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An arithmetic of modular function fields of degree two 

Ryuji Sasaki 

Abstract: Let IT be a K u m m e r surface associated with a hyperelliptic curve of genus 2. We 
can natural ly determine a field F of definition for K. We denote by Fyy the field generated 
by the IV — torsion points of IC, where IV is an odd positive integer. Then we show tha t 
the fields extension EAt/E is a Galois extension, and determin its Galois group when K is 
general. 
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1. Introduction 
For a point r in the upper-half plane, we denote by p(z) the Weierstrass p function 
associated with the lattice L — (T, 1)Z2. Then we have an equality 

p ' 2
 = 4 p 3 - a 2 ( T ) p - # 3 ( T ) , 

where 

*-(')= 60 £ £ . 9s(r) = U0 •£ ^ 
u;GL -{0} ue.L-{0} 

The discriminant and the j invariant of the elliptic curve defined by 

y
2 - 4xz - g2(T)x - g3(T) 

are defined by 

A(r)=92(T)3-27g3(rf, j(T) = ^ - . 

In the arithmetic theory of elliptic modular functions, it is fundamental to in­
vestigate the field generated by the J(T) and the Pricke functions of order N 

fair) = ^^-p(raf + a!';r), a = ( £ , ) € i z » . * Z » 

over the field Q of rational numbers. 
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When one intend to develop the arithmetic theory of modular functions of degree 
greater that one, it is not a good policy to adhere so-called "j-invariants" at present. 
So we follow closely Kronecker's method of treatment on studying the arithmetic 
theory of elliptic modular functions. In his paper [11], Kronecker investigated the 
filed generated, over Q, by 

s/к = (2т|0)/Ö[0](2т|0) 

and 

(2т|2(т/i' + Һ"))/ 
0 
i_ 
2 J 

(2т|2(т/г' + /г")), h = ЄÑZ 

where 0[m](r|z) is the Jacobi's theta function. 
Conbining these two theories, we propose an arithmetic of modular functions of 

degree two. Now we shall explain our story. 
Let r be a 2 x 2 complex symmetric matrix with a positive-definite imaginary 

part. The set of such matrices forms a 3-dimensional complex manifold, which is 
called the Siegel upper-half space of degree two. We denote it by JH2. We know 
that the symplectic group Sp4(R) operates on M2 as 

M -т = 
a b 
c d 

т = (aт 4- b)(cт -F d) ~ i 

We consider the subgroup T(2,4) of the Siegel modular group Sp 4 (Z) consisting of 
elements M satisfying 

M = 1 4 mod 2, (a*6)0 = (ctd)0 = 0 mod 4. 

For a square matrix s, s0 denotes the column vector consisting of the diagonal 
elements of s. 

The quotent JH2/T(2,4) is called the moduli space of principally polarized abelian 
surfaces with level (2,4) structure. The Satake compactification of 1rY2/r(2,4) is 
the projective space 1P3. 

For a vector m € R 4 , we denote by m\m" the vectors in R 2 determined by the 
first and the second two coefficients of m. Then, for a point (r, z) G M2 x C 2 , the 
series 

0[m)(T\z)= J^ e(\Hm'+p)T(m'+p) + \m'+p)(m" + z)) 

is called the Riemann's theta function with characteristic m. 
Three quotients of second order theta constants 

K(r) = (2т|0)/Ö[0](2т|0), a{ф 0) Є ^ Z 2 / Z 2 
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form a set of generators for the field of the modular functions relative to F(2,4). 
The functions {ka} play the same role as yfk in the Kronecker's arguments, and 
they are considered "j-invariants" in our theory. 

For a point r £ JH2, the image of the holomorphic map 

* r : C 2 / ( r , l 2 ) Z 4 - + i P 3 

defined by 

9(z) = (0[0](2T\2Z) : fl[a1](2r|2z) : 0[a2](2r|2z) : fl[a3](2r|2z)), 

where 
i i i i 

«i = ^ , 0 , 0 , 0 ) , ^ = '(0, - , 0 , 0 ) , a 3 - * ( - , - , 0 , 0 ) , 

is called the Kummer surface associated with the abelian surface corresponding to 
r . For an odd positive integer AT, the coordinates of "N-division points" play the 
same role as Fricke functions. Let FN(T) denote the field 

Q (fcQ(r|(r, 12)A) ; a € i z 2 / Z 2 , A G ^ Z 4 / Z 4 ) , 

where 
r a 

0 
ka(T\(r,\2)h = e (2т|2(r,l 2)Л))/0[0](2т|2(rЛ' + Л")). 

The main purpose of our theory is to investigate the field extension FN(T)/FX(T). 
When r is generic, then we have a following theorem: 

Theorem. The field FN(T) has the following properties. 

1. FN(T) is a Galois extension of FX(T) = Q ( k a ; a £ | Z / Z ). 

2. I/C is a primitive N-th root of unity, then £ £ FN(r). 

3. Q(C) is algebraically closed in FN(T). 

I 

G a l ( F N ( r ) / ^ ) ) ~ {It £ GL 4 (Z /NZ) /{±1 4 } 

\ n ^ 1 J ) = ^ ( ^ l)R m o d N , 3 n , ( n , N ) ^ l } . 

It is interesting to determine the Galois group Gal (F / v ( r ) /F 1 ( r ) ) when r is not 
generic. 
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2. The Siegel upper-half space and congruence subgroups 

For a positive integer #, we denote by Mg the Siegel space of degree g, which is 
consisting of complex symmetric matrices r with positive-definite imaginary part. 
The symplectic group Sp2 p(R) acts complex análytically on the Siegel space Mg as 

M-T = {aT + b){cT + d)-\ M=(a
c j ) e S p 2 p ( R ) , 

We denote by Tg(l) the modular group Sp2 5(Z), and by Tg(n), r (2n ,4n) the 
congruence subgroups of Tg(l) of level n, (2n,4n), i.e., 

rg(n) = {ae rg(l)\a - l2g = O(modn)}, 

Tg{2nAn) = {(* J) €= F(2n) | (a ř 6) 0 = ( c ^ ) 0 = 0(mod4n)}. 

For a square matrix 5, s0 denotes the column vector consisting of the diagonál 
elements in the natural order. These are discrete subgroups of S p 2 p ( R ) , and both 
of r^(n) and F^(2n,4n) are normál subgruops of T (1). The quotient varieties 
JHg/T(n) and Hg/F(2n,4n) are called the moduli spaces of g-dimensional princi-
pally polarized abelian varieties of level n and (2n, 4n) structure, respectively. 

Since the relation between the moduli spaces JHg/Fg(2)4) and IHg/Tg(4:,S) is 
important for our argument, we will study the factor group r p (2,4)/F^(4,8) . 

We denote by E{- (1 < i , j < g) the matrix unit which has a 1 in the (i,j) 
position as its only non-zero entry. Put 

A - ía(ij) ° 

where 

aW> = lp + 2 B y i l<i*j<9\ a^ = l9-2Eii1 \<i<g. 

Put 
, 1 h(ij) 

t J 0 1. 

where 

f t W > = 2 ^ i + 2 E i ť l l<i<j<g,-1 6 ( « ) = 4 B « l < 2 < y . 

Finally we put C^- = ^ • for i < j. 

Proposition 1. The factor group Tg(2,A)/Tg(4,8) forms a vector space over 
the field Z/2Z of dimension g(2g -f 1). The g(2g + 1) matrices A - ( l < i, j < 
< #), .8^,(7^(1 < i < j < g) are contained in r^(2,4), and the residue classes of 
these form a basis of T (2, 4)/F p (4, 8). 
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Proof. The first part is proved in [6]. Consider the map 

(/> : r p ( 2 , 4 ) / r p ( 4 , 8 ) —•> (ZjTL)2g x (Z /2Z)^ 2 ^" 1 } 

defined by 

M = (a 

where 1 < i < j < g. By an easy calculation, we see that 4> is a group homomor-
phism. Since the images of the A^, Bkl, Ckl under <f> form a basis of the right hand 
side, it follows that 0 is surjective. Comparing the order of these groups, we see 
that <fi is an isomorphism. rj 

3. Theta functions 

In this section we recall the definition and some fundamental properties of theta 
functions. For the general theory of theta functions and theta relations, we refer to 
Baker [1], Igusa [8] and Mumford [12]. 

Let r £ JHg, and let z G Cg be a complex vector. For a 2g dimensional vector 
m e Tt2g, we denote by m!\m" the vectors obtained by the first and the second g 
entries of m. The series: 

0 [m]( r | z )= Y, e f o V + P W ^ + r i + V + r i K + *)) > 
peZg 

where e(*) = exp(27T\/—T*), represents a holomorphic function on the product 
Mg x C^ , and satisfies the following: 

1. 0[m](r| - z) = 9[-m](T\z). 

2. 6[m + n)(T\z) = e(Wn")6>[m](r|z), n G Z2g. 

3. 0[m + Z](r|z) = e^lWl' + *l'(z + H ) e ( W ' ) 0 [ m ] ( r | z + TV + l;'), IeR2g. 

For a fixed r and m, the function 0[m](r|z) on Cg is called a theta function 
with characteristic m and modulus r . On the other hand the function c9[m](r|0) = 
= 6[m](T) on M is called a theta constant with characteristic m. 

A half-integer characteristic m is said to be even or odd according to e(2tm'm") = 
= 1 or - 1; hence the theta function #[m](r|2) is an even or odd function if and 
only if the characteristic m is even or odd. 

Now we recall three fundamental relations among a lot of theta relations. The 
first one is the Riemann's theta formula. 
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Let ml, m2 , m 3 , m4 denote vectors in H2g , z1, z2, z3, z4 vectors in C 5 , T a point 
in 1H^ and let 

1V1 i -i -A 
2 1 - 1 1 - 1 ' 

\ l - 1 - 1 1 / 

which is an orthogonal matrix. Put 

( n 1 , n 2 , n 3 , n 4 ) = (m1,m2,m3,m4)Ti 

(w1,w2,w3,w4) = (zliz2,z3izA)T. 

Then we have 

I I « K ] ( r | z 4 ) = ^ £ e ( - 2 * m ' . a " ) f [ * K + a ] ( r K ) , 
t = l a t = l 

where a runs over a complete set of representatives for | Z g /Z2g. 

The second relation is the addition formula. Let m,n G R 2 5 , z,tD E C p and 
T E JH£. Then we have 

Ø[m](ф)0[n](т|w 
I Ҷ m ' + n') + o! 

m" + n" 
a' 

= ^ £ e ( - 2 ř m ' a " ) 0 

(2т |- + гi;)ć> Um' -n') + a' 
(2т\z -w) 

m' +rí 
Um" + n") + a" 

(2т\z + w) 

x 
L 2 

m — n 
Um" -n")+a" 

(2т\z-w), 

where a', a" run over a complete set of representatives for \Zg jZg. 

The last relation is the base change formulra. Let m G R2g ,z € Cg and r G i?I0 

For any positive integer p, we have 

Ø[m](ф) = £ ø + o' 
pm 

( ř » 2 ф г ) 

= -Гe(-M")í 
p 5 1 ^ 

pm 
Ç+a" 

(-1-) 

where a', a" run over a complete set of representatives for ^-Zg jZg. 

G C p and r G iHp. For an element 
Finally we recall the transformation formula of theta functions. Let m G R 2 p , z G 

ement 
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let 
f d ~c\ 1 f(cld)0 

M • m = m + o lL 
V~o a J 2\(atb)0 

Then we have 

6[M • m](Af • r |*(cr + d)~l z) =#c(M)e(0m(Af))det(cr + d)*-

• e ( -^z(cr + d)_1cz)c9[m](r|z), 

where 

0 m ( M ) = - V ^ c W + ^ m " W ' - 2tm,tbcm" 

-t(atb)0(dm' -cm")). 

Here if we choose the sign of the square root det(cr + d)1?2 , then the constant 
K(M) depends only on M. 

4. Equations defining abelian varieties 

In this section we will give some remarks on the equations defining abelian varieties 
of dimension g. For a positive integer n, we denote by R(n) a complete set of 
representatives for -^Z*9/Zp. 

For a point r0 £ JH , let 

$ r o = 4 > : C V ( T 0 , l 5 ) Z 2 9 - * i P d , d = 4 - - l 

be the holomorphic map defined by 

$(z) = (.-.,e(-tm'm")e{m](T0\2z),---) 

where m'.m" run over the set R(2). Then $ is biholomorphic to its image, which 
is an abelian variety. We denote it by A(r0). 

Let {X[m] | m!\m" £ R(2)} denote the homogeneous coordinates of the ambient 
projective space IPd. 

Proposition 2. The abelian variety A(r0) is an intersection of quadrics. More­
over the coefficients of their quadratic equations are quadratic polynomisals of e( — 
— m'm")9[m](r0)

 }s with integer coefficients. 

Proof. Consider another mapping $-_ of the complex torus C p / ( r 0 , lg)7j2g defined 

by 

* '(*) 0 
(4т0|4z),-

where a' runs over the set R(4). We notice here, by the fundamental properties of 
theta functions (cf. 2), that we can consider a' an element in the group - | Z P / Z 5 . 
Then the map $ ' is biholomorphic to its image, which we denote by A ' ( T 0 ) . 
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Let 

Y , a' e 7 Z V Z 9 

4 

be another homogeneous coordinates of JPd. For 

A , L 3 , C , D e i t ( 8 ) , r" G R(2) 

with 

A = H = C = Dmod -Z\ 
4 

define a quadratic polynomial 

Q'(A,B,C,D;r") 

= J Yl <^P'r")0 
[p'6fi(2) 

x J J2 e(2*pV")-' 
lp'€fi(2) 

] Г e ( 2 V r " ) ö 
[p'ЄЯ(2) 

x | £ e (2 ř pV")Y 
lp'ЄЯ(2) 

Л + ß + p' 
0 

' C + D + p ' 
0 

A + C+p' 
0 

B + D+p' 
0 

(4r0)0 
A-B + p' 

0 
(4r0) 

Y 
C -D+p' 

0 

(4r0)ð 
A-C + p' 

0 
(4r0) 

Y 
B-D+p' 

0 

Here we consider the A+B+p' G \Zg elements in \Z9/Zg. Then the abelian variety 
A((r0) is an intersection of quadrics denned by the equations Q'(A,B,C,D]r") 
([8],[12]). 

By the base change formula of theta functions (cf. 2.), we have 

£ e(2řpV")č? 
p'€ň(2) 

A + B+p( 

0 

29 ^ 
P"ЄЯ(2) 

2(A + B) 
p" 

(4т0\4z) 

(т0\2z) 

A-B + p' 
0 

2(A-B) 

(4r 0 |4z) 

( \2z), 

where 
9[m)(r\z) = e(-^m ,m , ,)f5[m](r|2). 

For a £ \Z9, let {a} be the element in it(2) satisfying a = {a}mod Zg. Moreover 
we put 5(a) = a - {a}. Then the above becomes 

l- Y2 e(-\s{2{A + B)) + s{2{A-B)))jf') 
P"ЄЯ(2) 

2(A + B)}].,0.ã\{2(A-B)} 

2з 

(т0\2z) (т0\2z). 
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Let 
C:Pd 

be the linear transformation defined by 

u ' 

P"ЄЯ(2) 

{2a} 

p " 

Then, by the base change formula, we see that A(T0) = C(A'(T0)). Moreover we see 
that the abelian variety A(T0) is an intersection of quadrics defined by the quadratic 
equations 

Q(A,B,C,D;r") 

= j E Q(p") 
[p"ЄЯ(2) 

xj J^ ß(p")X 
[p"Єñ(2) 

- I £ wy 
[p"ЄЯ(2) 

x | J2 ð(p")x 

lp"€Я(2) 

{2(A + B)} 

P" 

{2(C + D)} 

P" 

{2(A + C)} 

P" 

{2(B + D)} 

(r0)S 

X 

{2(A-B)} 
r" - p" 

{2(C-D)} 

( ) 

(r0) 
{2(A-C)} 

r" - p" (r 0 ) 

X 
{2(B-D)} 

where a(p"),P(p"),j(p") and S(p") are ± 1 defined by 

a(p") = e(-ls(2(A + B))p" - ts(2(A - B))(r" - p")), 

d(p") = e ( - i s ( 2 ( C + D))p" - ls(2(C - D))(r" - p")), 

7 (p") = e ( - f s ( 2 ( A + C))p" - ls(2(A - C))(r" ~ p")), 

6(p") = e(-ls(2(B + D))p" - ls(2(B - D))(r" -p")). 

The following lemma is easily proved by the induction on g. 
D 

Lemma 1. For any two half-integer vectors m,n, there are even characteristics 
a,b such that all the column vectors of (m,n,a,b)T are half-integer vectors, where 
T is the matrix introduced in 2. 

Proposition 3. If no even theta constants 0[m](To) vanish, then the addition and 
the inversion of abelian variety A(T0) are defined over the field 

r, fO[m}(T0) 
Q ~, h J \m,n: ev en 

\8{n}(r0) 
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Proof. It is clear for the inversion. For any two points 

$(z) , ${w) € A{T0), 

there exists a half-integer vector n such that 

9[n}(T0\2(z - w)) ^ 0. 

Then by the lemma, for any half-integer vector m, we have even characteristics 
nl,n2 such that any column vectors of 

(m,n,nx,n2)T = (l^^h^h) 

is half-integral. By the Riemann's theta formula, we have 

6[m)(T0\2(z + w))6[n}(T0\2(z - W))9[0}(T0)
2 

0[O}(TO)2 

[щ}(т0) [n2}(т0) 

1 0[0](т0)
2 

(9[m}(T0\2(z + w))9[n}(T0\2(z - w))9[ni}(T0)9[n2}(T0)) 

29 9[nl)(T0)9[n2}(T0) 

Y e(~2tm'a")9[ll + a}(T0\2z)9[l2 + O}(T0\2Z)9[13 + a}(T0\2w)9[l4 + a}(r0\2w) 
a 

where a runs over a complete set of representatives for \T?9 jT?9. By the definition 

of 0[m](To12z), it follows that 

6[m)(r0\2(z + w))9[n)(r0\2(z - w)) theta[0](r0)
2 

_ 1 0[0}(r0)
2 

29 e[nx)(T0)6[n2)(T0) 

x \TX(a)6[l1 + a](r0\2z)§[l2 + a](r0\2z)8[l3 + a](r0\2w)0[lA + a](r0\2w)) , 

where 
4 

X(a) = e^m'm" - W ' - 2m'a" + ] T *(^ + a ) ' ^ + a)"). 

i = i 

Since /x + /2 + l3 + /4 = 2m, 

/ j hh ~ •" I vU» ^2' ^3' MAn 5 2̂ ' 3̂ ' M/J ' 

and T is an orthogonal matrix, it follows that 

2 

A(a)=e(]T^< + 2W'). 
t = i 

If n is even characteristc, then e^n'n") = ± 1 ; hence A(a) = ± 1 . Thus we see 
that the point <&(z + w) is rationally determined by $(z) and $(uj) over the field 

Q(M 



An arithmetic of modular function fields of degree two 89 

5. Abelian surfaces and curves of genus two 
From now on we assume g = 2. For a point r 0 6 JH2, the abelian surface A(T0) is 
the image of the map 

Ф : C 7 ( r 0 , l 2 ) Z 4 JP 15 

defined by 

* ( - ) = (••-, e ( ř - m'm")6>[m](r0 |2z), • 

where m runs over a complete set of representatives for | Z 4 / Z 4 . We denote by 
0 ( r o ) the divisor on A(T0) corresponding to the divisor on the complex torus 
C 2 / ( T 0 . 1 2 )Z 4 difined by the theta function 9[0}(T0\Z). Then the pair (A(r 0 ), 0 ( r o ) ) 
is a principally polarized abelian surface. It is well known that (.A(r0), 0 ( r o ) ) is 
isomorphic to a principally polarized Jacobian variety of a complete non-singular 
irreducible curve of genus 2 if and only if no even theta constants 0[rn](To) vanish, 
and that it is equivalent to the irreducibility of the divisor 0 ( r o ) (cf. [14]). When 
these conditions are satisfied, r 0 is said to be indecomposable. In fact, when no 
even theta constants 0[m](To) vanish, the curve C(T0) defined by the equation 

* 2 =п(*-( 00[m.](r o |~) / 00[m i ](T o |~) 
дzг дz0 : = 0 

where ml, • • • , m6 are the set of six odd characteristics, is of genus 2, and the princi­
pally polarized Jacobian surface associated to C(T0) is isomorphic to (A(r 0 ), 0 ( r o ) ) 
(cf. [2]). By the Rosenhain derivative formula (cf. [18]), we see that the curve 
C ( T 0 ) is isomorphic to the curve defined by 

y2 = x(x - l)(x - Xx)(x - A2)(x - A3), 

where 

Л 

e[nx}{r0Ýe[n2}{r0Ý 

9[n3}{T0)i9[n4}{roy 

e[n,}{T0)H[n2}{r0y 
2 * [n 3 ] ( r 0 )-0[n в ] (т 0 )- ' 

A [n5}{т0)ЩПl}{т0У 
3 в[n 4 ](т 0 )-в[n 6 ](т 0 )- ' 

and 

nÅ = 
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Thus we have the following, which will not be used in the sequel. 

Proposition 4. If r0 is indecomposable, then the principally polarized abelian 
surface (A(T0), 0(TO)) is isomorphic to one defined over the field 

\2 ^ [m}(т0)
2 \ 

\ [n}(т0)
2 J 

6. Kurnmer surfaces 

In this section we recall some results on the equations defining Kummer surfaces, 
which were investigated by Gopel, Kummer, Cayley, Borchardt, etc. (cf.[l],[3]). 
Set 

i, je{o,i}. 

*VoJ 
We define a holomorphic map 

* = * T f l : C 2 / ( T 0 , 1 2 )Z 4 — • IP3 

by 

* ( z ) = (0[a o o](2r o |2z) : 0[a o l ](2r o |2z) : % 1 0 ] ( 2 r 0 | 2 z ) : 0 [a u ] (2r o | 2z)) . 

If r 0 is decomposable, then the image of $ is a quadric isomorphic to IP1 x IP1. 
If r 0 is indecomposable, then the induced map: 

( C 2 / ( r 0 , l 2 ) Z 4 ) / { U } - * F 3 

gives an embedding (cf. [14]), and its image is a quartic surface. Here i is the in­
version of C 2 / ( T 0 , 1 2 ) Z 4 - We call this quartic surface the Kummer (and Wirtinger) 
surface associated with T0, and denote it by Km(T0). 

The Kummer surface Km(TQ) has exactly 16 singular points which are node. 
These are obtainable from the four, 

(^K o ] (2T o )^[a o l ] (2T o )^[a l o ] (2T o ) ,0[a 1 1 ] (2r o ) ) ) 

(%oo](2r 0 ), % 0 1 ] ( 2 T 0 ) , - 0 [ a l o ] ( 2 r o ) , - % U ] ( 2 T 0 ) ) , 

(0[a o o](2r o), - 0 [ a o l ] ( 2 r o ) , 0[a l o ](2r o ), - % u ] ( 2 r 0 ) ) , 
( ^ [ a 0 0 ] ( 2 T 0 ) , - % 0 1 ] ( 2 T 0 ) , - % 1 0 ] ( 2 T 0 ) , % u ] ( 2 r 0 ) ) , 

by writing respectively, in place of 

e[a o o ] (2r o ) ) 0[a o l ] (2r o ) ,e[a l o ] (2r o ) ,e[a 1 1 ] (2r o ) , 

1. % 0 0 ] (2T 0 ) ,^a 0 1 ] (2T 0 ) ,e [a 1 0 ] (2T 0 ) ,^[a 1 1 ] (2r 0 ) , 
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2.6[a01}(2r0),9[a00}(2TQ),6[a11}(2T0),e[a10](2r0)), 

3.9[a10}(2T0),e[an](2T0),e[a00}(2r0),e[a01](2rQ), 

4.e[a11}(2T0),e[a10}(2T0),e[a01}(2r0),e[a00](2r0). 

In particular any two of 

e[a00}(2T0),e[a01}(2T0),e[a10}(2T0),6[an}(2T0) 

does not vanish. 
Let r0 G IH2 b e indecomposable. We denote by L the line bundle on the complex 

torus C 2 / ( r 0 , l 2 ) Z 4 associated with the theta divisor 0 ( r o ) = div(#[0](ro |z)). For 
any positive integer n, the space F(L n ) of holomorphic sections of Ln is canonically 
isomorphic to 

r a 
„CØ 

0 
(nr 0 |nz) , 

where a runs over a set of complete representatives for ~ Z 2 / Z 2 . Let F ( L n ) + denote 
the subspace of F(L n ) consisting of even theta functions. Then we have 

r(E2) = r(E2)+ . 

Since r0 is indecomposable, it follows (cf.[9]) that 

r(E2)-r(L2) = r(E4)+, 

and that the canonical map 

54r(L2) —> r(L 8)+ 

is surjective, where <S4F(L2) is the space of symmetric tensors of degree 4. Since 
the dimensions of these spaces are 35 and 34, respectively, there exsists only one 
non-trivial relation among the product of theta functions 

where 

ZÍ0ZÍxZ
k
10Z

l
n, i + j + k + l = 4, 

ZІJ = [aij](2т0\2z). 

This relation is an equation defining the Kummer surface Km(T0). First of all, 
we assume that no #[a^](2r 0 ) are zero. Then we shall write down this equation 
explicitly, which is called the Gopel's biquadratic relation. For h G | Z 4 / Z 4 , we 
have 

(2T0\2(Z + r0tí + h")) = e(2ta'h")e(-th,T0h' - 2th'z)6 
a' + h' 

0 (2т0|2z). 

By these relations, we see that the relation must be of the form: 

<*o(zo4o + ^o4i + zi4o + zii) 
2 a i o ( ^ o o z i o + ZV\Z\\) + 2 a 0l(^00^01 + ^10-^n) 

2 Q 1 1 ( Z 2

0 Z 2

1 + ZlxZ\0) + 40ZOOZO1Z1OZU = 0. 
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Set 

z = 
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ь 
4 . 

then we have the following relations, respectively: 

a0( 

a0( 

a0( 

-o- "0" -o- ' 0 " 

0 
1 (2T 0 ) 4 +6? 

i 
2 
1 (2T0)4) + 2 a 0 1 0 

0 
ì (2T0)26? 

ì 
2 
1 

2 2 2 2 

LoJ _0_ . 0 . _0_ 

-o- r * 1 
2 -o- г l п 

2 
0 
o 

(2T 0 ) 4 +6? 0 
0 

(2T0)4) + 2a016? 0 
0 

(2T0)26? 0 
0 

i 1 1 1 
L 2 J L 2 J L 2 J L 2 J 

' 0 " - 1 -
2 

"0" - 1 -
2 

0 
1 (2T 0 ) 4 +6? 

1 
2 
1 ( 2 T 0 ) 4 ) + 2 a n б 9 

0 
1 (2т0)20 

1 
2 
1 

2 2 2 2 
1 

L 2 J 
1 

L 2 J 
1 

L 2 -
1 

L 2 J 

(2r 0 ) 2 = 0, 

(2r 0 ) 2 = 0, 

| ( 2 r 0 ) 2 = 0 . 

Since no coefficients of « o i » a i O ' a n of these relations vanish, it follows a0 7-= 0. 
Since 

n^KK^^o, 
-i 

we get the ratio /3/a0 if we put 2: = 0. 
Next assume 

n^K](2r0) = 0. 
ij 

Then, as we remarked in the above, there exists only one t9[a^](2T0) which is zero. 

Set 
0 

V Л 1 ) ,P + Q 

By the Riemann's theta relation, we get 

(т0) 

= 

+ 

(т0) 

(т0) 

(т0) 

P 
p + q 

p + q 
0 

0 

p + q 

(r0\z)6 

(TO)0 

(r0)e 

(r0\z) 

(ro\z)0 
P + Q 
P + Q 

(тoИ 

T0\Z)6{0](T0\Z). 

We denote this equation by A = B + C. Then we have a quartic equation 

A4 + B* + C 4 - 2A2B2 - 2B2C2 - 2C2A2 = 0. 
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By the addition formula, we see that this is a quartic equation of Z'^s with co­
efficients in Z[c?[a^](2r0)|i,j = 0,1]. We see that this quartic is non-trivial. For 
example, suppose that #[0](2r0) -- 0. Then 

(2т0) ф 0. P 
0 

(2т0) q 

o_ 
(2т0) 

~p + q~ 
0 

The coefficient of Z 0 0 of this equation becomes 

( (2т0) P + 
0 

2 л 2 (2т0))20 (r0)
 2 p + q 

0 
( r 0 ) , 

which is not zero. Similar arguments work for other cases. 
Thus we have the following. 

Theorem 1. If r 0 is indecomposable, then the Kummer surface Km(r0) C IP3 is 
defined over the field 

nf %ij](2ro) , . . . . n -\ 
Q 5f i/o T 5 t , J ,* ,/ = 0 , l ) . 

7. Fields generated by torsion points on a Kummer surface 

In this section, we fix an indecomposable point r 0 € 1rY2. Then it should be remem­
bered that no even theta constants vanish. 

We put 
в[т](г0) 
в[п}(т0) 

and, for an odd positive integer IV, put 

L(т0) = Q ( m,n : even char. I 

/6»[ai,](2T0|2(T0/i' + /i")) 1 , . 

\ ^ K J ] ( 2 T 0 | 2 ( T 0 / I ' + ft ")) At 

By the addition formula of theta functions, we see 

F l ( T » ) = Q ( « S F ; | m ' " : e v e n c h a r ) ' 
For an element M € V(2,4) and a non-zero even characteristic m, we define 

e(M,m) by 
^N(M.T0)=£(Mm)% t](Ta) 

0[0](M-тo) 0(0] (т0) 

Then, using the transformation formula, we see that e(M,m) does not depend on 
r 0 and that e(M,m) = ± 1 . 
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Proposition 5. The map 
/ : r ( 2 , 4 ) — > { ± 1 } 9 , 

defined by 
M — • ( - . . , e ( M , m ) , - - - ) , 

is a group homomorphism. Moreover it induces a group isomorphism 

r ( 2 , 4 ) / { ± i 4 } r ( 4 , 8 ) - + { ± i } 9 . 

Proof. It is clear that / is a homomorphism. Moreover the transformation formula 
of theta functions yields 

K e r ( / ) D { ± l 4 } r ( 4 , 8 ) . 

Calculate e{M,m) for 

M = Aij}BkhCkh i,j,k,l(k <l)e {1,2}, 

where Aij1Bk hCk t are defined in 2, then we see that / is surjective. On the other 
hand, we know 

[ r ( 2 , 4 ) : { ± l 4 } r ( 4 , 8 ) ] = 29. 

Thus we have obtained our assertion. rj 

Proposition 6. The field L(r0) is a Galois extension of F{T0), and for any ele­
ment a £ Gal(L ( r 0 ) /F ( r 0 ) ) there exists an element M G F(2,4). which is uniquely 
determined modulo { ± l 4 } r ( 4 , 8 ) . such that 

fO[m}(T0)Y _6[m}(M-T0) 

\0[O](TO)J - 0[O](M-ro)' 

for every even characteristic m. 

Proof. It is clear that L{T0)/F{T0) is a Galois extension. For an element a G 
G Gal(L(r0)/F ' (r0)) and a non-zero even characteristic m, we define e(cr, m) = ±1 

by 
Am](T0) ( [m}(т0)ү 

{Ш )J -€{a' m) 0[0)(T0) ' 

The map 
Gal(X(T0)/F(r0)) —> { ± 1 } 9 , 

defined by 
cr i—•• (••• ,c(cr,m),---) 

is an injective homomorphism. By the preceding proposition, we get the assertion. 

• 
We denote by Km{r0)[N] the subset of the Kummer surface Km{T0) consisting 

of points 
y(T0ti + h") = (••• , 0 [ % . ] ( 2 T O | 2 ( T O / . ' + h")), •••) 
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with h e ^ Z 4 / Z 4 . Then we have 

FN(T0) = Q(Km(T)[N}). 

Let a be an automorphism of C over F(T0). We denote by A(T0)
a the transform 

of A(T0) under O-, i.e., 
A(T0y = {p*\PeA(T0)}. 

We notice here that, for a point P = (x : y : • • •) € F 1 5 , Fa = (xa . ua ; .. •) . 
The automorphism a induces that of L(T0) over F(r0), hence, by Prop.7, we 

have an element M G V(2,4) such that 

{8[m}(T0)Y _0[m}(M-TQ) 

\0[O}(ro)) - 6[0}(M-T0)-

By Prop.2, we see that the abelian surfaces A(T0) and A(M • r0) are completely 
determined by the ratio of the coordinates of their origins, respectively. Therefore 
we have 

A(T0Y = A(M-T0), 

and, by Prop.3, we have 

(P + QY = P° + Q \ P,QEA(T0). 

In particular, if P € A(T0)[N}, then P" e A(M • T0)[N}, and P H P " is a group 

isomorphism of A(T0)[N} to A(M • T0)[N}. Put 

P = $T0(T0ti + h") = (•••, e ( - i m'm")0[m](r o | 2 ( r o / i ' + h")), •••), 

P° = $ M . r o ( M • T0k' + k") = (••• ,e(-*m'm")fl[m](M • r 0 |2 (M • r0fc' + k")), •••), 

then h H> k defines an isomorphism 

J_z4/z4 —r —z4/z4, 
N 7 N 7 ' 

which is given by a matrix R(a) G GL4(Z/jYZ), i.e., R(a)h = fc. 
By the addition formula of theta functions, we have 

0[ay](2To|2(To,y + a " ) ) \ ' _ % , - ] ( 2 M • r 0 | 2 (M • T0(R(a)h)' + (R(a)h)")) 

fl[ow](2r0|2(T0/i' + / i " ) ) ) 6[akl}(2M • r 0 | 2 (M • tau0(R(a)h)' + (R(a)h)")) 

Since 

it follows that 

and M' • (2r0) = 2M • r0. 

« = ( : ^ ) € Г ( 2 , 4 ) , 

l f d 6 ' 
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By the transformation formula of theta functions, we have 

M' • 
0 

( M ^ i V o + dr1*) 

= к(M') e(lz(cт0 + d)-lcz) det(cт0 + d ) 1 ! 2 e(ф , , v (M')) 

Here we have the following: 

M ' 
d 

-26 

dm' 
-2bm' 

(1) 

-fWm'\+
lf1 / 2 ( c ť ( íM 

a )\0 ) 2 V 2(a í6)0 j 

m 
0 

(2т0\z). 

+ 
I ^ ŕ (c c á) 0 

(aьЬ)0 

Since 

and 

we have 

Moreover we get 

dm' + j(ctd)0 = m' (mod 1) 

-2bm! + (aťb)0 == 0 (mod 4), 

m 
0 

( ф ) = M' (т\z). 

4>,m,,(M') = - i ( í m ' ( 2 í M ) m ' - 2 í (a ř 6) 0 (dm')) 
m' 
0 

0 (mod 1). 

Set 
z0 = 2(T0(

iafc' + lck") + lbk' + *djfc") = 2(r0(
tMk)' + (*Mfc)"), 

then we get 
'(CTQ + d ) " 1 * , , = 2((M • r0)k' + k"). 

Combining these formulas, we have the following: 

m 
0 

(2M • T 0 | 2((M • r0)k + k')) 

M' • 
0 

( Л f з д V o + d)-1^) 

= K,(M')det(cT0 + d ) x / 2 e ( ^ 0 ( c r 0 + d)~lcz0)9 

Therefore we have 

m 
0 

(2r 0 | z 0 ) . 

6>[o<j](2r0|2(T0/.' + h"))\" = g[q i j](2T 0 |2(T 0( tM/i(a)/ .) ' + ('MR(a)h)" 

0[afcí](2To|2(To/i' + /.»)) j 0[afci](2To|2(To( íMfí((r)/i)' + (tMR(a)h)" 
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Thus we have a commutative diagram: 

ťMR(a) 
xz4/z4 

^z4/z4 

—> Km(тc 

i 
—г Km(тQ 

,)[-V] 

,)[!v] 

where both of the horizontal maps are defined by 

lг^ФГ( ,(т0Л' + Л"). 

In particular we have 

O > 

^Iv(^r c F N (T 0 ), 

hence FN(T0) is a Galois extension of F ( T 0 ) . 

We denote by £(a) the left vertical map in the above diagram, i.e., 

£(a)(h) = tMR(a)h. 

Since M is uniquely determined modulo { ± l 4 } r ( 4 , 8 ) , the residue class £(a) of 
£(<r), modulo {±14} in GL4(Z/EVZ)/{±14}, depends only on the restriction of O to 
FN(T0). 

Therefore the map 

«f : Gal (F„(r 0 ) /F(T 0 ) ) - 4 G L 4 ( Z / A t Z ) / { ± l J 

is an injective homomorphism. Thus we have the following: 

Theorem 2. The field extention FN(T0)/F(T0) is a Galois extension and there exsits 
an isomorphism £ of Gal(FN(T0)/F(T0)) on to a subgroup of GL4(Z/NZ)/{±14}. 

Now we shall recall the pairing associated with polarized abelian varieties (cf. 
[13]). We consider the polarized abelian surface 

( A ( T 0 ) , E ( T 0 ) ) 

where H(T 0 ) is the divisor corresponding to the divisor div(#[0](T0|2z)) on the com­
plex torus C 2 / ( T 0 , 12)Z4. E ( T 0 ) is linearly equivalent to 4 © ( T 0 ) , where 0 ( T O ) is the 
divisor corresponding to div(#[0](T0|2:). The subgroup 

K(E(T0)) = {Pe A(T0) I T^E(T0) ~ ~(T 0 )} 

of A(T0) is equal to the group -4(T 0 ) [4] which is consisting of the points of order 
dividing 4. Here Tp : Q —> Q -f- P is the translation and ~ means the linear 
equivalence. For any point P € A(T0)[N], set 

rj = T p 1 e ( T 0 ) - e ( T 0 ) , 
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then the divisors 

Ryuji Sasaki 

ND, N-lD = (N-lMTo))-HD) ' LA{r0)) 

are linearly equivalent to zero; hence there exist rational functions / and g such 
that 

(f) = ND, (g) = N-lD. 

Since 
(N-lf) = N.N~1D = (gN), 

there exists a constant c such that 

It follows that 

g"{x)=c-f(Nx). 

9(~) 

9(~ + Q) 

is a constant At-th root of unity. Define 

by 

eN : A(т0)[N) x A(тQ)[N) 

9(~) 

fJ-N 

eN(Q,P) = Q Є A(т0)[N), 
9(* + QY 

where JJ,N is the group of 1V-th roots of unity. Then eN(Q1P) is a non-degenerate 
skew-symmetric pairing. 

Now let </) : C 2 / ( r 0 , 1 2 ) Z 4 —> A(r0) be a complex analytic isomorphism induced 
by the embedding 

$ : C 2 / ( r 0 , l 2 ) Z 4 - + P 1 5 . 

Set 

P = * ( ( T 0 > h)h) = (• • • ,e\m)(T0\2(T0, l2)h), • • •), 

Q = $ ( ( T 0 , h)k) = (••• ^ [ m ] ( r 0 | 2 ( r 0 , l2)k), •••). 

Then the divisor cf>~1(N~1D) is the divisor of the meromorphic function 

2Л' 
2Л" 

(т0|2Лtz) 

6[0)(T0\2NZ) 

on the complex torus C / ( r 0 , 1 2 ) Z 4 , hence it is equal to c • 4>~lg for some non-zero 
constant c. Therefore we have 

e«<«'F> = *-'<sfrW 9І~ + Q) 

2tí 
2Л" (T 0 | 2 ÍVZ) 

^[0](T0|2At2) 

6[0)(T0\2(N(Z + T0k' + k")) 

2tí 
2Л" 

(T0\2N(z + T0k' + k")) 

= eЏN^tík" _ th"k')). 
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Let 

e : l z 4 / Z 4 x l z 4 / Z 4 — > Z/7VZ 

denote the skew-symmetric form defined by 

r2i , ( 0 1 e(h,k) = N"h\ _x J U . 

Then we have 

eN(Q,P) = e(^e(h,k)). 

Proposition 7. The field FN(T0) contains a primitve N-th root (* Of unity. For an 
element a G Gal(FN(r0)/F(T0)), we have 

^e(h,k)y = £e(Z(<r)hrt(<r)k) ^ V / l , k € — Z 4 / Z 4 . 

In particular, if a € Gal(FN(T0)/F(r0)) satisfies 

r = c, 
then 

Z(<T) e sP4(z/ivz). 

Proof. For any automorphism a G Aut(C/F(T 0 ) ) , there exists an element M G 
G V(2,4) satisfying 

ew(T0)y_6[m](M.T0)t V m > n : e v e n _ 

6[n](T0)J 6[n](M-T0) 

Then we have 
(A(T0),E(T0)Y = (A(M • T0),E(M • T0)) 

and 
(N-iA{To)r = N-iA(M.To). 

Therefore we get 
eN(Q,PY =eN(Q°,P°). 

Set 
P = # T 0 ( ( T 0 ) 1 2 ) / I ) , Q = $T0((T0,l2)k). 

Then we have 

I"7 = * M - r 0 ( ( M • r0, l2)CO) l t), * M . r 0 ( ( M " ' b . ^ ^ O ) * ) -

Therefore we have 

e ( ^ e ( j i , f c ) ) = e.v(Q>IT 

= e„(Q",P") 

= e (^ (e (CO) / l , ^0 ) fc ) ) ) . 
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If a induces an identity on FN(TQ), then £(a) = ± 1 , hence it follows e(jj) = e(jj)a. 
Thus we see that a primitive iV-th root £ = e(j^) of unity is contained in FN(TQ). 

Moreover if a G Gal(F / v ( r 0 ) /F ( r 0 ) ) satisfies (a = £, then £(O") satisfies 

Therefore we see that 

e(h,k) = e(t(a)h,t(v)k). 

Ç(o-) Є Sp 4(Z/ЛtZ). 

D 

8. The field generated by modular functions for r(2iV, 4N) 

Let N be a positive odd integer. For h G ^ - Z 4 / Z 4 , we define meromorphic functions 

on iH2

 : 

e[ai4](2T\2(rh' + h")) 

where a{- is the half-integral vector defined in 6. For simplicity, set 

4[0](r) = 4 ( T ) . 

This is equal to ka.. (r) in the introduction. 

Proposition 8. 

ftj[h](M~lT) = / y l ' M - ^ K T ) , VM 6 T(2,4). 

Proof. By fundamental properties of theta functions, we have 

69 
rrì 
0 

(2т\2(тh! + ft")) <9 
m' + h 

2/г" 
,' 

(2т) 

2/Г7 2 Ł г 

0[0]( 

1 ч 

2r|2(тft' + h")) 

4 PZ4 TЛ-.V o n û l û m 

9 
" Л' " 
2/г" ( 2т) 

<c d ) 

put 

M ' I ?l 
Then we have M'(2r) = 2 ( M r ) . Moreover we have 

M' • 
m' + /г' 

2/г" 
dm' + d n ' - c á " + i ( c c d ) 0 

-26a ' + 2aá" - 26m' + (a ř 6) 0 
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M' • 
tí •i _±_ i c X dtí - ch" + \{cld) 4 V1- " / O 

2tí' j \ -2btí + 2ah" - 2bm' + {alb)0 

and 

By the transformation formula, we have 

)t^rtъ„u"ŕ 'ť/m' + tí\(M')-'ť/ tí \(M>) = -^ rnnbdtí + 2tm'tbctí'{mod 1) 

M' , (m' + tí 
h" 

(M'(2т)) 
.i™'ť 

M' tí 
2/г" 

- e(-2lm,zbdti -f 2lm'lbchn) t^itu„u"\ 

m' +tí 
2Һ" 

(2т) 

(M'(2т)) /г' 
2Л" 

(2т) 

By fundamental properties of theta function, we see that the left hand side of the 
above equation becomes 

ìt^it e(-2 tm'cř)ci/i' + 2 tm'cř)c/i") t^lh 

m' + (dti - ch") 
2(-bti + ah") 

(2Mт) 

dti - ch" 
2(-bti + ah") 

(2Mт) 

Therefore we have 
tҡ/f-l ì fij[h](r)=fij[

lM-'h]{MT). 

D 
Let A(V(2,4)) (resp. A0(F(2,4))) denote the rings of modular forms (resp. of 

even weight) for the congruence group T(2,4). Let x$(T) denote the product of 10 
even theta constants. Then Igusa ([5]) showed that 

1. 
A0(F(2,4)) = C[c?[m](T)2 | m : even]. 

2. 

A(F(2,4)) = ^ 0 ( r ( 2 , 4 ) ) [ x 5 ( r ) ] . 

Therefore we see that the field K of modular functions for T(2,4) is 

_ f9[m]{r)2 , \ 

l « ^ | m , n : e V e n J ' 
We remember, as in the begining of 7, 

!C = C(/ 1 0 (T) , / 0 1 (T) , / 1 1 (T)) . 

We denote by KN the field of modular functions for r(2jV,4JV). Then the group 
T(2,4) acts on the field KN in the following way: 

(fM)(r) = f(M'1T), M e T(2,4), feKN. 
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Thus we see that )CN is a Galois extension of the field AC with Galois group 

T(2,4)/r(2iV,4iV){±l4}. 

Proposition 9. 

£N = C(/10[/.],/oi[/»],/ii[fc] I h e ^z 4 /z 4 ) . 

Proof. We know that 
K C K(ftj[h\) C KN. 

If an element M £ V(2,4) induces an identity on the field rC(/jj[/i]), then we have 

/y[/l](Af- lT) = / y l ' A f - ^ K T ) 

= / y W ( r ) , V/i ,( i , j) . 

Since the map 
( C 2 / ( T , l 2 ) Z 4 ) / { l , t } - 4 F 3 , 

zv—>(••• : fl[ay](2T|2z):---) 

is injective for a generic r , we have 

hence 

It follows that 

(r, l2)
ťM-lh = ± ( r , l2)/г mod (r, 1 2 )Z 4 , 

' M ^ / I = ± h (mod 1), V/i. 

D 

lM~l G {r(2,4)nr(iV)}{±i4} = r(2iv,4N){±i4}. 

Therefore we have 
KN=K{fij[h}). 

We denote by TN the field of modular functions over the rationals, i.e., 

?N = Q(fio(h),f01{h),fn(h)\h€ ^ Z 4 / Z 4 ) . 

We shall investigate the extension TN/T', where T — Tx — Q( / i 0 ) /on / n ) -
Now we shall apply the following, which is proved by Shimura ([17]). 

Proposition 10. Let {fa\a £ A} be a set of meromorphic functions in a domain 
D C C , such that the cadinality of the index set A is countable. Let k be a 
countable subfield of C. Then there exists a point z0 G D such that 

Wct/aeA * {fa\Z0JJa€A 
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defines an isomorphism of the field k(fa) onto k(fa(z0)) over k. 

Theorem 3. The field TN has the following properties. 

1. TN is a Galois extension of T. 

2. If £ is a primitive N-th root of unity, then £ £ TN. 

3. Q(C) w algebraically closed in TN. 

I 

Gz\(TN/T)~{R e GL 4 (Z /NZ) /{±1 4 } 

?1 J ) = ^ ( _ ° i l ) R modN , 3n , (n , /V) = l J . 

Proof. If T0 is sufficiently general, then 

fiSM
T) *-+fiAWo) 

gives isomorphisms 
TN~FN(r0), T~F(T0), 

where F(T0) and FN(T0) are fields introduced in 7. Then 1. and 2. follow from 
Th.2 and Prop. 7. 

By Prop. 8, we see that T(2,4) acts on the field TN in the following way: 

fM(T) = f(M'lT), MeT(2,4),f€FN. 

By this action, the group 

G = r(2,4)/{r(2,4)nr(N)}{±i4} __ sP4(z//vz)/{__i4} 

is isomorphic onto a subgroup H of GB1(FN(T0)/F(T0)). Then the subfield E cor­
responds to H contains the field 

F(T0)(0 = Q(C)(/ io(^o) . /oi(ro) , / i i ( r 0)) . 

Let f : Gal(FN(T0)/F(T0)) -> GL 4 (Z/ jNZ)/{±l 4 } be an injective homomorphism 
defined in 7. By Prop. 7, we have the following. An element a E G31(FN(T0)/F(T0)) 
satisfies £a = £ if and only if 

0 1 
- 1 0 ^ ( f f )(-°i o)^a) (mod7V)> 

i.e., £(cr) s Sp4(Z/iVZ). Therefore we have 

E = F(T0)(Q. 
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Set 
i(Gal(FN(T0)/F(T0))) = Ac GL 4 (Z /A tZ) /{± l 4 } , 

and 
i(Gal(FN(T0)/F(To)(0) = BC GL 4 (Z /A tZ) /{± l 4 } . 

Then we have 
[A:B] = [F(T0)(0 : F(T0)) = [(Z/AtZ)x : 1], 

Therefore we have the exact sequence 

1 -> B ~* A-> (Z/NZ)X -> 1. 

Since It G A induces on F(() the automorphism defined by 

/-e(h,k) se(Rh,Rk) 

it follows that 

G*1(FN(T0)/F(T0)) ~ {R 6 GL 4 (Z /A tZ) /{±l 4 } 

| n ( _°x J ) = *R ( ^ J ) i? (mod At), 3n, (n, At) = 1 

This shows 4- To prove 3., we put £ = Cf lF N . Then every element of k is invariant 
under the action of 

o = r(2,4)/{r(2,4)nr(At)}{±i4}. 

On the other hand, the field correspondin to this group is the field ^ ( O - Therefore 
k C F(()- Since / io>/oi>/n a r e algebraically independent over C, it follows that 
* C Q ( C ) . • 
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