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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 5 

STATISTICAL ANALYSIS OF MULTIPLE MOVING 
AVERAGE PROCESSES USING PERIODICITY 

TOMAS CIPRA 

A method of parameter estimation in multiple moving average models is suggested using 
periodic models. Identification of these models is also discussed. The results are demonstrated 
by means of numerical simulations. 

1. INTRODUCTION 

Cipra [3] investigated so called periodic moving average process {Xt} of the form 

(1-1) X, «- e, + PiU)Bt~i + ••• + Pjt)e,_qt, 

where the coefficients f}j(t) are periodic functions of time with a period d, i.e. 

(1-2) Pj(t) = Pj(t + d) , qt = qt+d 

and {E,} is a normal white noise with zero mean value and a variance a2. Such process 
is natural analogy of the periodic autoregressive process (see e.g. [ l ] , [5], [6], [7]) 
and therefore the idea originates to use the estimation technique described in [3] for 
the treatment of the multiple moving average models (the same approach to the 
multiple autoregressive models is presented in [5] and [6]). 

Let us consider a d-dimensional moving average process {A"r} of an order q. The 
corresponding model can be written in the form 

(1.3) X, = fi0»i + fi_»t-i + ... + to-„ 

where fij are d x d matrices of parameters such that p0 is lower triangular with unities 
on the main diagonal and {et} is a d-dimensional normal white noise with zero mean 
vector and a diagonal variance matrix having positive numbers a2, ••.,o2

d on the main 
diagonal. Indeed, if we consider the following more usual form of the model for {Xt} 

(1.4) x, = n, + 7iit-i + ••• + yjit-q 
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with a normal white noise {»/,} such that var(»/,) is a general positive definite matrix 
we can set e, = T~li]t, po = T and fij = ysT, j — 1, . . . , p. The matrix J is lower 
diagonal with unities on the main diagonal taken from so called Cholesky decomposi­
tion var (i/,) = TAT', where A is a diagonal matrix with positive numbers on the main 
diagonal. Thus we obtain the prescribed model (1.3) (it is var (e,) = A). 

If we define univariate processes {X,} and {s,} by means of the relations 

(L5) xj+<nt-i) = Xjt. Sj+Mt-i) = £;<. ;' = 1,..-, d , 

where X, = (X1(, . . . ,Xd , ) ' and st = (e1(, ..., 8_t)' then {X,} is the periodic moving 
average process (1.1) with the period d and the orders qx = 1 + d*q, g2 = 2 + dq, ... 
..., qd = J + dq. The only difference consists in the fact that the variances var (e,) = 
= a] are periodic fulfilling 
(1.6) a? = a2

+d 

and are not constant as in (1.1). In spite of it we shall show in the paper that the esti­
mation method for(l . l) described in [3] can be extended also for the case with (1.6) 
so that we shall have in our disposal a method of estimating the parameters of the 
multiple moving average models. 

First the method is demonstrated for two-dimensional case (i.e. d = 2) in Section 
2 but then the general case is considered in Section 3. The possibility of identifying 
a multiple moving average process in addition to the previous estimation method is 
discussed in Section 4. Finally the results of some numerical simulations are given 
in Section 5. 

2. CASE WITH DIMENSION TWO 

We shall deal with a two-dimensional moving average process 

M (_^ &!)(._)•$ is; 
'fli P\2\ /«_,. 
KPh F22)\'2.,-J' 

where {(ei„ e2,)'} is a normal white noise with a variance matrix 

(2.2) v a r { ( a l r > e _ r ) ' } = ( j ? ° ? ) ( a ; > 0 , o_ > 0 ) . 

According to (1.5) we can write (2.1) as the following periodic moving average process 
with the period two (in addition we simplify the denotation and use new simpler 
symbols a ; and fij instead of the previous symbols for the coefficients of the model) 

(2.3) X 2 ,_! = e2 l_, + a,s_.__ + .. . + or,.*.,....,, , 

X2t = 8_, + Pl^lt-! + ••• + ^ 2 , - « , 
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where 

(2.4) var fa,.,.) = a\ , var (e2,) = a) . 

Although qy = 1 + 2q and q2 = 2 + 2q it shows convenient in practical situations 
not to use these constraints explicitly. If e.g. the matrix Pq in (2.1) has zero upper 
row (i.e. 0% = fi\2 = 0) then it must be qx <, 1 + 2[q - 1) which simplifies the 
model. This is one of the advantages of the treatment of the multiple moving average 
models through the periodicity: although it may be e.g. qt <̂  q2 in (2.3) one must 
keep q large in (2.1) when the principle of periodicity is not applied. Newton [5] 
and Pagano [6] discuss the same effect in the autoregressive case. 

The estimation method suggested in [3] consists in combining Durbin's [4] 
efficient estimation procedure for the classical (i.e. nonperiodic) univariate moving 
average processes and Pagano's [6] results on the periodic autoregressions. 

Let us start approximating (2.3) by the following periodic autoregression with the 
period two 

(2-5) X2t_1 + y1X2r_2 + ... + Jk^zt-i-ki = £2r-i > 

X2t + <5j.X_._i + . . . + 5k3X2t_kl = e 2 r , 

where the numbers fcj and fc2 are sufficiently large. For (2.5) to be admissible one 
should suppose that all roots of the characteristic equations 

(2.6) z«' + a ] z " - 1 + . . . + aqi = 0 , 

z«2 +/i1z«2"1 + ... + pqi = 0 

are in the absolute value less than one (i.e. the assumption of the invertibility of the 
univariate moving average models with coefficients au ..., aqi and ftu ..., pqi which 
cannot be replaced by the invertibility of the multiple model (2+) - see e.g. Example 
in Section 5). However, the practical experiences show that the method usually works 
well even without this assumption. 

According to [6] the parameters y = (yu ..., ykl)' and 3 = [Su ..., dk)' fulfil the 
following two systems of Yule-Walker equations 

(2.7) _.,. = -g, R2. = -h, 

where the fcj x fc, and fc2 x k2 matrices Rj and R2 and the vectors g — (gu ..., gki)' 
and /. = (hu ..., hkl)' are defined as 

(2.8) Rx = var {(J_2 f__,J-2 ._3 , . . . ,_._,____,) '}, 

R2 = var{(Z 2 , _ 1 ,X 2 ( _ 2 , . . . ,X 2 ( _ i t 2 ) ' } , 

gt =cov(X2t_uX2t_1_i), f = 1, . . . , „ , , 

hj =cov(X2t,X2t_j), j = 1, . . . ,__ . 

Let us have two-dimensional observations Xu ..., XT of the process (2.1) or equi­
valent^ univariate observations XUX2, ...,X2T according to (1.5) at our disposal. 
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If we replace all covariances of the type cov (Xu, Xv) in (2.7) by their estimates 

(2.9) RT(u,v) = f Xu+2kXv+2k 
m2 — m1 + 1 k=mi 

(the limits m, and m2 are chosen so that all terms in the preceding sum are defined 
and their number is maximal) we obtain the estimators c = (c1} ..., ckl)' and d = 
= (d«, ..., dk2)' of the vectors y and <5 which have asymptotically normal distributions 
with mean vectors y and 3, variance matrices cJRr/ ' /Tand a\R2

 1 /Tand are mutually 
uncorrelated (see [6]). 

In this moment we can make advantage of Durbin's procedure and maximize over 
a = (a , , . . . , a,,)' and /? = (/?_,..., /?,_)' the likelihood function derived from the 
asymptotic distribution of the estimated parameters in the autoregressive appro­
ximation to the original moving average model. In our case we shall have to maximize 
the function 

(2.10) Q = - | {(c - y)' Rt(e - y)\a\ + (d - d)' R2(d - 3)ja\} , 

which is the argument of the exponential curve in the (normal) likelihood function 
of c and d. 

Now there are two alternatives how to proceed. Firstly we can maximize (2.10) 
after replacing a\ and a\ by their estimates a\ and a\. These estimates can be 
obtained either by means of (2.5), e.g. 

(2.11) a\ = - __ (.¥_._. + ClX2t_2 + ... + c ^ X . , . , ^ ) 2 

h — ti + 1 ' = " 

(the limits i". and t2 are again chosen so that all terms in the preceding sum are 
defined and their number is maximal) or one can use the relations given in [6], e.g. 

(2.12) a\ = RT(2i - I, It - 1) + __ ctRj(2t - 1, 2t - 1 - i). 
; = l 

Or secondly to obtain more explicit formulas we can assume that the approximation 
is admissible in which we minimize the following function Q over a and ji (instead of 
the maximization of Q) 

(2A3) Q = _{(c - >•)' R,(c -y) + (d- 5)' R2(d - 5)} , 

i.e. we neglect the multipliers \\a\ and \\a\. The practical experiences show that the 
results may stay still acceptable even if the difference between a\ and a\ is significant 
(see e.g. Example from Section 5 in which the theoretical value a\ is greater than the 
double of a\) and the numerical simplification following from this approximation is 
essential. Since it holds 

Si «. 

y'RiV = var(__?,-*_._._,•) = vai(X2t_t - e_,__) ~ var(__aye2 ._1_ J) 
J = I y=i 
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(and similarly for d'R2d) we can write approximately 

(2.14) Q = 2{c'Rxc + 2c'g + a\a\ + a\a\ + a\a\ + ... + d'R2d + 

+ 2d'h + p\a\ + p\a\ + p\a\ + . . . } , 

where a., = 0 for r > qx and fis = 0 for s > q2. The estimators a = (ax,..., aqi)' 
and b = (bu ..., bq2)' of the parameters a and /? are constructed by differentiating Q 
with respect to a and /? and equating the derivatives to zero to obtain the normal 
equations. If one uses the explicit form of the elements of Ru R2, g and h then it is 
not difficult to show that e.g. 

— = ^ { f a + dld2 + C2C3 +...) + (1 + d\ + C\ + . . . ) « ! + 

dax 

+ (</, + cxc2 + d2d3 + ...)fi2 + (c2 + dxd3 + c2c4 + ...) a3 + ...} . 
The numerical advantage of this approximate procedure consists in the fact that the 
parameters a\ and a\ can be excluded (see e.g. the previous form of dQjda^) so that 
we obtain the same systems of normal equations for a and b as in [3] 

(2+5) (1 + d\ + c\ + . . . ) « , + (</, + cxc2 + d2d3 + ...)b2 + 

+ (c2 + dxd3 + c2c4 + ...) a3 + 

+ (d3 + Cjc4 + d2d5 + ...) b4 + ... = - ( c j + dtd2 + c2c3 + ...), 

(dx + cxc2 + d2d3 + ...) ax + (1 + c\ + d\ + ...) b2 + 

+ (cj + dxd2 + c2c3 + ...) a3 + 

+ (d2 + cxc3 + d2d4 + ...) b4 + ... = -(d2 + c,c3 + d2d4 + ...), 

(c2 + t/,6/3 + c2c4 + ...)ax + (c, + dxd2 + c2c3 + ...) b2 + 

+ (1 + d\ + c\ + ...)a3 + (dx + cxc2 + d2d3 + ...)b4 + ... 

... = - ( c 3 + dxd4 + C2C5 + . . . ) , 

(2.16) (1 + c\ + d\ + ...) bx + (cx + dxd2 + c2c3 + ...) a2 + 

+ (d2 + cxc3 + d2d4 + ...) b3 + 

+ (c3 + dxd4 + c2c5 + ...) a4 + ... = -(dx + cxc2 + d2d3 + ...) . 

(cx + dxd2 + c2c3 + ...) bx + (I + d\ + c\ + ...) a2 + 

+ (dx + cxc2 + d2d3 + ...)b3 + 

+ (c2 + dxd3 + c2c4 + ...) a4 + ... = —(c2 + dtd3 + c2c4 + ...), 

(d2 + cxc3 + d2d4 + ...)bx + (dx + cxc2 + d2d3 + ...) a2 + 

+ (1 + c\ + d\ + ...)b3 + 

+ (c, + dxd2 + c2c3 + ...) a4 + ... = -(d3 + cxc4 + d2d5 + ...), 
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(we define ar = 0 for r > q_, bs = 0 for s > q2, c, = 0 for / > k_ and d} = 0 for 
_/' > fe2). The first equation in the system (2.15) corresponds to dQJda_ = 0, the second 
one to 3Q/3/?2 = 0, etc. and the first equation in the system (2+6) corresponds to 
dQjdp_ = 0, the second one to dQJda2 = 0, etc. The number of the equations in (2.15) 
and (2.16) is equal to the number of the unknown variables in these systems. 

The former "exact" procedure using a\ and a\ must treat more complicated 
systems of equations, e.g. the first equation of (2.15) will have the form 

(2.17) (o\ + d\a\ + c\a\ + ...) a_ + (d_a\ + c_c2o\ + d2d3a\ + ...) b2 + 

+ (c2a\ + d_d3a\ + c2c+a\ + ...) a3 + ... = — \cxa\ + d_d26\ + c2c3a\ + ...) 

(i.e. all terms formed by c_'s are multiplied by a\ and all terms formed by d/s are 
multiplied by a\; the same holds for the other equations in both systems (2.15) 
and (2+6)). 

The improved estimates of a\ and a\ in comparison with (2.11) or (2.12) can be 
obtained in this phase from the residuals £, calculated by means of (2.3) using the 
estimated parameters a and b and setting e0 = t_x = £._2 = ... = 0. 

Finally the asymptotic covariance structure of a and b can be estimated similarly 
as in [3j . If we introduce the following vectors (with appropriate finite dimensions) 

(2.18) _x=(aub2,a3,bA,..)', 

Z2 = (bua2,b_,a4,...)', _*{__,__)' 

then the approximate covariance matrix of _ is block-diagonal with the blocks equal 
to the inversed matrices of the systems of equations (2.15) and (2.16) multiplied 
by 1/T (in the "exact" covariance matrix all terms formed by c.'s (including the 
corresponding unities) in the first block must be multiplied by a\\a\ and all terms 
formed by d/s (including the corresponding unities) in the second block must be 
multiplied by a\ja\). 

3. CASE WITH GENERAL DIMENSION 

Let us consider a (/-dimensional moving average model (1.3) with given observa­
tions X_,..., XT. Let {X,} be the corresponding periodic moving average process 
with the period d constructed according to (1.5). Then the model for {X_} can be 
written in the form 

(3.1) X1+dit_1) «8i+_c.-_) +/?i(l) £_(,-i) + ••• + #.,(1) e_-«,+_(»-_); 

X2 + „«-l) = £2+d(,-l) + Pl(2) £l+d(,-l) + ••• + Pq2 2) S2-q2 + d(t-l) , 

xd, =£_, +/3i(^)e-i+d, + ••• + PJd)e-_d+dt, 
where 

(3.2) var(£ i + d ( (_n) = a\i), i = 1, . . . , d . 
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Our estimation procedure will be the direct generalization of the previous two-
dimensional case. The autoregressive approximations (2.5) have the following form 
now 

(3.3) ^i-j(i- i) + al(l) -^d(r-l) + ••• + a/n(l) ^l-)ii+d(I-1) = £ l + d ( r - l ) > 

^ 2 + d(t-i) + ai(2)X1+(K,-l) + ... + ak2(2)X2-k.+d(t_1) = e2+<i(r-i) , 

Xit +a1(d)X_1 + dt + ... + akd(d)X_kd+dt = e_,. 

Let a{\), ..., a,d) be the estimated vectors of parameters in (3.3) constructed 
generalizing (2.7). If we accept the same simplifying assumption as in Section 2 
replacing the function Q by Q then the estimators fe(l), ..., b(d) of the parameters 
in (3.1) can be obtained as the solutions of d systems of linear equations. The ith 
system (i = 1,, . . , d) which produces the values b^i), b2(i + l), b3(i + 2), ... has 
the form 

(3.4) £ { £ ar._(i +j + r-2) aj.k+r__(i +j + r - 2)} bk(k + i - 1) + 
fc=l r = l 

+ £ { £ ar-,(j + k + r - 2) _t_,+r__(i + k + r - 2)} bk(k + i - 1) = 
k=j r = l 

= - £ ar_1(i +j + r-2) aj+r_1(i + j + r - 2) , j = 1,2, . . . , 
r = l 

where we put ar(i) = 0 for r > kh a0(i) = 1, ar(i) = ar(i + d), bk(i) = 0 for 
k > Oj, bk(i) = bk(i + d). The number of equations in the ith system (3.4) is equal 
to the number of its unknown variables b^i), b2(i + 1), b3(i + 2), ... . 

In the more complicated procedure based on Q without the approximation by Q 
the ith system (3.4) (i = 1, ...,d) has to be replaced by 

(3.5) £ { £ ar__(i +j + r-2) aj-k+r__(i + j + r - 2) : 
k=l r = l 

: &2(i +j + r-2)} bk(k + i - 1) + 

+ £ { £ ar-i{i + k + r - 2) ak-j+r-_(i + k + r - 2) : 
k=j r = l 

: <x2(i + k + r - 2)} 6fc(/c + i - 1) = 

= ~ £ 0,-1(1 + J + r - 2) aj+r-_(i + j + r - 2) : 
r = l 

: a 2 ( i + 7 + r - 2 ) , j = 1,2, . . . , 
where the estimates ff2(i) = &2(i + d) can be obtained analogously as in (2.11) or 
(2-12). 

As the covariance structure of the estimators b(l), ...,b(d) is concerned the 
vectors &*(1) = (b_(l), b2(2), b3(3),...)', b*(2) . (_.(2), _2(3), fc3(4),...)',.-.., b*(d) = 
= (fc^d), ^2(1), fc3(2),...)' of the solutions of the particular systems (3.4) are 
asymptotically mutually uncorrelated and the asymptotic variance matrix of b*(i) 
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is equal to the coefficient matrix on the left of (3.4) inversed and multiplied by 1/T 
(in the "exact" case the coefficient matrices on the left of (3.5) multiplied by a2yi — 1) 
must be used). 

4. IDENTIFICATION 

The identification of the model (1.3) can be carried out conveniently in the frame­
work of the previous estimation procedure. Let us confine ourselves only to the two-
dimensional case (2.3) for simplicity (the identification in the d-dimensional case 
will be the natural generalization of it). 

According to [6] the estimators Rr(w, v) defined in (2.9) have asymptotically the 
normal distribution with the mean value R(u, v) and the variance 

(4.1) - f [R(u, u + 2j) Rlv, v + 2j) + R{u, v + 2j) R(v, u + 2/)] . 
T j=~O0 

First let us consider the estimates RT(2t — 1, 2t — 1 — T) for x > qv Then obviously 

(4.2) E{Rr(2r - 1, 2/ - 1 - T)} = 0 . 

For T even (T > q^) the corresponding variance (4.1) can be rewritten to the form 

(4.3) - X R(2t - 1, 2f - 1 + 2/) R(2t - 1 - r, 2f - 1 - T + 2j) 

since all summands in the sum 

f R '2t - 1, It - 1 - T + 2/) R 2t - 1 -̂  T, 2f - 1 + 2j) 
j = - <o 

are equal to zero. Analogously for T odd (T > ax) this asymptotic variance is 

(4.4) 1 £ R(2t - 1, 2f - 1 + 2j) R(2t - 1 - T, 2f - 1 - x + 2/) , 
T \2j\lkq_ 

where q = min(a 1 ,^ 2 ) . 
The results (4.2) —(4.4) can be used for identification of the number ql in the same 

way as it is done in the classical methodology of Box and Jenkins [2]. In our case 
we can compare the values Rr(2t - 1, 2t - 1 - T) for T = 1, 2, ... with the critical 
values 

(4.5) u v) \ - Y RT2t - 1, 2t - 1 + 2j) Rr2t - 1 - x, It - 1 - x + 2)\ 
[T |2j|§«, ' • J 

for T even and 

(4.6) u(v) \ - X R / 2 t - 1, 2/ - 1 + 2j) R/2t - 1 - x, 2t - 1 - x + 2/)} 
(T \ij\u J 

for x odd (u(v) is the critical value of the standard normal distribution on the signifi-
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cance level v). Then the identified qt is chosen as the smallest number T 2: 0 such that 
all RT(2t - 1, 2( - 1 - (T + 1), RT(2t - 1, 2( - 1 - (T + 2)) , . . . do not exceed in 
the absolute value the corresponding limits (4.5) or (4.6). 

As the choice of the number q2 is concerned the values RT(2t, 2( — T) must be 
compared with the critical values 

(4.7) w » \ - X R7.(2(, 2( + 2/) RT[2t - T, 2/ - T + 2/)l 
(T V-S\-12 J 

for T even and 

(4.8) w(v) \~ X *r(2t, 2( + 2j) RT{2t - T, 2( - T + 2j))m 

(T \2j\Sq J 
for T odd. 

5. SIMULATIONS 

Example. The following two-dimensional moving average model of the order two 
was considered 

<-) (£;K4C:;)+M fc: 
with the normal white noise such that 
/•_ ,.\ r/ vi /0-64 0 
(5-2) var{(e i r,£2f) '} = ( 0̂ ^ 

The corresponding periodic moving average process has the form 

(5.3) Xlt_x = E2t„t - 0-5e2,_2 + 0-6£2,_3 , 

X2t = e 2 , +0-75e2 ,_! - 0-3e2 ,_2+ 0-4s2 ,_3 ) 

where a\ = var(e2(_1) = 0-64 and a\ = var (g2t) = 1-44. It is qx = 2 and a2 = 3 
in (5.3). One can easily verify that both roots of the polynomial z2 — 0-5z + 0-6 = 0 
lie inside the unit circle but this is not the case for the polynomial z3 + 0-75z2 -
— 0-3z + 0-4 (the value of this polynomial for z = — 1 is positive while it decreases 
to - co for the real z going to - co) so that the assumption (2.6) does not hold (on 
the other hand the two-dimensional model (5.1) is invertible since all roots of the 
equation det(^QZ" + P1z

q~1 + ... + Pq) = 0 lie inside the unit circle in this case). 
Fifty simulations of the length T = 100 based on this model were performed on the 

computer ADT4100 at the Department of Statistics of Charles University and the 
corresponding parameters were estimated by means of the approximate procedure 
(2.15) and (2.16). The observed means and standard deviations of these fifty results 
are 

ay = -0-498v'sOl = 0-076), a2 = 0-552(sO2 = 0-115), 

b~t = 0-715(sfci = 0-163), b2 = -0-328(s„2 = 0-126), 

b3 = 0-370(st3 = 0-145) . 
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One can conclude that the approximate estimation procedure is acceptable here 
although a\\a\ > 2. 

The identification procedure suggested in Section 4 is demonstrated in Table 1(a) 
and (b) for the first simulation. E.g. values RT(2t — 1, 2t — 1 — T) for T = 1, ..., 9 
are given in the last row of Table 1(a). In the previous rows of this table the critical 
values according to (4.5) and (4.6) with v = 5% are presented for T = 1, . . . , 9 and 
various possible ranges of qt and q2. Table 1(b) was constructed analogously. The 
smallest number qt which is admissible according to Table 1(a) is qt = 2 (qx < 2 
is not admissible since RT(2t — 1, 2t — 2) = 0470 for T = 1 is greater than the 
critical value 0-337 from the first row of this table). Similarly the smallest number q2 

admissible according to Table 1(b) is q2 = 3 if we consider the inflated value 
jRr(2r, 2t — 8) = —0-523 to be a negligible outlier. It can be summarized that the 
correct values of q t and q2 were identified from the considered simulation. 
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