < ji x ¥, following from I{w) < oo and
from our hypothesis (4.6), it also holds

A% ¥E~B)>0.
But then

@{E)=®(E%B)=f fldixv>0
E-B

and, thus, (4.5) is proved, the corresponding density being given by (4.7). On the
other hand, the necessity of the condition (4.6) follows directly from the fact that
(4.5) implies (4.6). Thus, the lemma is proved.

Theorem 4.2. Conserving the notations and definitions of Theorem 4.1, let us
suppose that I(w) < oo, from which it follows that also I{w") < o0.

Let us denote by &, that probability measure on ¥ x ) which results from (4.3)
by taking fi = p and ¥ = v, where p and v are the marginals of @ on ¥ and 9,
respectively, i.e.

(4.8) a;,,(c):J-f'duxu GeXx9.
G

Let us further denote by © the set of all the probability measures & on £ x 9
of the form (4.3), i.e. the set of all the probability measures on ¥ x ) having
a restriction on X' x ) equal to ' and conserving the information I{(w') of w':
(&) = (&) = (o).

Then for the generalized entropy Hy (0} of w with respect to &, (see definition
(3.4)) the following relation takes place



(4.9) H(6) = I(w) — I(@') = min Hy(w) . . 313
aeh
Proof. For every pair of extensions f, ¥ of ¢, v', through which is defined by (4.3)
some @€ 3 having 7 and § as marginals, there are two possibilities: either (4.6)
holds, i.e. p < ji and v < ¥, or not. According to Lemma 4.1, in the first case we
have w < @ with
do dw / do’

4.10 —_—= —
(4.10) . de  di x ¥/ du x v

and in the second case we have @ € @, hence Hy(w) = oo,
Let us calculate the generalized entropy Hy(w) in the first case. Besides (4.10) it
holds

do  do dpxv_ de dpdv

(4.11)

dix 7 duxvdix¥ duxvdgds’

the existence of the densities do/(dp x v) and de'f(dp’ x V') being assured on the
base of the assumption I{w) < co implying I(®") < co.
From (4.10) and (4.11) we derive

@12)  Hyo) = (10822 dw = [1og—22 do = [10g—32" —dw =
' dé i x 7 XV

= |log ~d£v do + flogd—ﬂdy + logﬂ dv — [log
du x v . da dy J

=I(w) — I(&") + Hyip) + H;(v) = o) — I(0') = Hyfw).

Thus, (4.9) holds and the theorem is proved.

Let us now return to our question concerning the general form of an extension T’xy
of Pyy to £ x 9 satisfying the relation (4.1) and thus assuring the equality (4.2). The
following corollary of Theorems 4.1 and 4.2 gives an answer not only to this question
but also to the question: what is the “better”” among these extensions from the point
of view of applying inequalities (3.12) of Theorem 3.1 in estimating the Bayes risk
change ro(I1") — ro(IT) = ro(IT) — ro(IT) resulting from the reduction of the sample
a-algebra P to Y’ = Y.

Corollary 4.1. Conserving the notations and definitions used for the formulation
of the main problem of the present section, the general form of an extension Pyy
of Pyy to X x 9 satisfying the relation (4.1), i.e. I(Pyy) = I(?,’,y) = I(Pyy), is
given by

(4.13) Pyi(G) = J' fdPy x B,, Gexx9,
G
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where f’ = dPyy/(dPy x Pi,) is the Radon-Nikodym density of Pyy with respect to
the product measure Py x Py and Py is an arbitrary extension from 9’ to %) of the
measure Py. The existence of the density f' is assured by the assumption that

I(Pyy) < 0.
If, moreover, I(Pyy) < oo, then
(419 min Hny(PXY) = Hpo,(Pxy) = I(Pxy) — I(Pxy)

nye9

where @ is the set of all the probability measures ny of the type (4.13) and P,
is that special Pyy which results form (4 13) by taking Py = Py.

We are now in a position to formulate the main result of this section.

Theorem 4.3. Let IT and IT' be the two decision problems formulated at the begin-
ning of the present section, the second resulting from the first by a reduction of the
sample c-algebra P to Y < Y.

Let the weight function w be uniformly bounded by w,, i.e. w(x, d) < wy < 00,
x € X, d e D, and suppose that the information I(ny) is finite.

If ro(IT) and ro(IT') are the Bayes risks corresponding to the decision problemsIT
and IT', respectively, then

(4.15) 0 < i) ~ roll) < \/{2“’0"0(17’) [I(PXY) = 1Py} -

In other words, if the reduced o-algebra %)’ is e-sufficient with respect to the
system {Py,, x € X, [Px]} of conditional probability distributions, corresponding
to Py (see section 2), then

(4.16) 0 < ro(IT') ~ ro{IT) < /[2woe ro(IT')] .

Proof. Defining the probability measure P$, as in Corollary 4.1, we obtain that
simultaneously it holds

(i) I(P3y) = I(Pky) »
(ii) T () = i), (0 =0T for Pyy = BY),
(iii) H;D;(Y(PXY) = I(PXY) - I(P),(Y) s

according to Corollary 4.1, since by hypothesis I(Pxy) < 0. As we have seen (see
relations (4.1) and (4.2)), the equality (ii) is an immediate consequence of equality (i).

The relation (4.15) follows immediately from (ii), (iii) and Theorem 3.1, second
inequality (3.12), where we replace Pyy by P2, and we take as T the “identical”
transformation.

The relation (4.16) is derived from (4.15) on the base of the inequality I(Pyy) —
— I(P}y) < &, implied by the definition of e-sufficiency we suppose. Thus, the theorem
is proved.



Remark 1. If, instead of the assumption that the weight function w is uniformly
bounded, we suppose that

(4.17) fwz dOxp, < k l;[w dQXD:r

for every probability measure Qxp on ¥ x D of the type Qxp = Pxyb™* resp.
Pyyb™!, where k is a given constant (obviously, k 2 1), then from Lemma 3.2 it
would be possible to derive, by following a similar procedure as that used in proving
Theorem 3.1, the inequalities

(4.18) - ro(IT) /[ 2k inf Hp [Py T™N] < ro(fl) — ro(II) <

< ro(iT) /[2k inf Hz, - o(Pxy)] »
T

instead of (3.12). Indeed, the role of (3.13) is here played by (4.17) and the role of the
function f(x) by the function g(x) = (x — a)/x(a 2 0, x > 0), which is also an
increasing function of x since, as in the case of (3.16), we have

(4.19) o) = 5 ( - ) -2

xu X

0.

v

In the place of Theorem 4.3, relation (4.15), it would be possible then to derive
from (4.18) the relation

(420) 0 < ro(IT') = ro(IT) = ro(IT’) / (2K[I(Pry) = I(P5x)]} -

Remark 2. In [2] we have used the inequalities (2.14) and (2.15), derived as
a special case of Theorem 2.1, for proving the following inequalities (AI = (Pyy) —

- I(PJI{Y))
(4.21) {

under the assumption that the information I(Pyy) is finite and that the weight
function w is uniformly bounded by wy.

The proof of (4.21) is made as that of Theorem 4.3. Namely in the place of Pyy we
use its extension Py, on ¥ x 9 for which (i), (ii) and (iii) hold. Based on inequalities
(2.16) and (2.17) of Theorem 2.1 and further on (3.10) we then successively obtain,
for every decision function b € 4,

roI') — ro(IT) < wo . (2A + I\/AI)
ro(ll') — ro(IT) £ wo . (2AI + )

(@22)  |HJ0b) - (I b)| < [ w(x, d) d[Pb " — Pyyb~!| <

JXXD

< Wofdlﬁgyb~1 - erb_ll =

£ wo(2Hpo, - Pxyb ™) + r\/[Hf’Oxyh"‘(PXYb—l)]) =
< wo(2H5o,(Pyy) + r\/[HI"ﬂxy(PXY)]) = wo(2AI + F\//A[)
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and, similarly,

(4.23) [F(1°, b) — +{IT, b)| < wo(2AI + ¢).

The inequalities (4.21) follow directly from (4.22) and (4.23), respectively.
Obviously, these estimates are less satisfactory than that given by Theorem 4.3, since
in particular I" = 10 for natural logarithms we use throughout the paper.

5. REDUCTION OF THE INPUT (PARAMETER SPACE) c-ALGEBRA

Let us consider, as in sections 3 and 4, the statistical decision problem I1, cor-
responding to the probability space (X x ¥, € x 9), Pyy) and to the weight function
w, and suppose that the input (parameter space) o-algebra X is reduced to a g-algebra
%' < ¥. This situation may arise, for instance, in the case we wish to “eliminate”
the influence of a “nuisance parameter” and to conserve only the presence of the
“essential parameter” (represented by the reduced o-algebra %'). A similar situation
may arise if we wish to “compress” (by precoding, see [1]) a given information source
in such an extent that the rounded off source thus resulting contains just the essential
to be transmitted from the point of view of the receiver, i.e. from the point of view
of the decision or transmission problem under consideration.

Let Pyy be the restriction on the Cartesian product s-algebra £’ x 9 of the proba-
bility measure Pyy.

Let Py and P} be the corresponding marginal distributions on ¥ and ¥’, respecti-
vely, and (%, Py;, 9) and (¥', Pyj., V) the corresponding channels, i.c. the systems
of conditional probability distributions corresponding to Pxy and P}y, respectively.
The existence of these channels is here assured by I(Pyy) < oo (see p. 301).

Obviously, it holds

1) ) = BP0 | % E P,

where E{ I x; %'} denotes the conditional expectation with respect to Py and to the

reduced o-algebra ¥'. The channel (¥’, Py D) is, thus, a rounded off version of the
initial channel (%, Py, V).

In a similar way we define the rounded off version w' of the weight function w
with respect to Py and to the reduced o-algebra X', i.c.

(5.2) wi(x,.) = i{w(x, ) | x, ¥'}.

The weight function w’(x, d) being ¥’ x D-measurable, we can define the rounded
off decision problem IT' corresponding to the initial decision problem IT as follows:
measurable sample space (¥, ‘D) and decision space (D, @) those of IT; measurable
parameter space (X A f’); system of probability measures that represented by the
rounded off channel (see (5.1)); weight function w’ the rounded off weight function




given by (5.2); a priori probability measure Py, generating with the rounded off
channel (¥, Py, ) the restriction Pgy of Pyy on the reduced c-algebra X' x 9;
decision function space # that of IT.
Let ro(lT) = inf r(H, b) be the Bayes risk corresponding to the problem IT and
be#

ro(Il") = b1e1;lf ¥(IT', b) that corresponding to the problem IT".

As in section 4, our task is to give an upper estimate of the Bayes risk change
ro(IT') — ro(I) resulting from the reduction of the parameter o-algebra ¥ to ¥’ < #.

As in section 4, it is also here impossible to apply directly such inequalities as the
inequalities (3.12) of Theorem 3.1, for instance, since the probability measure Py is
defined on the smaller o-algebra X’ x %) and not on the initial o-algebra £ x 9,
as do Pyy and Pyy. Moreover, the weight functions w and w’ are, in general, different,
namely if w is not measurable with respect to the reduced o-algebra ¥ x D.

In order to overcome these difficultiecs we proceed in a similar way as in section 4.
We need for such an extension Pyy of the measure Py, to ¥ x 9) that the reduced
g-algebra X' x U is sufficient with respect to the system {T’Xy, Py x T’y} of measures,
where Py and Py = Py are the marginal measures corresponding to Pyy and, moreo-
ver, where both these marginal measures (and not only the second) coincide with the
corresponding marginal measures Py and Py of Pyy. Without the latter condition
the information I (T’XY), corresponding to the new decision problem fT derived from IT
by only replacing Pyy by Pyy, still remains equal to that of IT’, i.e. I(Pyy) = I{Pyy),
but in general this fact alone is not sufficient here (as opposed to section 4, where
(4.1) implies (4.2)) for the equality of the corresponding Bayes risks, i.e. for the validity
of the relation ro(IT) = ro(IT').

However, the latter relation is valid if the supplementary condition above is satisfied
as it results from the following theorem.

Theorem 5.1. The general form of an extension Pyy of Pyy from % x 9 to
¥ x D satisfving the relation

(53) I(Pyy) = I(Py) (I(Pyy) < )

is given by

(549 ?XKG)=jf'd?xxP,, Gexx0,

G

where f' = dPxy[dPy x Py is the Radon-Nikodym density of Pxy with respect to
the product measure Py x Py and Py is an arbitrary extension from %' to ¥ of the
measure Py. The existence of the density f’ is assured by the assumption
that I(Pgy) < oo.

If, moreover, I(Pyy) < oo, then

(5.5 min Hy, (Pxy) = Hpo,(Pxy) = I(Pxy) — I(Pxy)

Pxye®
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where @ is the set of all the probability measures Pyy of the type (5.4) and PYy is
that special Pyy which results from (5.4) by taking Py = Py, i.e.

(5.6) PLy(G) =J.f’ dPy x Py, Ge¥ x 9.
G

For the average risk r(T1°, b) of the decision problem [1° = f defined above for
the special case we take Pyy = PYy it moreover holds

(57) r(fi°, b) = r(IT’, b)

where b is any decision function belonging to # and r(I', b) is the average risk cor-
responding to the decision problem IT'.
For the Bayes risks in particular it holds

(5.8) ro([1°) = ro(IT').

Proof. The proof of (5.4) under (5.3) results immediately from Theorem 4.1. The
proof of (5.5) results from Theorem 4.2.

It remains, thus, to prove (5.7) under (5.6) since (5.8) is an immediate consequence
of (5.7).
We have

(59) AT, b) = j (s, b(3)) dP%(x, 3) =
= Jw(x, b(y)) £1(x.y) dPx x Py(x,y) =
- j W%, b)) (5 3) APy % Pofx, 3) =

- f W(x, b(y)) dPyy(x, 5) = HIT’ b),

where w' is the rounded off weight function defined by (5,2) and corresponding to the
rounded off decision problem IT'. Thus, the theorem is proved.

Let us now formulate the main theorem of this section.

Theorem 5.2. Let IT be the initial decision problem and IT" the rounded off decision
problem formulated at the beginning of the present section, the second resulting
from the first by a reduction of the parameter c-algebra X to X' < %,

Let the weight function w of IT be uniformly bounded by w,, i.e. w(x, d) £ w,
x € X, d €D, and suppose that the information I(Pyy) is finite.

If ro(IT) and ro(II") are the Bayes risks corresponding to the decision problems IT
and IT', respectively, then

(5-10) "O(H') - ro(H) = \/{ZWoVo(H') [.I(er) - I(P;nr)]} .



In other words, if the reduced a-algebra X' x %) is e-sufficient with respect to the
system {Pyy, Py x Py} of probability measures (see section 2), then

(5.11) ro(IT") = ro(IT) < o/ [2woe ro(IT)] .

Proof. Defining the probability measure INJ)‘}Y as in Theorem 5.1 by (5.6), we obtain
that simultaneously it holds
@ ro(f1°) = ro(Il’)
(ii) H';,oxy(ny) = I(ny) — I(P}n,) s
according to (5.5) and (5.8) of Theorem 5.1, since by hypothesis I(Pyy) < co. The
relation (5.10) follows immediately from (i), (ii) and Theorem 3.1, second inequality
(3.12), where we replace Pyy by PYy and we take as Tthe “identical” transformation.
The relation (5.11) is derived from (5.10) on the base of the inequality I(Pxy) —
— I(Pyy) < & implied by the definition of e-sufficiency we suppose. Thus, the theorem
is proved.

Remark 1. As in Remark 1 of section 4, we can derive from the assumption (4.17)
a relation completely analogous to (4.20).

Similarly, by a reasoning analogous to that used in Remark 2 of section 4, it is
possible to prove the corresponding version of inequalities (4.21), (4.22) and (4.23).

Remark 2. It may happen that the probability law Pyy of the decision problem IT
is only partially known in the sense, for instance, that only the channel (%, Pyixs D)
and the restriction Py of Py on a smaller g-algebra X” = ¥ (not necessarily coinciding
with 33’) are known. Let in this case Py be the set of all the probability measures Qxy
on ¥ x 9 generated (as in (2.1)) by the channel (¥, Py;,, D), on the one hand, and
by all the extensions Py of the probability measure Py from %” to ¥, on the other
hand. Then in the place of inequality (5.10) we can use the inequality

(5‘12) "o(n’) - ’U(H) = \/{2""0’0(17')9 S‘;I; [I(QXY) - I(Q}v)]}

which obviously holds since Pxy € Pyy.

It is clear that we can write down similar inequalities for all the cases considered
in Remark 1 and that the set Py in (5.12) may, in the general case, represent all we
know about the probability law Pyy. A necessary and sufficient condition for the
validity in general of (5.12) is that Pyy € Pyy.

6. SIMULTANEQUS REDUCTION OF THE INPUT AND OUTPUT
o-ALGEBRAS

Let us consider, as in sections 3, 4 and 5, the statistical decision problem IT,
corresponding to the probability space (X x Y, % x 9, Pyy) and to the weight
function w, and suppose that simultancously the input (parameter space) c-algebra %
is reduced to a c-algebra X' = ¥ and the output (sample space) o-algebra 9 is
reduced to a g-algebra V' = 9.
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Let Pyy be the restriction on the Cartesian product g-algebra ¥’ x 9’ of the
probability measure Pyy.

Let Py and Py and Py and Py be the corresponding marginal measures on X and X
and 9 and 9, respectively, and (%, Pyy,, ¥) and (¥', Py, 9’) the corresponding
channels, i.c. the systems of conditional probability measures corresponding to Pyy
and Pjy, respectively.

Obviously, (¥', Py, V') is a restriction on 9’ of the rounded off channel (¥', Py,
) defined by (5.1).

Let, futher, w’ be the rounded off weight function defined by (5.2) as the conditional
expectation of the weight function w with respect to Py and to the reduced o-
algebra X'.

Define the reduced decision problem IT' corresponding to the initial decision
problem IT as follows: measurable parameter space (X , X'); measurable sample
space (Y, 9'); measurable decision space (D, D) that of IT; decision function space 2’
that of all 9)’-measurable decision functions b’; weight function w’ the rounded off
weight function given by (5.2); system of probability measures that represented by
the channel (¥/, Py, 9'); a priori probability measure Pj.

Theorem 6.1. Let IT and IT' be the decision problems introduced above, the second
resulting from the first by a simultaneous reduction of the parameter o-algebra X
to ¥ < % and of the sample c-algebra P to P’ = V. :

Let the weight function w of IT be uniformly bounded by wy, i.e. w(x, d) < wq,
x€X, de D, and suppose that the information I(Pxy) is finite.

If ro(IT) = inf r(I1, b) and ro(Il") = inf 1(IT", b') are the Bayes risks corresponding

be b'e®’

to the decision problemsII and IT', respectively, then
(6.1) ro(1') — ro(I1) £/ (2woro(IT') [I(Pxy) — I(Piy)]} -

In other words, if the reduced o-algebra X' x 9’ is e-sufficient with respect to
the system {Pxy, Px X Py} of probability measures (see section 2), then

(6.2) ro(IT') — ro(IT) £ /[2wore(IT') €] .

Proof. Let us define the probability measure P%, by
(6.3) PF3(G) =Jf’ dPy x Py, GeX x D,
G

where f' = dPgy/(dPy x Py), and let PYy be its restriction on % x 9.
According to Theorem 4.1, it holds
@ I(}NJ?(Y) = I(ﬁ%r) =I(Pyy)

and according Theorem 4.2, it holds

(ﬁ) Hf’ﬂxy(PXY) = I(PXY) - I(P)'(y) .




According to the second equality (i) and Theorem 5.1, relation (5.8), where only 9
is replaced by 9’ and # by %', we have

(6.4) ro(ll'y = ro(11),

where ro(I1%') is the Bayes risk of the decision problem [T corresponding to the
Cartesian product probability space (X x Y, ¥ x ), P}}), to the weight function w
and to the decision function space %#'.

According to the first equality (i), implying the sufficiency of )’ with respect to the
system of conditional probability distributions {T)?[» x€X, [P$ = Py]} correspond-
ing to ng, we deduce that

(6.5) ro(T1) = ro(f1°),

where 1‘0(ﬁ°) is the Bayes risk of the decision problem fI° resulting from IT by only
replacing Pyy by Pyy.

By applying Theorem 3.1, second inequality (3.12), where we replace Pyy by PYy
and we take as Tthe “identical” transformation, we obtain

(6‘6) "O(ﬁo) - rO(H) = \//[zworo(ﬁo) Hiﬂx,v(er)] .

On the base of (ii), (6.4), (6.5) and (6.6) we obtain (6.1). The relation (6.2) is derived
from (6.1) on the base of the inequality I(Pxy) — I(Pjy) < &, implied by the definition
of ¢-sufficiency we suppose. Thus, the theorem is proved.

Remark 1. It is analogous to Remarks 1 and 2 of section 4.

Remark 2. If Pyy is only partially known in the sense, for instance, of Remark 2
of section 5, and if Pyy is the smallest set we know of probability measures on
% x 9 containing Pyy, then we can use in the place of (6.1) the relation

(6.7) roIT") — ro(IT) < /{2woro(IT') stg’ [1(Qxy) — KO} »

where Qyy is the restriction of Qxy on X' x %)'. Relation (6.7) results immediately
from (6.1) on the base of the assumption that Pyy € Pyy.

(Received February 3rd, 1965.)
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VYTAH

Informace, s-suficientnost a problémy redukce dat

ALBERT PEREZ

Ve sloZitych rozhodovacich problémech, typickych pro kybernetiku, se zvldst
ostfe projevuje omezenost riiznych ,,kapacit®, ,,pam&fi“ a ,.lht", jeZ jsou k disposici
pro zpracovdni udaji nejrozmanitéjsi povahy za 0celem adekvatniho rozhodovéni.
Redukéni tendence, které z toho nutné vyplyvaji, maji byt zaméfeny k nalezeni co
nejusporngjsiho souboru udajil (tzv. souboru podstatnych parametri), ktery je
piipustnou redukci, tj. sluditelny s poZadovanou kvalitou rozhodovdni, oviem za
pfedpokladu, Ze tato kvalita je vliibec za danych podminek dosaZitelnd.

V rédmci Bayesova modelu statistického rozhodovini [7], [8] je v tomto &ldnku
formulovdno nékolik informa&ngteoretickych kritérii, kterd dovoluji posoudit, zda
prozkoumand varianta redukce je piipustnd, aniZz by bylo nutno pfedem fefit
odpovidajici variantu rozhodovaciho problému. Posledni postup by totiZ vedl, za
podminek, kdy se uvaZuje o velkém poctu takovych variant, k nepfekonatelnym
obtiZim.



V § 1 (Uvod) je ddn strudny prehled o vzniku a vyvoji problematiky redukce dat
z hlediska teorie informace a naznadeny sledované cile.

V § 2 (Informace a e-suficientnost) je zaveden klasicky model statistického rozho-
dovdni a definovdn pojem informace (viz. (2.5)). Ddle je pomoci pojmu informace
zaveden pojem e-suficientnosti (e-postagitelnosti, viz (2.7)) jako plirozené roziifent
pojmu postaditelnosti z matematické statistiky. P¥i posta&itelné redukei informace
se zachovd. Pi e-postacitelné redukci informace klesd nejvice o e. Nerovnosti (2.14)
a (2.15) jsou specidlni p¥ipady teorému 2.1.

V §3 (Odhad zmény primérného rizika zpisobené modifikaci pravdépodob-
nostniho zdkona v statistickém rozhodovacim problému) zékladem je lemma 3.1,
kterd pies nerovnosti (3.10) pro zobecnéné entropie, dovoluje dokdzat teorém 3.1,
déle systematicky pouZivany.

V § 4 (Redukce c-algebry vybérového prostoru) je dan odhad zvyieni Bayesova
rizika ro(IT") — ro(IT) p¥i ptechodu z rozhodovaciho problému IT k rozhodovacimu
problému I’ s redukovanym vystupnim (vyb&rovym) prostorem (viz zejména
teorém 4.3, kde v nerovnostech (4.15) a (4.16) duleZitou roli hraje pojem z-postaci-
telnosti, tj. sniZeni informace, které z redukce vyplyvd).

V §5 (Redukce c-algebry parametrového prostoru & prostoru hypotéz) roli
problému IT' hraje jakysi ,,zaokrouhleny* rozhodovaci problém vyplyvajici z problé-
mu IT po redukci vstupniho (parametrového) prostoru. Teorém 5.2 je analogicky
teorému 4.3.

V § 6 (Simultdnni redukce vstupni a vystupni a-algebry) k odhadu zvyseni Bayeso-
va rizika, vyplyvajiciho z redukce jak vstupniho tak i vystupniho prostoru, slouZi
zejména teorém 6.1, analogicky teorémiim 4.3 a 5.2. Je uvaZovan také pfipad nelplné
znalosti plisobiciho pravdgpodobnostniho zdkona Pyy (viz napf. (6.7)).

Ve viech zde uvaZovanych pfipadech redukce, informaénéteoreticky pojem e-posta-
Sitelnosti vystupuje jaksi automaticky pfi hleddni nejlepiiho (v jistém smyslu) odhadu
(viz zejména teorém 4.2, vztah (4.9)).

Dr. Albert Perez, DrSc., Ustav teorie informace a automatizace CSAV, Vvsehradskd 49, Praha 2.
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