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OSCILLATION CRITERIONS.
MILOS ZLAMAL, Brno.
(Received May 10, 1950.)

I. In what follows all functions are real-valued and continuous for
large positive #, say for ¢ = ¢,. Let f(f) be such a function. Then from
STURM’S separation theorem it follows that either all non-trivial solutions
of the linear differential equation

2"+ ft) z =0 (1)
have an infinity of zeros or all have only a final number of them. In the
first case (1) is called oscillatory, in the second non-oscillatory. When
namely a non-trivial solution x(¢) of (1) vanishes it changes its sign, since
z(t) and z'(¢) cannot vanish simultaneously.

It is important to know the conditions under which (1) is oscillatory.
Kx~zsEiRr [1] already dealt with this problem in the case where f(2) has
“a constant sign. Recently WINTNER {2] examined the same question but
without the supposition that f(f) has a constant sign for large positive £.
If we denote .

t
F(t) = [{(s) ds,

the sufficient conditions for (1) being oscillatory are: either

imF(f) =00 @)
t—>ow .
or only "
¢
fjm JFC) 45 _ )
t—o
In this note we shall deal with Sturms differential equation
Q@) .2 + fO)z=0 (@)

where Q(t) is positive, and we shall prove two osclllatlon crltenons Whlch
are a generalization of (2). As a corollary of .the first criterion we shall
obtain a generalisation of a.certain oscillation criterion of KNESER.2)

1) Added in proof. Two new papers containing similar results have got jnto my -
hands: J. G. MiKUSINSKI, On Fite’s oscillation theorems; Colloquium math. 2 (1949).
34—39; W. LEIGHTON, The detection of the oscillation of solutions of asecond orden
linear differential equa.tlon, Duke'Math. J. 7 (1950) 57 —61.
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2, Theorem I. Let the mtegml f 06) be dwergent and let exist a po-

sitive function w(t) having a continuous first derivative such that

~

f Q) yra() ds < oo, 5)

fco (). f(s) ds —0 for t —>c0. (6)
Then (4) 18 osczllatory :

Proof. Assume (4) to be non-oscillatory. First of all we are going to
prove that then there exists one unbounded solution z,(¢).

If xl(t), 4(t) are two linearly mdependent solutions of ), it is easy

‘to see that their Wronskian is equal to -c%-, where Wo isanon-vanishing

constant, i. e,

: W,
zy(8) . 2'y(t) — '5(£) . ylt) ="
1) #/5(0) — =400 7all) =g
xl(t) and zy(t) can be assumed such that Wy = 1. As we suppose (4) to
be non-oscﬂlatory, Eg nd. x”ét; are continuous for large
. B3
() xs(t)
vposmve t a,nd either ) > 0 o z0 < 0. In the fmst case it is
T3 T :

(xx(t))'__ _ 1 .
zo(t)] Q1) z3(2)-
80 that |z,(¢)| must be unbounded. For if lx,(t)l < K, then -

t
x_1(tl= z,(t) +f 931(3) — a”1(‘1) f -’”1(51)‘ _
xa(f) Zy(ty) 32(3) Zy(ty) Q(s)z3(s) xz(tx)

f o °‘3 .

\ thch is contradictory to leg
L . S ‘ . 2

R f(x,(t)) 1
- o ()] Q) zi() :
- 8o that xl(t)l must-be unbounded. Therefore at least one of the solutions

) a:l(t) and z,(t) i8 in absolute value unbounded. We denote lt xo(t) a.nd can
assume z,(f) > 0 for large positive ¢, say for ¢ > .~ _ o

> 0 In the second case
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- %y (t)
“xy(t)

Riccarrs differential equation

Put now u(f) = Q(f) —> t> t;. In v1ew of (4) u(t) satisfies

’

1 . .-
— —u—f(?). 7

a0 (7)
Multiply (7) with w(t), integrate the left side by parts and use SCKWARZ 3
inequality and (5). One gets

o(t) . u(t) =a + fw'(s) u(s) ds -— Z?; u?(s )ds —fco(s) () ds .
. _ .
w(s) Q) b
ga-}—{ Q() u?(s) ds . () 2(8)(18}—
—f Q u?(s) ds — f (8) f(x).s ds
<at1 { Sy we) ds } 3?’; ut(s) ds — w(s)f(a) ds -

where I, = f Q( ) w'%(s) ds, so that by (6) (t) . u(t) = — co for t—> c0.

Therefore u(t) a.nd consequently z’y(¢) are negative for large posxtxve t.
But this is a contradiction because z(t) is positive and unbounded
-Corollary 1. Let ¢ be positive and -
t
fsl—‘/(e) ds - 00 for t > c0. -

Then (1) 4s oscillatory.

" Proof: We use Theorem I with Q(t) = 1 and w(t) = 1,

As a further corollary we shall derive from Theorem I a generaliza-
~ tion of an oscillation criterion of KNEsER [1]. With a shght extenswn. we:
can formulate: KNESERS result as follows o . :
If
hm inf g2, f(t) > i

g

then (1) is oscxllatory =
Recently this criterion ha,s been genemhsed smultaneously by
Hirig (see [3], p- 249) and HARTMAN (see [4], p. 778) If we wnte

- logt =="logt; log,t == loglog,..f, p = 1,2, 3.
Lo(t) = t Lp(t) =L p—-l(t) lOgD

(t) = Z[L 1,
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;. and

then their sufficient condltlon is
f hmmf[L(t)]*{ft)—‘S, (0} > 1.

- Our corollary doesn t contain this result but it isn t also contamed init
because it admits the possibility that the above mentioned lower limit
is smaller or equal to }.

Corollary 2. If

f L,,(s){f(s) — 13,(8)} ds — oo for t > co,
. then (1) is oscillatory.

Proof: By the assumption and Theorem I w1th Q(t) = Ly(t) and
(t) = 1 the differential equation '

(Ly(2) - 2) + Ly(2) {f (t)—48,0)}.2=0 ' (8)
x(t)
VL,®

satisfies (1) as we are going to prove.
From (8) it follows that z(¢) satisfies the differential equation

‘ . L2(t) —2 L,y . Lyt
- —{-{-} ® L’(tg() () -+ f(2) -—%S,,(_t)}x:ﬁ;
Therefore it is sufficient to prove that '
L2(t) — 2L,(t) Ly(t)
L ()
For p=10 (9) is evidént. Suppose that (9) holds' for p=m—1. It is

is oscillatory. If we put 2(t) = , %(t) is also oscillatory. z(t) however

=8, -9

1
(108t) = 5, Llt) = (L—1(0) 108’ = Lips(9) - ognt + 1,

” . m—l(t)
. o Lm(t)— —l(t) logmt_l- 'L —l(t)
80 tha,t e e
' L"(t)—2Lm(t) LZ’,.(’) [logmt]’ [L (t)—2Lm-1(t) Lm—l(t)]+ 1
TL) T T LEL(O)llogatP =
'__L"-lm—zL SRS IR W S L S
- m_,(t) + L) —.S'f‘“'(t) + L'fn(t) - ’g"‘(t)‘
3. hmsu f F(a) ds oo is. weaker than WINTNEBS supposmon (3) '
B
‘ hmsupF(t)__ -' L0
t-rao b . ¢

)

- B "js still weal{er.
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I have dealt with the question whether- (10) suffices in order that
(1) may be oscillatory. I have succeeded only in showing that (10) is
a sufficient condition when f(t) is bounded from below. More is contained
in the following -

'Theorem 1. Let the integral f —(-;-%)- be divergent,' Q(t) - f(2) bounded

from below and let (10) hold. Then (4) 13 oscillatory.

Proof: Let be QW) . ft)y > —M, M > 0. Assﬁme (4) to be non-
oscillatory. Then by the proof of Theorem I there exxsts an unbounded
solution z(t) positive from a certain ¢,.

o)
o(?)
Hence a quadrature shows that
- u(t) < o — F(p). (11)
By (10) and (11) there exists ¢, > ¢, such that u(t;) < — ]/ M. u(t) decre-
ases in a certain neighbourhood of the number ¢, for
’ —ui(ty) —Qty) - f(ts).  — M+ M
T8 < T ow
u(¢) however must decrea,se for all t > t,, Let namely ¢; be the first
number greater than ¢, and such that u'(t;) = 0. Wlthm the interval
(t3, t5), u(t) decreases and as u(ty) < — VM it is also u(fy) < — VM :

Hherefore — u(t) — Q) . 1ty
_ Q)

We have proved that u(f) decreases for ¢ >> t,. Therefore

, ) Sulty) < — VM<0 .

for t > t; and consequently z, ‘(t) < 0 for t > t,. But this is & contra- )

: dlctxon because z,(¢) is positive and unbounded.

Corollary. Let /(t) be bounded from below and let (10) hold Then (1) 18 »
osczllatory .

If we put u(t) = Q(t) —-— again, we get from (7 vt < — f(t)

=o.

u'(ty) = < 0.

References. : )
{1] A. KNESER: U‘ntersuchungen iiber die reellen Nullstellen der Integra.le linearer
Differentialgleichungen, Math. Annalen 42 (1893), pp. 409—435.

(2] A. WINTNER: A criterion of oscillatory stability, . Quart, Appl Math. 5 (1949), ’
pp. 116—117. .

[3] E. HILLE: Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), pp. -
- 234—252.

[4] P. HARTMAN: On the lmes.r logarithmico-exponential dliferentml equatxon of .
the second order, Amer. J. Math. 70(1948), pp. 764—779. - ' - .

217



.. Oscilacni kriteria.. .
(Obsah pfedchézejiciho &élanku.)

Necht f(f) & Q(t) jsou rediné funkce spojité pro velkd kladni ¢ a

Q(t) > 0. Pak ze SturMovA srovnévaciho teorému plyne, Ze budto vie-

chna redln4 netrividlni feSeni Sturmovy diferencidlni rovnice (4) maji

" nekonetné mnoho nulovych bodi nebo jen koneény jejich poset. V prvém

pifpadé nazyvime feSeni oscilatorickd, ve druhém pifpadé neoscilatoric-

ké, ponévadz prochéz{-li feSenf nulovym bodem, méni znaménko. Vtomto
élé,nku jsou dokézé,ny dvé kntena. '

I Necht integrdl f 0 diverguje a necht existuje takovd kladnd /unkce
~ w(t) majict .spoyztou prong derwa,cz, Ze

Q( ) w'?(s) ds < oo,
| w(s)
¢ . ,
* fa(s) f(8) ds — oo pro t - co.
Pak felent STurMOVY dzferencwlni rovnice (4) jsou oscdatomcka

II -Necht mtegral f oG ) dwerguje, 8oué'm f(t) Q(t) je zdola ohrani-
&en a o . ‘
lim sup (s) ds = a0
- t—oo < )
~ Pak fedeni Sturmovy diferencidlni rovnice (4) jsou oscilatorickd.

Z kriteria I plynou dva korolary, z nich% druhy je zobecneni ]ednoho
" KNEsErOVA oscilagniho kriteria:

. Koroldr 1, Necht ¢>0 a

- _ .

. fs"'f(s)ds—>oo pro t—roo,‘_ )

Pak fe§eni daferencuilni rovnice (1) jsou osczlatoncka
Korol:ir2 Necht -

. fL,(s) {{(6) —18;(5)} ds = o0 Pro > @0.2)
Pk tedent diferencidlng rovnice (1) jsou oscilatorickd.
mmfunkﬂLp(‘) & Sp(t) vz v flénka., . .
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