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KYBERNETIKA —VOLUME 17 (1981), NUMBER 2 

ON COVARIANCE COEFFICIENTS ESTIMATES 
OF FINITE ORDER MOVING AVERAGE PROCESSES 

EMIL PELIKÁN, MILOSLAV VOŠVRDA 

In the present paper the necessary and sufficient conditions for the estimates of covariance 
coefficients of moving average processes are presented. Further the modification for estimates 
of Wilson's method covariance coefficients is introduced. 

1. INTRODUCTION 

Covariance coefficients provide important information about the structure of the 
given time series in most cases. We shall treat the covariance coefficients of finite 
order MA processes. 

Let {Yn, n = 0, + 1 , +2 , . . . } be uncorrected random variables with 

(1) E[Y„] = 0 , E[Y„2] = a2 > 0 for all n . 

Let 0O, 0 i , . . . , 6k be real numbers (0O 4= 0, 0k +- 0) and consider the process defined by 

(2) xn = 0OY„ + e. y . . . + 02y„_2 + . . . + ekYn.k. 

This process is called Moving Average Process (MA process). For the covariance, 
we have (for simplicity we put a2 = 1) 

(3) E[__„] = E[0oY, + t91y..1 + . . . + 6kY„_k] = 0 

(4) E[x2] = (e2
0 + el+... + e2

k) 

(5) R(v) = E[Z„X„_ M ] = E[(0oy„ + elrm_l + . . . + ekY„.k) x 

x(0l.1yB + 01+wY„_1 + ... + 0t+My„_t)] = 
f*-M 
J I 0j0j+m f o r » -- k 

j = 0 

0 for \v\ = k+ 1. 
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Let us define two generating function 

(6) 0(z) = iofJ 
j = o 

and 

(7) C(z)= l R(j)zK 
j = - k 

By substitution (5) into (7) we obtain 

(8) C(z) = G(z).0(z-1) for z + 0 . 

The necessary and sufficient condition for the existence of MA process (2) with 
covariance coefficients R(v) for t> = 0 , 1 , . . . , k is that the auxiliary equation P(x) = 0 
derived from (7), where x = (z + z-y)\2, has no real roots of odd multiplicity in the 
interval - 1 < x < 1 (Wold's theorem [1]). For \z\ = 1 e.g. z = e u is (1/2TE) C(Z) 
spectral density and then it is real and nonnegative, i.e. 

(9) c(z) ;>o. 

Now, we shall outline the principals of Wilson's method [2]. We denote the gene­
rating function for coefficients of MA process in ^-iterative step by 0(t)(z) and y is 
a complex conjugative y. For ! ^ 0 w e have 

(10) 0(,)(z) 0<'+1)(z-x) + 0(' + 1)(z) tf'Xz-1) = 

= 0 ( ' )(z)0 ( ( )(z-1) + 0(z)0(z- 1 ) . 

From (10) we get 

(11) 0(, + 1 )(z)0 ( , + 1 )(z-1) = 

= (0(, + 1)(z) - 9^\z))(e^' + 1\z-1) - ^" (z - 1 ) ) + 0(z) 0(z"1) . 

For \z\ = 1 and z _ 1 = z and 9(z~1) = BJz) we get from (11) 

(12) |0( ' + 1)(z)|2 = |0 ( (+1)(z) - 0(,)(z)j2 + |0(z)|2 

and then we get 

(13) |0(t + 1)(z)|2 = |0 ( t+1)(z) - 0(,)(z)|2 . 

We shall assume that our MA processes are invertible. Since we start from nonzero 
covariance coefficients, 

(14) |0( ' + 1)(z)|2 > |0((+1)(z) - 0W(z)|2 

holds, and consequently (as it is proved in [2]) 

(15) 0(,)(z) ^ " ( z - 1 ) -» 0(z) 9(z~1) m C(z) for t -> oo 

and z e < — 1, 1> holds. 
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As we have seen before the condition 

(16) C(z) > 0 for \z\ = 1 

is the necessary and sufficient for the existence MA invertible process (2) with non­
zero covariance coefficients. In processing time series we have only estimates of co-
variance coefficients R(v), v = 0, \, ..., k, which were obtained by 

(17) R(v) = I £ x,x,+„ 
N i = l 

where JV is the length of realization of the given time series. For these estimates 
(16) need not be valid (see examples). A practical verification of (16) is very difficult 
and therefore we shall derive (16) is another form. 

Let P(x) be a polynomial derived from (7) where x = (z + z - 1)/2 and let |z| = 1. 
Then from (16) we have 

(18) P(x) > 0 for - 1 < x < 1 . 

Now we construct sequence of polynomials 

(19) P,(x),P2(x), . . . ,Pm(x) 

such that 

P,(x) = P(x), P2(x) = P'(x) 
and 

(20) P ;_,(x) = P,(x) . G(_.(x) - P.+i(x). i = 2, 3, ..., m - 1 

Pm-i(X)= Qm-i(x)Pm(x), Pm(x) * 0 for - l = x = l 

and P'(x) denotes derivative of P(x). Let V(l) be the number of sign inversions 
in sequence Pi(l), P2(l), •••» Pm(l) an<l l e t V(-i) be the number of sign inversions 
in sequence P ^ - l ) , P 2 ( - l ) , . . . , P m ( -1 ) . (If P,(l) = 0 (or P , ( - l ) = 0) we take 
the sign + , in case that there exist left (or, right) neighborhood of a point 1 (or, — 1), 
so that P,(x) > 0 for all x from the given neighborhood, and we take the sign —, 
if Pj(x) < 0.) Since sequence (19) forms the Sturm's sequence of polynomials, 
the number of real roots of P(x) in the interval — 1 < x < 1 is equal V(l) — V( — 1) 
(see [3]). From (18) we have 

V(1)=V(-1). 

Thus we have obtained a new necessary and sufficient condition equivalent to (16), 
which can be written in the form 

(21) P(l) > 0 

P ( - l ) > 0 

V(l) = V ( - 1 ) . 
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If for some R(i), i = 1, 2 , . . . , k (21) is not valid, we shall modify these coefficients. 
It is obvious that the modification can be done by different ways. We choose one way 
giving sufficient results in many practical examples, when Wilson's method gives 
no results. 

2. MODIFICATION ALGORITHM OF COVARIANCE COEFFICIENT 

Let R(0), R(l),..., R(fc) be estimates obtained from (17) and let (21) be not valid. 
Let d be a given sufficiently small number and let R(i), i = 1. 2 , . . . , k be modificated 
covariance coefficients. We construct sequences Rj(i),j = 0, 1, ..., n, i = 0, 1, ..., k, 
in the following way: 

1. R0(i) = R(i) i = 0,l,...,k. 

2. R,(0) = R(0) Rt(i) = iR(i) i = l,2,...,k. 

3. Let be given R0(i), Rt(i),..., R;_ t(i), i = 0, 1, . . . , k . 

If for Rs-i(i), i = 0 , 1 , . . . , k, (21) is valid, let us put 

Rj(i) = Rj_l(i) + yiUj(i), 

otherwise 

Rj(i) = Rj^(i)-Uj(i) 
where 

Uj(0 = i\Rj-2(i) - -W9I 

i = 0, l , . . . , fc;y, = sign (R0(i)). 

4. n is chosen in such a way that it is the minimum of numbers 1, so that 

Ui(i) < <5 for all i = 0, 1, ...,k 

and so that (21) is valid for R„(i), i = 0,1, . . . , k. 

5. Let us put R(i) = R„(i), i = 0, 1, ..., k. 

3. APPLICATION OF THE FOREGOING ALGORITHM 
ON INVERTIBLE MA PROCESSES OF THE ORDER 1 AND 2 

Example 1. Let us have 

X„= Y„+.01Y„_1 

where {Y„, n = 0, + 1 , +2 , . . . } are uncorrelated Gaussian random variables with 
E[Y„] = 0, E[Y^] = 1, 91 is an real number. From (7) we have 

C(z) = R(l)z-1 + R ( 0 ) + R(l)z. 
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Therefore 
R(x) = R(0) + 2Л( l )x . 

From (19) we have 

(22) P1(x) = R(0) + 2R(\)x 

P2(x) = 2R(1) 

(m = 2). From (21) we have 

(23) R(0) + 21,(1) > 0 

R(0) - 21.(1) > 0 

The number of sign inversions in (22) is the same for both points 1 and — 1. Therefore 

(23) is equivalent to (21) for k = 1. For this case (21) has a very simple form. In Table 

1 the values R(;) and R(i) i = 0, 1 are presented for MA process __„ = Y„ — 0 9Y„_1; 

N = 500, 8 = 10~5. R(() was obtained from (17), _?(/) was obtained by application 

of the foregoing algorithm and 8t is computed by Wilson's method for values R(i) 

i = 0,1. Note that the second condition in (23) is not valid for estimates R(i) / = 0, 1, 

but is valid for __(.) i = 0, 1. 

R(0) R(l) R(0) Ä(l) г 

2-179832 -1-158923 2179832 -1-089915 -0-99943 

Example 2. Let us have 

x„ = Y„ + 0,y;,_! + (?2Y„_2 n = 0, + 1 , ± 2 , ... 

where Y„ is the same as in Example 1. 9U 02 are real numbers. Then 

C(z) = 2,(2) z^ 2 + R(l) z _ 1 + 2,(0) + R(l) z + R(2) z2 . 

Therefore (we assume that P3(x) + 0) 

p.(x) = R(0) + 21.(1) x + 42.(2) x2 

R2(x) _. 2R(1) + 8R(2) x 

R3(x) = R(0) - 2R(2) 
R2(l) 

(m = 3). 
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F r o m (21) we shall obta in that 

(24) 

and 

R(0) + 2R(1) + 2R(2) > 0 

R(0) - 2R(1) + 2R(2) > 0 

if 4R(2) + R(l) < 0 or 4R(2) - R(l) < 0 then 

R2(l) + 8R2(2) - 4R(0) R(2) < 0 

must hold. (24) represents the equivalent condition to (21) for case k = 2. In Table 2 

the values R(/) and R(/) i = 0, 1, 2 are presented for MA process X„ = Y„ + 

+ 0-2Y„_! - 0-48Y„_2, JV = 500, 5 = 10~5. 0", and 92 are computed by Wilson's 

method for values R(i) / = 0, 1, 2. Note that the second condition in (24) is not 

valid for R(i) i = 0, 1, 2 but is valid for R(i) / = 0, 1, 2. 

R(0) Ä(l) R(2) R(0) 

1-138916 0-219642 -0-394317 1-138926 

R(l) R(2) 0, 02 

0-203722 -0-365737 0-51574 -0-48076 

(Received July 21, 1980.) 
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