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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 6 

BOUNDS ON THE THROUGHPUT 
OF AN UNSLOTTED ALOHA CHANNEL IN THE CASE 
OF A HETEROGENEOUS USERS' POPULATION 

ANDRZEJ DZIECH, ANDRZEJ R. PACH 

In this paper we give a lower and an upper bound on the intensity of successful packet trans­
missions and the throughput of an unslotted ALOHA channel in the case of a heterogeneous 
users' population. These bounds have been derived under the only assumptions of stationarity 
and independence of traffic streams generated by the users. They are obtained by means of the 
results from the theory of random pulse streams [9] and depend only on the mean packet trans­
mission times and the intensities of packet generation. 

1. INTRODUCTION 

For the last ten years there has been a significant interest in performance evalua­
tion of random access protocols (see [1] and references therein). Most of the studies 
in this area have been devoted to protocols with slotted time e.g. the slotted ALOHA. 
The main reason is that slotted protocols can be conveniently described by Markov 
chains. Unfortunately, the use of Markov chains to unslotted protocols is not 
straightforward (see e.g. [2]). In consequence, there are only few results on unslotted 
protocols in the literature. 

Most of these results has been obtained for the unslotted ALOHA channel. The 
first approach to that channel has been made under the assumption that the overall 
packet traffic on the multiaccess channel is Poissonian [3]. It has been recognized 
that this assumption is not particulary valid for small users' populations and heavy 
loads. Another approach has been presented in [4] where it has been assumed that 
the starting points of packet transmissions at each transmitter form a renewal process. 
Next, this approach has been generalized in [5], In all above mentioned papers it 
has been assumed that transmitted packets have the same constant length. In the 
case of variable length packets the throughput analysis is more laborious. The research 
in this case was begun in [6] and [7] under the assumption of exponentially distribut­
ed "think" time of each user. Another approach has been presented in [8] where it has 
been assumed that the packet transmissions form collectively a Poisson point process. 

476 



In this paper we are concerned with an unslotted-ALOHA-type channel and 
a heterogeneous population of users. We present bounds on the intensity of successful 
packet transmissions and throughput under the most relaxed assumptions one can 
find in the literature, namely of stationarity and independence of traffic streams 
generated by the users. Our analysis is based on the results from the general theory 
of random pulse streams [9]. 

2. THE MODEL 

Let us assume that the considered system consists of M users which collectively 
share a broadcast channel for communication with the common receiver. Each user 
sends occasionally his information in the form of variable length packets. Then, the 
signal emitted by each user can be viewed as a sequence of alternating pulses and 
idle periods of different lengths. 

Let 
. , x V1 if user m is active at time t „ . _ 

10 otherwise 

Thus, (Am(t), te(— oo. +co)}, m = 1, 2,..., M, are stochastic processes and let us 
assume that 

1) all these processes are stationary, therefore 

P[Am(t) = 1] = E[Am(t)] = gm, m = 1, 2, ..., M , 

2) all these processes are mutually independent, therefore 

p[^m(0 = 1 a n d A(t) = 1] = 9m9n > «» » = h 2, ..., M, m =# n . 

We shall denote the average packet transmission time and the average idle period 
of user m(m = 1, 2, ..., M) by rm and am, respectively. Thus, the intensity of packet 
generation at user m is Xm = l/(am + xm) whereas gm = lmxm. 

Next, we assume that the only source of errors is overlapping of packets in the 
multiaccess channel. 

3. BOUNDS ON THE INTENSITY OF SUCCESSFULLY TRANSMITTED 
PACKETS 

The stream of pulses generated by user m can be conveniently represented as 

PS(m) = (..., x ^ M T 1 1 , 5 M F , 4 T 1 } j £ + 1 \ • • •) where ^ W i s pulse i of user m 
that is the time interval from x{

m
l) to ym

l) when user m remains active. Next, let us 
denote by PS(l) the set of all pulses generated by all users: PS(l) = (x^y^, m = 
= 1,2, . . . ,M, i = 0, + 1 , +2 , . . . ) . 

Now let us focus our attention on a family of pulse streams that can be derived 
from PS(1), PS(2), ..., PS(M). Let t be a randomly chosen observation point on the 
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time axis. Then, one may define the pulse stream PS[min (k, M)], k = 1, 2, ..., M, 
as follows 

t e PS[min (k, M)] if and only if t e at least k elements of PS(l) 

Note that any point t may belong to at most M elements of PS(l) or does not 
belong to PS(Z) at all. Figure 1 presents a sample of pulse streams PS(m) and 
PS[min (k, M)] for M = 3. 

In this paper we first of all focus ourselves on the pulse stream denoted by PS(+) 
which is formed from the conflict-free pulses that is non-overlapping in time (see 
Fig. 1). The intensity of PS( + ) will be denoted by X+. We shall relate it with the 

User # 1 PS(1) 

User # 2 PS(2) 

User # 3 PS(3) 

PS[mm(l,3)] 

PS[min(2,3)] 

PŞ[min(3,3)] 

PS(.) 

PS(-) 

Fig. 1. The considered pulse streams for a three user population (M = 3). 

intensities Xmm{]iM) 
and, in turn, with X_ that is the intensities of PS[min (k, M)_ 

and PS(l), respectively. 
The intensity Amin(fcM) has been derived in [9] under the assumptions mentioned 

in Section 2 in the following form 

(?) 
(i) ^min(fc,M) 

M \ l ) ( l M-l f- l i M-l ; " i 

E i n«.n(i-9;) E 1 ^ - ^ 
l = kn=\ U i = l j = l [_m=l Tm j=í 1 — gj_ (") j 4= m j ^ m 

where km is the intensity ofPS(m), xm is the average length of pulses generated by user m, 
M is the number of users, gm = Xmrm and (n) denotes that we have the nth combina­
tion of / indices m in the brackets. 
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In order to explain the notation used in (l), we present below (l) for k = 2 and 
M = 3. 

4rin(2,3) = 0i02(l - g3) I — + ) + 
Vl ?2 1 - 03/ 

+ 0i03(i - 02) (— + ) + 

Vjl T3 1 - _l2/ 

+ 0203(1 ~ 0l) (— + ' ) + 

\r2 T3 1 - gj , 1 1 1 
+ 010203 — + — + -

It is to be observed that the intensity of conflict-free packets X+ must be less 
than Amin(ijM) since P;S[min (1, M)] also comprises pulses formed from the overlapp­
ing ones. Thus, using (1) we get that 

M M-l 

(2) ^+ < ^min(l,M) = £ Ki [1 C1 * 0j) = ^ 
m = 1 j " = 1 

j'4=m 

The right-hand side of the above expression denoted by Xv is, in fact, the upper 
bound on intensity X+. 

Let us turn now to deriving for a lower bound, XL. We note that a pulse stream 
PS[min (l, M)] may be splitted into two streams, that is the stream of conflict-free 
pulses PS(+) of intensity X+ and the stream of pulses PS(-) of intensity X- which 
is formed from the interfering ones. Thus, we have that 

(3; X- = Amin(1M) — X+ 

On the other hand, we are able to observe that 

(4) X- < ^min(2,M) 

since every pulse of PS( —) meets with at least one pulse of PS[min (2, M)]. Sub­
stituting (3) into (4), we get that 

(5) X+ > Am i n ( 1 > M ) — /m i n (2,M) 

Using (1) we have that 
M Л Í - 1 

(6) ^ > L 0 m I l ( l - 0 ; ) 
m = l j = l 

• i_ _ү _____• 
. T и J-i 1 - Qj_ 

= ч 
j * m j^m 

It is to be noted that the result Am i n ( l j M ) — Xmln,2M) may be less than zero for the 
sufficiently large values of Xx, X2, ..., XM. Therefore, in order to determine a lower 
bound, we take the maximum of X* and zero: 

(7) XL = max (0, X*L) 
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From the above considerations we can finally conclude that the intensity X+ in 
a multiaccess channel has belong to the interval (XL, Xv), that is 

(8) XL< X+ < Xv 

where XL and Xv are given by (7) and (2), respectively. 
Let us consider the special case of a homogeneous population of users in the sense 

that Xx = X2 = ... = XM = X and xx = x2 = ... = xM = x, then ( l ) reduces to the 
following 

(9) Xm,n{KM) = A I ( Y ) 91'1 (1 - 9)M~l~l Q - Mg) 

where g = Xx. 
Using the above result we get the lower and the upper bound as follows 

(10) XL = max [0, MX(l - g)M'2 (l - Mg)] 

and 

(11) XV = MX(1 ~g)M'1 

4. BOUNDS ON THE THROUGHPUT 

In many cases we are interested in the throughput of a multiaccess channel instead 
of the intensity X+. Classically, the throughput S is defined as the average number 
of successfully transmitted bits (i.e. without errors) per time unit. However, in the 
theory of multiaccess channels we are often faced with another definition that can 
be expressed as follows 

(12) S = X+x+ 

where x+ is the average length of pulses of the stream PS(+). This definition does 
not take into account the non-demaged bits in the overlapped packets. It is assumed 
that packets involved in collisions will be retransmitted after elapsing the proper 
timeout interval. In the following we focus ourselves on the throughput defined 
by (12). 

In order to find an upper bound on the throughput we define the pulse stream 
PS(1,M): 

t e PS(l, M) if and only if t e exactly one element of PS(l) 

Let Xn M) a n d T(i,M) be the intensity and the average pulse length of PS(1, M). 
Then, g(l)M) = A ( 1 ) M )T ( 1 > M ) and it is given by the following formula [9]: 

M M-1 

m = 1 J = 1 
(13) 9(i,M) = I ^mEK 1 - 9j) 
V > m = l í ' = l 

where gm
 = ^mxm-
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The quantity #(i,M) represents the probability that at a randomly chosen point 
on the time axis exactly one user is active. 

We observe that a pulse stream PS(l, M) comprises all successfully transmitted 
packets plus non-overlapped parts of packets involved in collisions. Thus, q(1M) 

is the unconditional channel throughput in terms of error-free bits transmitted. The 
above remark simply leads us to an upper bound on the throughput defined by (12): 

(14) S < gil>M) = Sv 

where giUM) is given by (13). 
In the special case of a homogeneous system in the sense that gx= g2 = ... = gM =• 

= g we get that 

MJ (15) S < G 1 = s r 

where G is the total traffic in the channel (G = Mg). 

The elementary differential calculus shows that the right-hand side of (15) is 
maximized at G0 = 1 and then it is equal to 

(16) C - ( l - l 

The above result is in fact the channel capacity since the average number of 
successfully transmitted packets per time unit is always less than C. The same result 
has been obtained in the other way in [5] but under the assumption of constant length 
packets. It is worth to note that for very large M we have C » l/e as for the slotted 
ALOHA channel. Next, it is to be observed also that (14), (15), and (16) do not 
depend on the type of distribution of traffic generated by users but only on gm, 
m = 1,2, . . . , M . 

Unfortunately, it is impossible to derive a lower bound under such general assump­
tions using the pulse streams theory since we cannot boun dT+. The only exception 
is that all users generate identical fixed-length packets. Then TX = T2 = ... = TM = T 
and T + = T, and hence 

M - i r M-1 

i - Z (17) S>ĂLт = SL = max 0, £ \gm [ (l - 9j) 
7 = i 
j*m 

9j 

where XL is given by (7). 

Let us consider the symmetric case, i.e. XXT = X2T 
one may simply find that 

j " 1 
j + m 

9jJ) (n) 

= X x = G/M. Then, 

(18) SL = max ;o,c (i-c )(i-ø-
In the limit as M --> oo, we get that 

(19) s L = max [0, G(l - G)~c] 
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One can prove that SL given by (18) has the maximum at 

(20) G _ 3M - 1 - J(5M2 - 6M + 1) 
1 2 M 

equal to 

, v c __ - 4 M 2 + 5M - 1 + (2M - 1) V ( 5 M 2 - 6M + 1) 
(21) SL,max — 

_ 3M - 1 - V(5M2 - 6M + 1) 

2M2 

Finally, we conclude that the maximum throughput, Smax, can be bounded as given 
below 

/ < \ M - 1 

(22) SL,max <S m a x < ( ! - -

and in the limit case as M -> oo, we get that 
(23) ( N / 5 - 2 ) e ^ - 3 ) / 2 < S n i a x < l / e 

At this moment we recall the well-known Abramson's [3] result on the maximum 
throughput in the case of infinite population of users and constant length packets 
that is equal to 1/(2 e) and, of course, satisfies (23). 

5. NUMERICAL EXAMPLES 

In the following we shall present numerical examples in order to demonstrate the 
behaviour of the derived bounds. 

To begin with, we compare the bounds on the intensity of successfully transmitted 
packets given by (9) and (10) for a homogeneous population of users with the simula­
tion results. This is displayed in Figs. 2a, b, and c for different number of users, namely 
2, 5, and 100, respectively. The simulation results have been gathered for different 
types of idle periods/packet transmission times distributions, namely Erlang2/uniform, 
exponential/exponential, and exponential/constant ones. The parameters of packet 
transmission time distributions have been chosen in such a way that the average 
transmission time equals one (T — 1) in all cases. We observe that all results obtained 
via simulation lie between the bounds. In the limit cases when G — Mg = 0 or oo 
both bounds are equal to zero, thus for very light and heavy loads they are very close 
to real values of the throughput. Furthermore, one may note that for the load within 
the range [0, GJ, where Gx maximizes the lower bound and is given by (20), in the 
case of T — 1, the gap between the bounds is little. Therefore, we may approximate 
the intensity of successfully transmitted packets by X+ « (XL + X^\2 in the considered 
range. 
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b) 

ø.øø 0.20 0.40 0.60 0.80 1.00 
TOTAL INTENSITY 

1 .20 1 . 40 

Fig. 2. The bounds on the intensity of 
successfully transmitted packets vs. si­
mulation results for a homogeneous po­
pulation of users, different number of 
users (M), and types of idle periods/packet 

transmission times distributions. 

c) 

We note that out of this range X+ is considerably sensitive to the type of idle period 
and packet transmission time distributions. 

Let us turn now to the case of a heterogeneous population of users. Figures 3a, b,c,d 
and e show the bounds for five user population (M = 5) in the case of fixed traffic 
generated by three users [g1 = g2 = g3) and variable traffic from two users (but 
g4 = g5). We may easy recognize that the behaviour of the bounds is very similar 
to that presented in Figure 2. The upper bound is valid for any type of idle period 
and packet transmission time distributions. The greater than zero part of the lower 
bound is valid only for identical and constant packet transmission times of all users. 
In the case when x = 1 we have that XL =. SL and Xv = Sv. When the total traffic 
offered to the channel is sufficiently large then the lower bound is equal to zero what 
can be observed in Figures 3d and e. 
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3.40 0.60 
g( 4 ) = g ( 5) 
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à) 

0.40 Ø.бв 
g(4)=gC5) 

Fig 3. The bounds on the throughput for 
a heterogeneous population of users (M= 
= 5) in the case of fixed g\ = g2 = £3 and 

variable g4 = g5. 

e) 



6. CONCLUSIONS 

The lower and upper bounds on the intensity of successfully transmitted packets 
and throughput of an unslotted-ALOHA-type channel were given in the case of 
arbitrary packet lengths and "think" time distributions. According to the best 
authors' knowledge they are the first such presented in the open literature. These 
bounds were obtained under the only assumptions of stationarity and mutual in­
dependence of traffic streams generated by the users. The presented bounds are 
rather applicable to ALOHA systems (i.e. with feedback and retransmissions of 
erroneous packets) if users' buffers are emptied according to a random selection 
discipline or to the case of packets identical in length. It is to be mentioned that the 
assumed model of an ALOHA channel is appropriate to the system with an entry 
controlling discipline and non-empty users' buffers. 

It is worth to note that the presented upper bounds are identical with the throughput 
in the case of open multiaccess channel where these quantities are measured in terms 
of successfully transfered bits (even if they are contained in collided packets) per 
time unit. 

The derived bounds are very easy to obtain because they only depend on the 
average packet transmission times and intensities of packet streams transmitted by 
users. These parameters are in most cases easy to predict or estimate. 

(Received August 8, 1988.) 
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