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T H E MATCHING PROBLEM 
FOR BEHAVIORAL SYSTEMS 

G. C O N T E AND A N N A M. P E R D O N 

In this article the Matching Problem is considered in a general behavioral context. 
Conditions for the existence of solution are found under suitable hypothesis. 

1. INTRODUCTION 

Behavioral systems have been introduced by Willems in [8] as a tool for modeling 
a very general class of phenomena. In this note we consider a Matching Problem 
for general behavioral systems that can be viewed as a generalization of the Model 
Matching Problem studied by several authors in more classical system theoretic 
contexts (see e. g. [1] and [2] for a list of references and a more general discussion 
of the problem). Essentially, the problem consists in designing a compensator for 
a given system, in such a way that the composition, or interconnection, of the 
compensator and the system matches the behavior of an assigned model. 

The start ing point of our approach consists in viewing I /O behavioral systems as 
pairs of maps in a suitable category (see [5]). In this way the category theoretical no­
tions of pullback and pushout can be used for defining a notion of series composition 
between systems (essentially equivalent to the notion of interconnection considered 
in [8] XII), for which the above mentioned problem makes sense. 

Section 2 is devoted to a brief description of the notions of pullback and pushout 
in a category and Section 3 is devoted to the definition of series composition of be­
havioral systems and AR-systems. In Section 4, after stating the Matching Problem 
for I / O behavioral systems, we give a necessary condition for the existence of sol­
utions, tha t is also sufficient in a particular case. Section 5 is devoted to the case of 
AR-system, and, after the Matching Problem has been stated in a suitable way, a 
necessary condition that turns out to be sufficient in a particular case is given. Such 
result is shown to be a generalization of known results about the Model Match­
ing Problem for finite dimensional, linear systems having strictly proper transfer 
function. 

The results of this note have partially appeared in [3] and [4]. 
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2. PRELIMINARIES AND NOTATIONS 

In order to develop our construction in the next Section, we need first to introduce a 
suitable mathematical framework. To this aim, let us recall that a Category consists 
of a collection of Objects, denoted by capital letters like A, B,..., and Maps between 
the objects, represented as / : A —> B, and of a Composition Law, that assigns a 
map gf : A —• C to any pair of maps / : A —> B and g : B —> C. The above da ta 
have to satisfy the following two axioms: 
i) for any object A there exists an identity map iA : A —• A\ such that iAf = f and 
giA = g for any f : B —> A and # : yl —> B; 
ii) the composition law is associative. 

Familiar examples of categories are, e.g., the category Set, whose objects are 
the ordinary sets and whose maps are the ordinary maps between sets, together 
with the usual composition law, and the category /C-Vect, consisting of the vector 
spaces over a field K, and of the /C-linear maps between them, together with the the 
usual composition law (see [5] for further examples and a description of the role of 
category theory in the mathematical practice). Dynamical systems defined by linear 
differential equations may form a category as described in [6]. 

Given a map / : A —> B, the object A is said to be the domain of / , or A = 
Dom( / ) , and the object B is said to be the codomain of / , or B = Codom( / ) . A 
pair of maps / : A —> B and g : C —> B with the same codomain in a category C will 

be denoted by (A —> B *— C). Given one pair of this kind, one can consider the class 
of all pairs of maps with the same domain g' : D —> A and / ' : D —> C, denoted by 

(A +— D —* C), such that fg' = gf. Such class may contain a distinguished element 
whose properties are described by the following Definition. 

t ' f' 

Def in i t ion 1 . Given a pair (A —> H *— C), its pullback is a pair (A <— D —> C) 
such that 

i) fg' = gf and 
// til 

ii) if (A <— D' —> C) is another pair for which i) holds, there exists a unique map 
h : D' —> D such that g" = g'h and / " = fh. (See the commutative diagram 
below.) 
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P r o p o s i t i o n 1 . (See [5] Chap. 2 Section 4.) If (A C D C C) and (A C LV C C) 

are both pullbacks of (A —> B *— C), then there exists in C an isomorphism i : D' —> 
D such that g" = gr'i and / " = / ' i . 

Therefore pullbacks, if they exist, are essentially unique. In the category Set 

pullbacks can easily be constructed. To this aim, given (A —• B <— C) , let us 
consider the cartesian product A x C and the canonical projections prA : AxC —> A 
and prc : A x C —> C. Calling D the subset of / l x C defined by L> = {(a, c ) e i x 
C suc/i that f(a) = #(&)} and denoting respectively by g' and by •/' the restrictions 

/ rl 

of prA and of prc to L>, it is possible to show that (A <— D —> C) is a pullback. 
This construction extends to the category /C-Vect simply remarking that all objects 
involved are vector spaces and all maps are linear. 

Let us consider now a pair of maps with common domain (A <— B —> C) , then 
/ ./ 

one can consider the class of all pairs of maps with common codomain (A —• D *— 
C) such tha t g'f = f'g. Such class may contain a distinguished element whose 
properties are described by the following Definition. 

Def in i t ion 2. Given a pair (A «— B —• C) , its pushout is a pair (A —> D <— C) 
such that 

') g'f = f'g and 
/ / ,11 

ii) if (A —-> D' *— C) is another pair for which i) holds, there exist a unique map 
h:D-> D' such that g" = hg' and / " = hf. 

P r o p o s i t i o n 2 . (See [5] Chap. 2 Section 4.) If (A C D C C) and (A C D' C C) 

are both push ju t of (A <— B —> C) , then there exists in C an isomorphism i : D' —> D 
such that y" = r̂'z and / " = f'i. 

Proposition 2 states that pushouts, if they exist, are essentially unique. In the 

category Set pushouts can easily be constructed. Given (A <— B —> C) , let us 
consider the set A U C and the canonical injections i^ : i -+ A U C and ic : 
C —> A U C. Calling L) the quotient set of A U C obtained by identifying two points 
a E J 4 U C and c E A u C if there exists 6 E H such that a = iA f(b) and 6 = fc7 #(6) and 
denoting respectively by g' and by / ' the maps obtained by composing respectively 
iA and IQ with the canonical projection pr : A U C —• D, it is possible to show 

that (A —• D <— C) is a pushout. This construction extends to the category /C-Vect 
simply substi tuting U with 0 and remarking that all objects involved are vector 
spaces and all maps are linear. 

3. COMPOSITION OF I /O BEHAVIORAL SYSTEMS 

Following the approach of [8], a behavioral dynamical system E is described by a 
triple (T,\J,B), where T is the discrete-time axis and B is a subset of the set U T 
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of all U-valued trajectories. If the set U can be viewed as a cartesian product 
U = U x Y, a convenient way of representing E is by means of the pair of maps 
(UT <— B —* YT), where p and q are the restriction to B of the canonical projections 
from UT x YT onto UT and YT respectively. It is understood that two triples 
(T, U xY,B) and (T, U xY,B'), with B and B' contained in U x Y, as well as the 

/ / 
associated pairs of maps (UT <— B —> YT) and (UT <— B' —> Y1) describe the same 
system if B and B' are the same subset of UT x YT. Tha t is, more precisely, if there 
exists an isomorphism i : B —> B' such that p = p'i and q = g'i. 

If in a suitable set of axioms we can think of U and Y, respectively, as of the 
input signal space and the output signal space of E, it is quite natural to consider the 
problem of defining an operation corresponding to the action of taking the outputs 
of one system of the above kind as inputs of a second one. A way of doing so by 
using the notion of pullback is described in the following Definition. 

Def in i t ion 3 . Given two I /O dynamical sys t ems '£ = (UT F- B --> Y1) and 

£ ' = (YT *— B' —* ZT), the series composition of E and £ ' is the dynamical system 

E " = (T,U x Z,B"), where B" is defined by taking the pullback (B i- B" 4 

B') of (B --> y T *- # ' ) and identifying the generic point x £ B" with the point 
(g'fi(x), f (j2(x)) € (U x Z)T. (See the diagram below.) 

The notion formalized above coincides, for I /O behavioral systems,with the more 
general notion of interconnection of two systems considered in [8] XII. The series 
composition of E i and £2 introduced above will be denoted by E i n E 2 . this notation 
is motivated by the fact that , if U1 — Z1, B" coincides with BOB'. Clearly, in this 
setting, the composition is independent from the order and £1 fl £2 = £2 H £ 1 . 

When the system £ is described by behavioral equations, that is B is defined as 
the set {(u, y) E (U x Y)T such that fi(u) = f2(y)}, we have a situation dual to the 

previous one, since we may represent E as a pair (UT —> E £- YT) of maps with 
common codomain. In this case we give the following Definition. 

Def in i t ion 4. Given two I /O dynamical systems described by behavioral equations 

E = ( lJT h E l±-YT) and £ ' = (YT --> E' £ . ZT), the series composition of E and 

£ ' is the dynamical system described by behavioral equations £ " = (UT —> E" «—-2 
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ZT), where the pair (E --1 E" £ E') is the pushout of (E & YT --> # ) . (See the 
diagram below.) 

Let us now restrict our attention to the class of linear AR-systems, in the sense of 
[8] and [7], extensively studied also in [6]. We can associate with a g x (p+m)-matrix 
R(s), whose entries belong to 3£[s] (i.e. are polynomials with real coefficients in the 
indeterminate s), a set of autoregressive equations 

R(s)w(t) = 0, (I) 

where s denote the shift operator acting on the signal space ($tp+m)T. The set of 
solutions w(t) £ (3£p+m)T of Equation 1 defines a behavioral system and autore­
gressive systems can be characterised as equivalence classes, up to unimodular left 
factors, of polynomial matrices. 

Writing the the qx(p + m) polynomial matrix R(s) as R(s) = (Q(s) P(s)), where 
Q(s) and P(s) are polynomial matrices of dimension q x p and qxm respectively, a 
convenient way of representing the AR-system £, determined by R(s), is by means 

of linear maps v ( ^ m ) T -?> (W)T £ ($P)T), where Q and P are induced by Q(s) and 
P(s) respectively. We can now introduce a notion of composition for AR-systems. 

Definition 5. Given two linear, I/O, AR-systems Ei and £2 represented respect­

ively by ($m)T --4 (W)T &• (ftPf) and (W)T 2? (3F )T & (^P)T) , their series com­

position is the AR-system represented by ((3£m)T ^ (&n)T P£a ($P)T), where 

( r ) T S (3£n)T ^ (Sft*)T) is the pushout ( see [5]) of (3T)T &• ( r ) T --4 (%S)T). In 
particular, Q2(s) r Ji(s) — P[(s) Q2(s) is the least common left multiple of P\(s) and 
Q2(S). 

Remark that, if p = q (respectively m = q) and the square matrix P(s) (re­
spectively Q(s)) is nonsingular, we can associate to the AR-system E defined by 
(Q(s) P(s)).the rational matrix G(s) = P _ 1 ( s ) Q(s) (respectively G(s) = Q_ 1(s) P(s)), 
that, if it turns out to be strictly proper, can be interpreted as a Kalman transfer 
matrix. This shows that AR-systems can be viewed as a generalization of Left 
Fractional Representations for conventional linear input/output, finite dimensional 
systems. 
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4. T H E MATCHING PROBLEM 

The notion of series composition defined in the previous Section allows to state, in 
the framework of the behavioral approach, the following general, system theoretic 
problem, which, under various formulations, originated a large literature (see e.g. 
[1] and [3] for a list of references and a more genera! discussion of the problem). 

P r o b l e m 1 . (Matching Problem for Behavioral Systems) Given two behavioral 
systems S i = (T,U x Y,B\) and S 2 = (T,U x Z,B2) find a behavioral systems 
£ 3 = (T, Z x Y, B3) such that the composite system £2 D £3 coincides with E j . 

Assume tha t the Matching Problem is solvable. Then there exists a system £ 3 , 
represented, for instance, by £3 = (ZT <--• B3 -+ YT), such that E2 D E3 = E i . By 
definition of composition we have that the equality p\ = p2p'3, where p'3 is defined 

by saying tha t (B2 £ i B --» B3) is the pullback of (B2 --+ ZT £-- B3), holds. So we 
have the following necessary condition for the solution of the Matching Problem. 

P r o p o s i t i o n 3 . Given a behavioral system E i , represented by (UT £-• B\ --+ YT), 
and a system E 2 , given by (UT t± B2 --+ ZT), the Matching Problem is solvable 
only if 

Impi C Imp2- (2) 

A more complete result is provided, under a suitable restrictive hypothesis, by 
the following Proposition. 

P r o p o s i t i o n 4 . Let £1 and £ 2 be given as in Proposition 3 and assume tha t in the 
representation (UT ^- B2 ^ ZT) of £ 2 the map q2 is injective. Then the Matching 
Problem has a solution if and only if condition (2) is satisfied. 

P r o o f . In the hypothesis Impi C Imp2 it is possible to factor p\ through p2. 

So, let P3 : Bi —• B2 be any map such that p2ps = p\. By the injectivity of q2 it easily 

turns out that (B2 l-i g , £ Si) is the pullback of (B2 --+ ZT q^ Bx). Moreover, the 

map j : B\ —+ ZT x YT given by j(b) = (q2p3(b), ?i(6) is easily seen to be injective, 

as (q2p3(b), qi(b)) = (q2p3(b'), qi(b')) implies (ps(6), qi(b) = (p3(b'), Qi(b')), hence 

(Pi(b), qi(b)) = (pi(b'), qi(b')) and b = V. Thus, the pair (ZT q^ Bi --+ YT) defines 

a behavioral system, say £ 3 = (T, Z x Y, Bi). Now, by the commutativity of the 

diagram below, one has £1 = £2 H £3- D 
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Necessary and sufficient conditions for the existence of solution to the Model 
Matching Problem could be worked out, in a less elegant way, under different hy­
pothesis, less restrictive than those in the above Proposition. However, in the general 
case a complete characterization of the existence of solution for the Matching Prob­
lem does not seem easy to obtain. 

The result of Proposition 4 can be applied to the problem of factoring a given 
system S through a subsystem. 

Proposi t ion 5. If £ is represented by (UT <— 3 —> YT), then S can be factored, 
in particular, through any subsystem characterized by a subset B' of B such that 
p(B) = p(B') and q\&i is injective. 

5. THE MATCHING PROBLEM FOR AR-SYSTEMS 

Assume now that E is the system defined by the following set of autoregressive 
equ utions 

R(s)w(t) = 0 

represented by the pair of linear maps ((3£m)T -^ (W)T £ (W)T) where Q and P 
are induced by Q(s) and P(s) respectively. We can state the following Problem 

Problem 2. (Matching Problem for AR-systems) Given two AR-systems Ei = 

((sftPf Q± (£»yr £ . (sj^T) a n d ^ _ ^myr % ( r y r £ ^q^T) find, if poss­

ible, an AR-system E3 = ((W)T --? ($r)T £- (3?m)T) such that, representing the 
QзQѓ P2P!, 

composite system E 2 H E 3 as E 2 n E 3 = ((3^) T v ^ ? 2 ( ^ " ' ) T ^ 3 (3£9)T), one has 
n' = n and there exists a square nonsingular, n x n rational matrix V(s) such that 

Qi(s) = g 3 ( » ) Q i W v(s)and -Pi(5) = p2 (S)P^(S) v(s). 

Remark that in case Qi(s) and Q2(s) are square and nonsingular and Gi(s) = 
QiX(s) Pi and G2(s) = Q2 (s) P2 are strictly proper, the above formulation of the 
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Matching Problem requires that the compensated system and the model have the 

same transfer matr ix (compare with [1]). 

Similarly to the case studied in the previous Section, we have for the above 

problem the following key result. 

P r o p o s i t i o n 6. Solution for the Matching Problem for AR-systems S i and S 2 , 

exists only if 
K e r P 2 C K e r P i . (3) 

P r o o f . If the Matching Problem is solvable by means of an AR-system S3 = 

(($P)T --? (9fcr)T & ( ^ m ) T ) , the relation P^s) = V(s) P3(s) P2(s) implies Ker P 2 C 
K e r P i . D 

P r o p o s i t i o n 7. Assume t h a t the matrix Q2(s) in the representation ( 3 £ m ) T —> 

($S)T £- (^q)T) of S 2 is full row rank. Then the Matching Problem for AR-systems 

has a solution if and only if, representing £1 by means oi((W)T —• (9£ n) 7 *-- (9ft?)T) 
condition (3) holds. 

P r o o f . Necessity has already been discussed. Assume that Ker P 2 is contained 

into Ker P i , then there exists an nxs rational matr ix W(s) such that Pi ( s ) = 

W(s)P2(s). Write W(s) as W(s) = V(s) P3(s), where P3(s) is an n x s polynomial 

matr ix and V(s) is a square nxn matr ix of the form V(s) = d i a g ( s ~ a i , s~a2,..., s~°n)_ 

Since Q2(s) is full row rank, 

(Sftn)T H (sj^n)T £ (sfts)T) i g e a g i l y g e e n t o b e t h e p u s h - o u t of (^n)T P£* 

\T "5? ."to^T^ ( m ) J (pt'Y). Hence, from the commutative diagram we have that the AR-

system S3 = ($P)T V~-?1 Cftn)T P ^ 2 (3^ m ) T ) solves the problem we are consider­

ing-

(ŞRp): 
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Remark that , in case Qi(s) and Q2(s) are square and nonsingular, letting Gi(s) = 
Qi(s)~lPi(s) and G2(s) = Q^s)"1 P2(s), the condition of Proposition 7 coincides 
with the condition Ker G2 C K e r G i , which, in turn, is well known to be equivalent 
to the existence of a rational matrix G.3(.s) such that Gi(s) = G-s(s)G2(s). In this 
way, Proposition 6 is seen to be a generalization of a well known result about the 
factorization of transfer matrices. Analogously, if Pi(s) and P2(s) are square and 
nonsingular, letting Ei(s) = PF1Qi(s) and F2(s) = P2

lQ2(s) is, in the hypothesis 
of Proposition 7 we have I m E i C Imf 2 , which assures the possibility of factoring 
T'\(s) through F2(s) (compare with the Exact Model Matching Problem considered 
e.g. in [1]). 

6. CONCLUSION AND FUTURE DIRECTIONS OF WORK 

The Matching Problem has been considered in a general behavioral context and con­
ditions for the existence of solutions have been found under suitable hypothesis. As 
mentioned earlier, a complete characterization, in the general case, of the existence 
of solutions does not seem easy to obtain. Using the possibility of transforming dis­
turbance decoupling problems into model matching problems, the results of Section 
4 and Section 5 can be used for studying decoupling problems for general behav­
ioral systems and for AR-systems. Concerning AR-systems, the set of solutions to 
the Matching Problem can be investigated using algebraic tools in order to give 
cc iditions for the existence of solutions having particular dynamical properties. 

(Received February 24, 1995.) 
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