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On a generalization of Fourier series.
' . Joset Korous, Praha.
(Received June 12, 1945.)
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1. Pre]mimary'

Before we proceed -to’ formulat& the problem which Wlll be
discussed, we need several, definitions. :

First of all, T introduce the followmg sets of real numbers:

1. {l,} denotes the set of real numbers L(v=0,+1,+2,..),

satisfying the following conditions: .
l.<l,+-1, l_1<0§lo, l,=v+a+L,
where a*) is a fixed real number and -

r=+4®
~ The aggregate of all possible {I;} is denoted by Al(a)
" 2: Ay(@) C A,(a) is the aggregate of all {1,} satisfying

/

for || >1 and
b

y 2

S p=e—o0

3. Ay(a) C 4y(a) containg a.ll {L} satisfying'

Al 0.*%) u 3)
4 o . B ' . .

| % = oflog 1 |v1) for =t v (14
7 4. To Aa) C 44(0) belong all Ly with’
- S A= O(Ivl—-lvlog—l b (18
: ,'for', vl > l-a.nd s BT
" o Bwi<a’ B

‘)Fovompuposesonl a=0md :};{

gacmdod a o Cr

o
e

~ -

~ limsup |4,| < . \ - .,(1,1)3

L:O(log—l‘lrl) L : t (1~2.)‘

needed
T ae) Thg pmme mdmaws throughout t ! pa t = 9 shduld ‘”
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For brewty, we put A0)'= A4, wheraz =1,23,4.
To every {l,} we assoeiate an integral function -of a complex
variable

) = =1y T (1 —~i)ev (1,7)
We denote by Li(a) the class of all I(z) belonging to {I, } € 4ia)

and, write simply I; instead of L;(0).
Further, we put for /(z) € L,

-

o k(z) = l(z) cotg nz + p(2), l (1,8) )
where ’ o . ‘
oz & (0) =
9(2) = ;,_z_w ;(;—_:z—)"‘““;z’ + ba*) (1’9)

b bemg an arbitrary real constant.
If I(z) € L,, we define also
1

v
o(z) = )

@
Z T (1,10)

and denote by P the class of all such ¢(z).

=]

‘ , 2. The problem. o
Let « be a real number and f(z) a real function defined in
.. [&, ® + &]**) and such that |f(x)| is integrable (in the sense of

- Lebesgue) over this interval. 21

. Our object is to investigate expansions of such functions in
_series _
- lim Z (@ cosl x -+ b, sin [,2)t) (2,2)

N=00 P=—q

for welx, 0+ 7] and {1} € 4,.

*) The convergence of this series and of the series (1,10) will be made
evxdent in the proof of lemma 4.
[a, b] is a closed, {a, b) an aopen iriterval.
1‘) Mr. Walsh occupied himself in a paper entitled ,,A generah?atlon of
. the Fourier cosine semee“ (Am M. S. Transactions 22) with a similar series,
@

'Hxs series is (wnt.h our notattons) z a eos l x for xz¢ [0, 7] under the followmg

v

r=0 . R .
- mmultaneous assuraptions;
IS S 'En‘).*<aoandl° +421’<—1—
A T a=1 A=

Wnth the aid of the theory of functions of an mfmlte number, of variables-
. Mr. Walsh proves the equiconvergence of his series with that of Fourier.
_“{A cosine series is obtamed from (2,2), if e. g. o = —,}n and f(2) is an eVen
funct.mn g -

A,

PURNRTEN . A
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Mhe coefficients a, and b, ‘ate. given by the followmg formulas -

w%éuWMWAfmw%um

1Y

by = ML) (IA)—1 ff smltdt - (2:3)
where l(z) be]ongs to the same {l,}
It is seen at once that the Fourier. series of the function
f(¢) in [x, n + =] is & special case of (2,2). This Fourier series is
lim > (a, cosvx + b',sinvz), (2,4)

where

v JjC f(t) cos vt dt,

[ .

b, f f(t) sin vt dt, L (2,5)

and tends to zero in (x — =, x).

Further, we observe that. the coefficients (2,3) are not deter-
mined umquely, for their formulas contain an arbitrary constant b.*)
Put .

- 8u(x; f) = Z (a, cos L,x + b, sin [,x)

w1th coefflclents (2,3) and

Sa(z; ) = Z (a’y cos v —{- b', sin vx)
W'lth ocoefficients (2 5), n being a posmve integer.
Puttlng : e »

n

m)—éZMMUlW”WHHW~m

Y ~ V=—n

and:

\

.’ o K, t) = o= 2 cos [v(x—t)], :

wwﬂbvmus that .

&+ ~

xn~Hmhmnw

il '-:~~‘) Oonsequently the coefficients (2,5) are not uniqué. Repla.cmg them
by 4+ =17 b)a, and (1 + (— 1) b) ¥, reepectwely, we: obtain a series

B eqmoonvérgent wnth {2.4) in (x, & + #), Bub not {tn (x — m, x) B8 we may
amsxly convince purselves by methods used in the heory of Fourier 'series.

»,v . ’3
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S,xw = f f(8) Kale, t) dt.

. If (R) denotes the cu'cumference of the circle Izl =R, it
follows by the theorem of residues for almost all values of n*)

_and

k,.(x, ) = Z——. [ k(z) [-1(2) cos [(x — ) z] dz.

: T (n+h)
Putting 3
onl, t) = a—— [ o(z) I=Y(z) cos [(x — t) z] dz’ (2,6)
‘ Yntd) : 7
: ,and replacing k(z) by (1,8), we obtam

) .
kn(z, t) = o (n{i)cotg 712 CO8 [(x—1)2] dz
+ Qn(x, t) = Kﬂ(x: t) —‘}‘ Qn(xy t);

» 80 that B

snwi )= Sulai )= [0 em )@ @)

‘We observe that if the last mtegral -tends to zero for # — oo,
the series (2,2) and (2,4) are equiconvergent so that the question.of
the convergence of (2,2) reduces to that of the corresponding
Fourier series. In the next chapter we- give some sufficient condi-
tions for this equiconvergence, while in chapter 4 an analogue of the
I}iemaml Lebesgue theorem on coefflclents (2,3) is estabhshed

Ll
“3. Theorem on convergence.

In this chapter I establish the followmg theorem:
, (A) When Hx) is of bounded vanatwn in [«, « + n], then for
ze(x,x 4 m) '
v 8n(; f) — Salz; fH— 0 for n—> o (31)'
umfomly\m (4 5, & + 7 — 1), where 7 i8 an a/rbztrary f;:ced real~
- number tn. (0, 1), - e
-* . The sum of (2,2) is therefore } [f(x — O) + /(a: £ 0)], as rsmlts

- from the theory of Fourier series. .

Lo (B). When. {l} € 4, then. (3,1) holds for any ,‘um‘hoa (2 1)
" .“m/f”‘mly in (x 47, a4 n-—n). .
Lo Q) When {1,} cA, aﬂd g(z)eP (3 1) 18 true alao for _

s *) In cofisequence of ( 1 ,1) it is obvnous j.hat no ' zero nf i(s) ooina&d”.
.withn-&-'h lfnffelg 1"80”00‘1811 ‘ : :

T
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provided that f(t) 1s of bounded variation in (x 4 & —4,'x + n), and
for x = o 4 7, if f(t) possesses the same property in (x, x + n).*).

(D) When {Z }e A4 and o(z) € P, (3,1) is satisfied uniformly in
[%; & + «].
Before proceedmg to the proof. of this theorem, I introduce

some notations which will be employed in what follows (also in the '

next chapter) and prove some preliminary lemmas.

Notations.

l B is any fixed number in (6 lim sup |41, §).
v=+
. 1 is any number in (0, 1).

3 @ € [— 7, 7] is the argument of a complex variable z = refe

‘\//‘ \

where r > 0.

. 4.¢ (1=1,2,...) are positive consta,nts independent of r as
well as of ¢ € [— #, z]. They may depend on . The numbering is
independent in every lemma.

5. n denotes in this chapter a positive integer, in the next
chapter any integer. oo

6. k; are positive constants independent of n and of q (see
Lemma. 5e.8.).

tM@—w—wan 2w+a—av+a+ar+@—

—a—8,v—at )+ (—0, b+t 8+ (—bh—3s—L+ ),
where § is an arbitrary constant in (O, ). M = M(0).

Lemma 1. ‘Suppose l(2) € L, and r € (1, ) M. If
“A(z) =l(2) cosec nz,

then ’ _ .
o B < [ A(refv) | < ot , (3,6) -
Proof. Smce by (1 1)
| A <A<sa - (3,8)"
for almost all valuee Of v, we have . - . S
: '_'. _;:{-m <l : L . (3’7), '

v fm* &Il values of Te (r.,, o) M, where ro> 0is properly chdsen, and
. all values of ¥ w1th one possible exoeptlon L

*) These oondxtx.ons cbnoeming f(e) are suffxcwnt theu- neoesuty m not »

‘asgerbod.
% . " . N

~




© Accordingly, for the same values of r and.» = |
‘ . N v‘ ;.v

L o
_log!l-—reiw__vH<
|

iv W ’(3’8'

(3,7) may be false for a || e (r — 5, r Jy Tg) But in tlus cast

llog| 1 ———r—————ew__y0||< Hog|r—wyl| + |log |r —1,,|| < 210g3‘7

(3.9)
Further, putting

01(2) = I—_I_r' (1 - T‘) 9-':—,

we deduce easily

" [4| .1 o
llog |gy(re‘®) || < cor zg I + ey ;yé,z—lv-z < Cq A3,10)
" and by a similar argament ' '
|log lez(fe"”) Ik <o ' (3;11)

where ' e~

z

o) = 1] (1 —%)ev.
‘ . |v[=r .

We may now write .
. 1 » }'v L
;M= @ e [T+ T] (1 — -,———,,-). (312)
. l ' <9t Y [“‘ |<’| ~ V.
o Takmg the real parts of logarlthms of both mdes and utlhsmg
. (8,6)—(3,11), it follows o

llog |A(re) | < s + 3" log(l +1;
r—]vll

3

BidESs .
. Al o LAl
P e A AP

In thm formula Ny = (—r*% — 1), when ¢ ¢ [— gn, }n] and N, ==
= (1, ?) for the remaining values of @. Similarly Ng (0, §r) or
(-—}r, 0) and Ny = (—1r%,7?)— N, —N,. _ AT

. « Hence we deduce by employmg (3,6) o : Az

R Mg I |1 <o+ Alogst + dogrt Slogn k)
s A ey + A [log §r + log (1% — r)] < ey + 6}. log r, ""} e

'5-5;91‘.,

. e llog m(re"r) < e + ﬂlog r, o
. thmh i equlvalentt,o (3 5) R | A
5‘ - . \




Lemima 2. If g(z) ¢ Ly(d)-and -
y(z) = g(2) cosec [n(z — a)]
then/or reM(a) and la] < 1 ' v
o < |y(re)| <y (313)
Proof. Let g, = » 4+ a + y, be. the zeros of g(z). S
Using the well-known formula

sinw (kR —a) = smna( z—a) n (1_——”_*_(1)3%,

P ==-—00

sin 7a bemg replaced by n when @ = 0, and proceedmg on the lines.

of the prewous proof, we_obtain N
sinma °°,v+q, e T '
o v@=1TI gy I1 (1 v ‘a)' G149

* Y=-—00 v_—oo

- The convergence of both products is evident from (l 3). .

From (1,2) it can be easﬂy seen that taking r ¢ M(a) large
enough, we have - ,
o
lv +al

l<%) ' =

)

and consequently

"
reww — v —a |

log

Y ‘
7‘——]1’—}-(1[)

< 2
for all values of ».

- Accordingly, - . _ ° S
. Y N . ' . l
l‘loglr(r_e‘W)H<cs+2[ 2+ 2 + 2|

rislr Frepicz = zqf—~|v+al

all

<c§,+c‘l/rr---1-~}—c5 max- ]y,llogr-i—c, > vid§
. Vrelsi<2r AMEE4g o
and the result follows from (1, 2) and (1,3). R
,LemmaB Whenuw real and ju] > 1, we Iuwe <
e = Oupy, G 1’5)
B g =0y L (3 w)
Ifmwanmteger, S PRI N

fﬂm+aH£kW4pN5 ‘f, wm~

‘:kbemgapositwe constant mdependentplm PRI
Proof (3 15) holds by (3; ’5) fox the above weM. .-

N
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| : | ..ﬁm(u) = ,’1*__—‘1”; A(w)
and. omittin@-in (3,12) the term 1 — Am , we deduce by repea-‘

" ting with this modification the analysis in the proof of Lemma 1
: Am(u) = O(lulf) -
also for veM 4+ (m—db,m-+41—9).
Hence for these values of

sm U

) = (4 — 1) Am(u) = O(1) O(ju f) = O(ju %), (3,18)

"J:'and the left-hand side being mdependent of m, (3,18) holds for all
real values of u.

. * The proof of (3,18) follows on the same lines by modifying the |
- proof of Lemma 2. We have

| ) = (= gm) 7o) e 22—,
" where ’
 Ym(w)=0(1) for ue(m +a—3d,m-+ a+ 9).
Hence : . :
. lglm + a)| = |2ymym(m + a)|,

and (3,17) follows immediately.

Lemma 4. Suppose re(l, oo)M Tken

- L. ]g(re‘¢)i < cm’ .o (3,19) :
v II When {L} e Ag, then - : :
(AR lelrem) < e . (3,20)

III Wken {L}e As aml g(z) € P, then o .
o(re®®) = o(1) for r—> O o (3,21‘)‘

/-

. umftmnly in [—a=, z.
IV If {L} e A, and o(z) € P, then ’ :
Y lg(re"r)l<o,r~1 o - (3»22)}'

~Proof L Puttmg z = rew®, we ha.ve by (3 16y for r e M a.nd*u,.
71#0 : : .

w\-

.2 l(y) CyF l”l" i
‘ ‘ (v-—-—z)r e —DI
i wheﬂoe the oonvergenoe of (1, 9) follows unmedlately,"') L s ]
: The comta.nts ¢ are in this proof mdependent also of ».

(3,28)




"The ‘last expression being Q(|»|f-1), O(r# |r — [»}[*!) and
O(r {v|p-2) for |v| < ¥r, §r < |v| < 2r and |»| > 2r respectively,
we obtain on carrying out the summation of (3, ,23) with respect .
to ¥ e (—c0, )

lo(reie) | < cgflogr << cor?,
where f < f' < }.
R II Suppose o(z) € P.*) Then by (3,17) for r e M

) | |4

v——zl Tr—Ill

The comergence of (1,10) is now evident by (1, 3)
Further, we have
le(re"")l<cv[ 2+ 2+ 2 + > ?%Tﬂ“
: Ivi=lr Vr<i» [<-;— —;— Iv|<2r Ivl>2r
. ' (3,29
The first sum gives O V;r—l), the second and the third ones are
O(max [4,]log r), while the last one is o(1) for r > oo by (l 3).
r<iv,=or ’
Hence 1t can be easﬂy seen that (3,21) and also (3,20) in the casé
when e(2) e P are a consequence of (1,4) -and (1,2) respectively.
(3,20) is established also for the case when g(z) does not belong to P,
for such a ¢(z) differs from a p(z) ¢ P only by a constant provufed
that {l } € Az N
"'When {l,} € 4,, the first two sums and the last one in (3,24)
‘are less than c-,r—lz tA,|, while the thlrd gum is 6y (1 8)
O(r—-1 log—1rlogr) :67r—1), and. (3,22) is proved. ‘
) Lemma b. Let q ¢ [— m, n] be a constant independent of n and
l = max |A—(2)|. Fhen for almost all values of n

Jz]=n+} , ‘
Ifg) = [ |el—1(z) dz| < ki, (3,25)
An+1) L . '
and of lgh<m, v S SR
n 3,28)
I,.(q) <= lql ( )

_ . Proof. Puttmg R=n+1} and takmg n large enough,**) We ’
’ obtam for z = Ret* . .

ll*-l(z)l <1 ]cosec nz| = 2le, [l + e —2e1 cos (2atRcos¢>)]—-%< Ic,le,
,vwhere' q = e—aﬂlﬂqwl ' ;

. *). Conaequently {1} s 4, -
"") Notlce the fobtnote on page 1.
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Syt S . ot

;" Sincg sin g > 2x—1 ¢ for g€ (0, ), we have

.

I 21 ; o
A=TT,(q) < kst exp (—¢R sinq:—enR |sing|)dep <

< k4Rf exp [2Rn"1 (Igl —=) ¢l dp <
! ' (3,27)
< kR f de < kyn.
lWhen lg] < =, (3, 27) ylelds

I-1(g) < kARf exp [2Rn~1(|g| — =) ¢] dp =
S ‘
__ kaR ks
i : ~ 2R(r—ql) T w—Igql’
which completes the proof.
~ Lemma 6.

(i) oalt)=O(1) for n>o0 (3,28)
umformly with respect to vxe(lx + 1,0+ m— 17) as well as to
te [zx, «'+ n].

SN (li) If, moreover, {l } 4y and g(z) € Pthen

onlz, 1] = O(1) | (3,20)

umformly for:ce[oc x + 7] and te[x, x« + 7.
Proof Put |x —¢t| = ¢ and g = max |g(z)|. Using the nota.
lz]=n+%
hons of the previous lemma it is immediately seen from (2 6) that

Lon(@, 1) ] < olTn(g) + In(— 9)]-

. . F'O.béerving that in virtue of (1,2) n -+ 3 ¢ M for almost ba‘ll
: vo.ln‘es of n, the lasﬁ _expression. is less than L3 in the case (i) by~

(3 20), (3 26) and (3 13), and less than kgn—1n = Ic2 in the ca.sp (i) .
by (3,22), (3,25) and (3,13).

Lemma 7¢ Let t, and t, be any two numbers in [«, « + n]. Then )

um[ormly for z € [« + N & + n——-n]

zx,' o+ 7:] (3,31)
o Proof The pnrtutwe functwn of g..(z, t) bemg , N C

L ’
\1_ »,!"

“ (b) When o) eP and {l,}sA,, (3 30) holda um[ormly 55

BT fe,(x,t>dt-o<1) formse G

’. -

o



Jul@, ) = 2 [ 21 () I-1(2) sin [(:—;%5 Az
Ay
we deduce easily, retaining the notations of the preceding proof and .
supposmg that ¢ e [o, & + 7]

| Ta(@, )| < n=g[Ia(g) + In{— )], y
Now, the results are obtained by employing (3, 19) (3,26) and

(3,5) for the case () and by employing (3,21), (3,25) and (3 13) for
the case (b). .

Proof of the theorem.

Suppose that f(f) is a non-decreasing finite function in
[«, « + =]. By applying the second mean-value theorem -of the in- *
tegral calculus to (2, 7), we see that (2,7) tends to zero umformly in -
(o0 + 7, « + 7 — n) in virtue of (3,30). A function of bounded varia-
tion being a difference of two such functions, (A) is established.

In order to prove (B) and (D), we observe that'both statements
are true by (A) and (3,31) respectively when f(x) is a polynomial
‘P(z) in [, « 4+ n], for a polynomial is of bounded variation. Now, -
f(t) being any function defined by (2,1), we have by (3,28) and -
(3,29) respectively » '

| Tonla, ) 1) — PV < hufIf®) — P(o)| d,

~

where k; is independent of ze€(x 4 7, o + 7
ze [o, » 4 7] regpectively. The last integral can be made arbltranly
small by a suitable choice of P(¢). Combining these results we see
that' (B) and (D) are established. .

C is proved by combxmng the methods of the proofs of A
and of B.

4. Theorem on the coeflicients.

In this chapter the followmg theorem will be proved o
- The coefficients a, and b, given by (2,3) tend to zero for n =+ , ‘
promded that{l,} € A, and that f(t) is a function defmed by (2, 1)

Since by the 'Riemann-Lebesgue theorem f f(t) eilnt dt - 0. for
n —>;§: 0, it is: Bllffl(:lent to prove - s
CER @ =00). -

Supposé | n.! so large that |4,| < 3.
Whenl =+ n, we have I
l(n) AN [ (%)

L k(l..) = o(la) = O(1) — 7= e +~—,;wv_vz;>

'#’l . ) o K

\

. , ] . -



e Argumg as in the proof of Lemm& 4 we see that the last qum
. m O(1) for n =+ co. Further, it follows by (3,17)

o lm) _ N
Accordingly, k(l,) = 0(1). .
en l, ==, we have
k) =~ U(n )+ % -3

V“——w
vin

k@)1 < [V(n)] + Ky

- Accordingly; our problem reduces to the proof of the inequali-
. ties -

Z<v> L

~whence we see that

_ ky < [V(la)| < ks. - (4D
Observmg that by (1,2) I, e M(— }) for almost all values of =,
* (4,1) follows immediately from (4,10) and (3,13).
' In order to prove (4 10), i. e. Lemma 10, two.more lemmas are’
~necessary.
. Lemma 8. If l(z) e Ly, and I = (8, Oyr) where %<1l and
, 19, > 1 are constants independent of r and @, then for z = reve and

Fe(2, 0) M .
HeI<a s o hL e, (4,2)

. |» leI |1’I) ' .
Hence , o
| |X(2)| < c3log—1r. o 43)
Proof. Taking logarlthms of (3,14) for a == 0 and differen-

" tiating, we obtain .

: A(2) ® Ay
o e L2 = ne—=T)

Y 00

4, Usmg (8, 13), (1,2) and (1, 3), it is easily seen. that for all suf-
fxclently large values of r ¢ M

-

M'(re“')l<c4[ S 4S5+ S —l’-”—-]<

e iSer Ter . iSe, (T —1P1

L Logrthoy S LI 7+ el <oy + o log=tr

e : |.|.1(’““‘ Iy :

. <¢10108—1 :

Q » /Lemma 9. The zeros l' of the function U'(z) where l(z) € L are a.ll
real ami enfkcr

{l'.}eA(#)or{l’v}sAP%) o

o



Prot,)f The order of l(z) is 1, for l(z) is a c&nomcal produot and
the exponent of convergence of its zeros is equal to 1. Thereforp, '
by a well-known theorem of Laguerre I', are all real and are sepa.- _
rated from each other by the zeros of I(z). N '

In orderthatl’y >0 and I'_j < 0 we ha\eto fix the numberlng
S0 ‘that either

.lv——l < l < l,.
or
. : lr < l,: < lv+>1-
Put I,* = I’, in the first case and [,* = I’,_, in the second case.

.Denote by I, the open interval, the end-points of Wh.ICh are
n— % and [,*. It is obvious that. for u e I -

i — 1< UL | . &7
From (1,2) we see that, given any fixed 7,€(0,1), we can
- choose § and a positive N(z,) so that
I'n(ng) =0 —1+4n, n—n]CM
for all valués of |n| > N(n,).

Put 2,*=1,*—n + 4. We can easﬂv show that thele is
a fixed #, € (0, 1) such that

furthermore

v -

f j PRI Pt L o (48)
for all values of ln{ > N(n,). For, if (4,8) were false we could choose
g € I, so that

lag—mn + 3 =4 —mny '
and gince also - uo el (770) C.M] (3,13) and (4,6) would yleld
n—13) 8in 7u, .
= i T || ) | <o ’"’_°’ o

WhJCh is impossible if 7, is small enough ® o
* Since by (4,8) cos n}.,."‘ > 0 and I'; ¢ M for almost all values‘ f
-of n, we deduce from (4,7) in a similar manner
B *)
'for all sufflclently large values of |n|, whenoe :
‘ M —§)— A |
: Al*)

< cos Ay*

" cos wh* = 1

or by,~(3l',l3)_

N P E VoL ’ - . . . L e m



) ..inl,.,
s »2

<y M»* l’(l”
. .
vghere i &1,
. Hence by (4,3)
* ‘ [An*| < Ky M'(l"n)l . 0(log~1 Inl). ' (4,9)
Hereby the first required property of {I',} is proved.
In order to prove also

v

uo,/, ;w*
z - >

V=-—00

" ‘we employ (4,2), (4,9 and (1,3). Observing that s e M for dlmost
.all values of s, we have for N — o

PRI ,1.'(1”,)) ’ ,
S [2i=0( 2 =

. e (mzzv s .

Of 2 1817 + 00 2 ls1=t . 2 IBIE|— )%=

< oo,

- Hal<|vi<2le]
=ol) +0[ 2 |z.| 2 Jotqul ===
|v|>1N HES
© 1 2

=.o(1)+0[ 2] Ipt ( )] o(1),

s ' ,mgiv 2 st+i |
whenoe the result. - L - A
-~ Lemma 19. Puiting
'I‘b=‘———-l——(zg-)~ when 1, + 0, and ho=1 (0) when lo= 0 we have .‘
| S l'(z)eLzuz o9} @ 10)

promded that 1(z) e L,.

" Proof. I'(z) being an mbegral function of order 1, it can be
wntten in the form '

i’(z),~= heri(z — 1) [T ( 1— —;—) e7¥ her® b(z) = her* t(z)‘ cos nz_. '
N N4 is a real number, for l’(z) is real for real values of 2. BN

}5 .it. 'The zeros I', of the function #(z) belonging to A,(+ §), -
i(z) e L,(;I: 1) and Lewma 2 yields for gll real values of u ¢ M (—— { .

o o e > k)
and consequently also -
E “(’“)f > kz

¥ ‘) k‘ are, here posmvb constants mdependent of  under cenmdera.hon.

T
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On‘the other ha,nd we obtain from - 63 13) smd (4 3)
ll’(u)l = |nA(u) cos au + A(u)sinzu | < Ic
for u e M.
Were now y > 0, it would follow for u € (1, ) MM( 1)
‘ ky > [U(w}| = |h|e® |t(u)]| > kherd — o
for # — co, which is impossible. The impossibility of y < 0 is shown
similarly. Accordingly, y = 0 and (4,10) is proved..
» *
0 jistém zobecnéni Fourierovych rad.
. (Obsah piedeslého &lanku.)

Funkci redlné proménné f(x) s variaci kone¥nou lze pro
z e (x, « + n),*) kde « je libovolné &fslo realné, rozvinouti v Fadu

E(a, cos L,z + b, sinl,x) = } [f(xz + 0) 4 f(= ———JO)],

pii emZ [, jsou ¢fsla hovici podminkdm

lv < ll'+—1’ l—l < 0 é_ lo; .l,. =" + 2‘!',‘
lim sup {4,| < 1% ’
. y=+40

a koeficienty a, a b, jsou dany vzorci (2, 3) (v1z (1, 7) (1 10)) ’

Piedpokladdme-li jesté (1,2) a (1,3), je naSe fada pro ]akoukoh
funkei v intervalu («,« + x) integrace schopnou**) v tomto inter-
valu ekv1konvergentni 8 fadou Fourierovou s koeflclenty (2, 5) Za .
tehoto predpokladu plati také .

a,—> 0, b,—~> 0 pro » = 4 oo.

" Za dal¥fch predpokladi pro I, plati vyse zminena ekv1konver-
gence téZ pro r = 8 * = + 7. ‘
. \

' e

v /

*), Tniterval otévieny. o ' . '
.. **) Ve smyslu Lebeegueové ; i co do absolutn{ hodnoty. .
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