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1. Introduction

We investigate the intersection of the set of solutions of two Kummer’s differential
equations

—{X 1} + X2 p(X) = q(0), (pa)
—{X, 1} + X2 P(X) = Q), (PQ)
" " 2
where {X, t}: = % ))({,((t)) - %();IE?) is Schwarz’s derivative of the function X
t t

at the point ¢. This intersection has been investigated with p = g, P = Q in [3]
and [4], where an algebraic approach was applied for the set of solutions of (pp)
which is a three-parametric continuous group with respect to the composition of
functions, providing that the equation (p) : »” = p(t) y is oscillatory (see [1], [2]).

2. Basic concepts and notation

Throughout the differential equations of the type
v =4q()y, qeC(R), (@)

are considered to be oscillatory on R, i.e. 4+ o0 are cluster points of zeros of any
nontrivial solution of (q).

A function o € C°(R) is a phase of (q) exactly if there exist independent solutions
u, v of (q):

tg a(t) = u(t)/v(t) for teR — {£; v(t) = 0}.
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Every phase a of (q) has the following properties:

(i) xe C3(R);
(i) a'(t) £ 0 for teR;
(i) «(R) = R;
(iv) —{o, t} — o’2(t) = q(1) for reR.

The sct of phases of the equation y” = —y will be denoted by €. This set forms
a group with respect to the composition of functions.

Let (p) and (q) be cscillatory equations with o and f being their phases,
respectively. The symbols £, .,?:q, & pq Tefer to the set of all solutions, to the
set of all increasing solutions and to the set of all decreasing solutions of (pq),
respectively. Then

Loy = {0 'ep; e € €},

Lo = {07 e €€, sign g’ = signa’ . sign f,

Lo = {07 e ee € signe’ = —signa’.signf'},
and for any X e %, we have X(R) = R (see [1], [2]).

Let & < &,,. Say that & is a complete set (in RxR) if and only if there
exists for each (¢, x,) € Rx R only one element X € & such that X(ty) = x,.

In what follows we take the equations (p), (q) to be oscillatory and P, Q € C°(R),
which fact will be explicitly pointed out in assumptions of Theorems, only.

The symbols ?/’;PQ and 2 ,.po refer to the sets 3’:4 N ,Sf,fQ and £, 0 ZLpp,
respectively.

3. Lemmas

Lemma 1. Let X, Y be increasing or decreasing solutions of (pq), X # Y and
let X(ty) = Y(to) for a ty € R. Then the functions p, q are uniquely determined by
the functions X, Y.

Proof. Let X, Ye Z,,. We prove p = P, ¢ = Q. First we have

T. X' (1) (| PLX(D] = p[X(O] D2 = (| Q1) = q(1) )3, ey
T V(O PLY(D] = pLYOT DY = (1 00) = g() )%, teR,

where 7 := sign X’. Herefrom for t e R

X0 (| PLX(O] = p[X (O] D'? = Y'(1) (| PLY(0)] — p[Y()] |)'/2 (2)
Integrating (2) from ¢, to t in applying the substitution method gives

Y(t)

[ (IP6) = ps)])"2ds =0,  teR. ©
X(t)
By the theorem on the uniqueness of solutions of (pq) (see [1]) the equality

X(t) = Y(t) holds on no interval. It follows from (3) that p = P and then from (1)
we obtain ¢ = Q.
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Remark 1. It follows from Lemma | that the sets f/f’;qm, P .po May be “at
most” a complete set provided that at least one of the assumptions p # P, g # Q
holds.

Lemma 2. Let 2,5 (or P Lapo) be a complete set. Then

O — q@) (P() — p(1)) >0 for teR. (4)
Proof. Let 2 ,,po be a complete set. Then we have for every X € Z,p
X1 (PLX(1)] = p[X(H]) = (1) — q(1),  teR, (5)
and from this in view of the fact that 2, ;¢ is a complete set
(P@) — p) (@) — q(t)) 20, teR. (6)

Let g(ty) = Q(to), t; € R and let X € 2, 5y, X(t;) = t;. Then, putting ¢ = ¢,
in (5), gives p(ty) = P(t,). Therefore p = P and naturally also ¢ = Q. Con-
sequently 2 po is a three-parametric set.

Let p(ty) = P(to), t, e Rand Xe 2, po, X(t;) = t,. Then, putting ¢t = ¢, in (5),
gives ¢(t;) = O(¢,). Therefore g = Q and naturally also p = P. Consequently
P qpo is & three-parametric set.

On that account (4) is true. Similarly for g);;,,Q,

Lemma 3. Let X, Ye 2, o (or X, Ye P apo)» X # Y, and either p # P or
g # Q. Let us put

r(t): = [(IP(s) — p(s))"/?ds, s(): = [ (1 Q(s) — q(s)1)"/*ds, teR. ()

Then r(R) = s(R) = R.
Proof. Let us put 7 := sign X’ (= sign Y’). Then, integrating (1) from ¢, to ¢
and with reference to definition (7) of the functions r and s, we obtain
. [ X(@)] = s(t) + ay,
. [ Y] = s(t) + a,, teR, ®)

where a; = 1. r[X(ty)]), a, = ©. r[Y(t,)]. If a, = a,, then we get
Y(t)
F(P@s)—ps))/*ds =0  for reR
X(t)

from (8), which however holds exactly if p = P and g = Q. Consequently a; # a,.
To prove the above assertion is suffices to show that s(R) = R. The functions
r, s are monotone on R. If lim s(t) = b > —o0, then from (8) we get

t— — o
tlimr(t) =t lim r[X()] = b + a4,
= =100 -

tlimr(t) =t lim r[Y(1)] = b + a;,
t—+— o

t= —too

o
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which, however, conflicts with ay # a,. Hence b = —o0. If lims(t) = ¢ < o0,
10

then it follows from (8)

tlimr(t) = tlim r[X(0)] = ¢ + ay,
1=

t=>100

tlimr(t) = tlim r[Y(t)] = ¢ + a;,

t—= 100 t— o0
which again conflicts with a; # a,. Thus ¢ = 0.
Lemma 4. Let 9”;‘,;’@ (or 91;1,,0) be a complete set. Then
p—PeC*R), q- QeC*R).

Proof. Let 2,po be a complete set. Then necessarily p # P, g # Q. Let the
functions r, s be defined by (7). Then it holds for every X € 2 .po that

—r[X(®)] =s(t) + a, teR, €]

with a := —r[X(ty)]. It follows from Lemma 3 that r(R) = s(R) = R.

Let « and f be increasing phases of (p) and (q), respectively. Then there exists
to every X € 2,.po (exactly one) e € €, signg’ = —1: X = a”'¢f. From this and
from (9) we find that —ra~'e = B! + q. Putting R(t) := r[a"'(t)], S(t):=
= s[B71()], t e R, yields

—R[e()] = S() + a, teR, (10)

whereby to every b e R there exists (exactly one) ¢, € €, such that —R[¢,(r)] =
= S(t) + b. The set of such ¢, will be denoted by €, (c €). Let now ¢, € €, be
such that — R[e,(¢)] = S(7). Then R{g,[e; }(¢)]} = R(t) — b and therefore €¢; ' =
= {R7R(t) + R(a)]; a e R}. The set €,e;! is a complete set forming a group
with respect to the composition of functions. We put (¢, a) := R™'[R(t) + R(a)],
(¢, a) e RxR. Since (¢, a) = t(a, t), both 7(., @) and (¢, .) are phases of y" = —y.
Consequently, (¢, @) has continuous partial derivatives of all orders on RxR.
Differentiating with respect to the variable a in R[t(t, )] = R(t) + R(a), we find

that R'[z(z, a)] .—Z—Z-(t, a) = R'(a), and specially for a = 0: R'[(t, 0)] .—g—s(r, 0)=

ot

= R'(0). Putting &5(t) := 1(z, 0), v(t) : = %—(t, 0) ( 0) for t € R, gives R'[e5(r)] x

RO _ , te R, and, since ¢; and v have deri-
v[es (1]
vatives of all orders on R, it is easily seen that the function R possesses this property,
too. Because of r = R and o € C3(R) we have r € C3(R) and from (9) we have
s € C3(R). Further, on taking account of Lemma 2 we obtain the assertion of the
Lemma.

The proof proceeds similarly for W;q,,q being a complete set.

x¥(t) = R'(0), whence R'(t) =
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Lemma 5. 2,5 is a complete set exactly if
P(t) =p(t) + k.a'®(t), Q) =q(t)+ k.p*t), teR, (11)

where k # 0 is a constant and « and B are appropriate or arbitrary phases of (p)
and (q), respectively.

Proof. (=) Let a; and 8, be some phases of (p) and (q), respectively, with r, s
being defined by (7). By Lemma 4 r, s C3(R). Let us put g := o;r ™%, h:= fys™ 1t
Then g(R) = MR) = R and g, 1€ C3}(R). Let g and & be phases of (u) and (v),
respectively. Then is u(t) = —{g, ¢} — g’%(t), v(t) = —{h, t} — '*(t), t e R. There
exists exactly one ¢ € € to every a € R, which can be proved in analogy with the
proof of Lemma 4, such that g~ '{e[A(t)]} = ¢ + a, t € R. For every a € R is thus
the function ¢ + a a solution of the equation —{X, ¢} + X'*.u(X) = v(t). Then,
of couse, u(t + a) = u(t), teR, for every aeR and u(t) = v(t) = a constant
(:= m). On account of the fact that (u) is an oscillatory equation, we have m < 0
and so, there exist gy, ¢, € €:

[ 0] = e(/=mn,  BlsT'O] =e/=mn, teR. (1)
Putting o« := &7 'y, B := &5 'B,, then a and B are phases of (p) and (q), respectively,

and we obtain further from (12): r(t) = A_{:oz(t), s(t) = ?/}_::ﬁ(t), that is
—-m

| P) = ()] = = a0, | Q) = g(0)| = == f*(0). Tn putting k :=

1= -—-;11-— sign (P — p) (: ——ir sign (Q — ¢) by Lemma 2), then relation (11) is

satisfied, where k # 0.

(<=) Letk # 0beaconstant with a and § being phases of (p) and (q), respectively.
Let (11) be valid. It may be assumed without any loss of generality that sign o’ =
= sign ' = 1. Then X € 2, p, exactly if

—{X, 1} + X% . p(X) = q(),
—{X, t} + X?. (PX)+ k. oc'z(X)) = q(t) + k. ﬂ’z(t),
hence Xe 9‘;,,0 exactly if Xe %, and X*. «'>(X) = B2 Then ofX(t)] =

= p(t) + a, aeR, and if we put & := {a"'[B(t) + a];aeR} is & (= 2}
a complete set and & = 2, pg.

4. Main results

Theorem 1. Let (p), (q) be oscillatory equations, P, Q € C°(R). Let « and B be
phases of (p) and (q), respectively, with r, s being defined by (7). Then P;;PQ and
necessarily also P ppg are complete sets exactly if the functions ar™', ps~1 gre
phases of (m), where m < 0 is a constant.
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Proof. (=) Let ?P;FQ be a complete set. Then it follows from the proof (=)
of Lemma 5 that the functions ar™*, fs~! are the phases of (m), where m < 0 is
a constant and it is clear from the proof (<) of Lemma 5 that 2 ,q =
= {07 [=B(t) + a]; a € R} is a complete set.

(<) Letting ar~!, fs~! be the phases of (m), where m < 0 is a constant, yields
r,se C3R), r(R) = s(R) = R and there exist ¢, &, € €: a(t) = ey(\/—m . r(1)),
B(t) = ey(/—m .s(t)), t € R, whence r(t) = Ajl(t) , s(t) = —-\7;:, where a; :=

-m —m
:= g; ' is a phase of (p) and B, := ¢, 'f is a phase of (q). Then, of course,

P=p- % a2, 0 =q— % B, where T = +1. By Lemma 5, .@;;PQ and thus

also 2, po are complete sets.

Theorem 2. Let (p),(q) be oscillatory equations, P, Qe C°(R), p(t) # P(1)»
q(t) # Q@t) for te R, p — P, ¢ — Q € C*(R). Let « and f be phases of (p) and (q)
respectively, with r, s defined by (7), r(R) = s(R) = R. Let ar™' be a phase of (u)
and Bs~! be a phase of (v). Then

i) Q”;ZPQ and P ,.pg are countable sets exactly if there exist a > 0, b, ¢ such that
u, v are inconstant a-periodic functions, u(t + b) = v(t), u(—t + ¢) = v(t) for
teR;

(i1) .@;PQ is a countable set and P, pq is the empty set exactly if there exist
a > 0, b such that u, v are a-periodic functions, u(t + b) = v(t) for t € R and no
number ¢ exists such that u(—t 4 ¢) = v(z) for t e R;

(iii) 9’;1,,0 is the empty set and P, po is a countable set exactly if there exist
a > 0, ¢ such that u, v are a-periodic functions, u(—t + ¢) = o(t) for t € R and no
number b exists such that u(t + b) = v(t) for t e R;

(iv) W;qu and P, pg are one-element sets exactly if u, v are not periodic functions
and if there exist numbers b, c: u(t + b) = v(t), u(—t + ¢) = o(t) for te R;

W) Q’;;PQ is a one-element set and P papo is the empty set exactly if the functions
u, v are not periodic, there exists a number b: u(t + b) = v(t) for t € R and there
exists no number c such that u(—t + ¢) = ov(t) for teR;

(vi) ?/;IPQ is the empty set and P, po is a one-element set exactly if the functions
u, v are not periodic, there exists a number c¢: u(—t + ¢) = v(t) for t € R and there
exists no number b such that u(t + b) = v(t) for t € R;

(vii) .W;IPQ and P, py are the empty sets exactly if there exist no numbers b, ¢
such that u(t + b) = o(t) and u(—1t + ¢) = v(t) for te R.

Proof. Let 2, 5o be a countable set, X,, X, €2, o, X, # X, such that
a;:=r[X{(t)] #0,i=1,2. Letus put g:= ar™ ', h:= Bs~! and X; = a" ¢,
where ¢; € €. Then it follows from the necessary part of the proof of Lemma 5
that g~ '{e;,[A(t)]} = ¢ + a;. Consequently ¢ + a; are solutions of

—{X,t} + X* . u(X) = (1), (13)
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hence u(t + a;) = v(t) for teR, i =1,2. Thence u(t + a, — a,) = u(t), and
because a; # a,, u is a inconstant periodic function with respect to Theorem 1.
Let a > 0 be a period of the function w. If we put b := a,, then u, v are a-periodic
functions and u(t + b) = v(¢) for r e R.

Let #,po be a countable set, Y, Y, €2, po, ¥ # Y, such that d;:=
1=r[Yty)] #£0, i =1,2. Let Y; = a'¢g;f, where ¢, € €. Evidently d; # d,
and it follows that (8) yields g™ '{e,[A(1)]} = —t + d;. Consequently —¢ + d;
are solutions of (13). Hence u(—1 + d;) = v(t). Then u(t + d, — d,) = u(z).
Thus, u is a periodic furction, inconstant, with respect to Theorem 1. Let d > 0
be a period of the function u. If we put ¢ := d,, then u, v are d-periodic functions
and u(—1t + ¢) = v(t) for t e R.

Let the functions u, v be a-periodic and let u(r + b) = v(t) for t € R, where
b e R. Let the function u be inconstant. For every integer k then ¢ + b + ka are
all solutions of (13), which are of the form t + d, where dis a constant. To every k
there exists an g e €: g™ {g[h()]} =1 + b + ka. If we put X;:= a 'gpB,
where k is an integer, then X, € &, and

X ()] = s(t) + b + ka, teR, (14

whence it follows that W;IPQ is a countable set and Q’LPQ = {X;; k being an
integer}.

Let u, v be inconstant a-periodic functions and u(—¢ + ¢) = v(¢) for teR,
where c e R. For every integer k then —¢ + ¢ + ka are all sclutions of (13),
which are of the form —¢ + e, where ¢ is a constant. To every integer k there
exists an g € €: g"{g[h(®)]} = —1 + ¢ + ka. If we put Y, := o '¢pB, where k
is an integer, then Y, e Z, and —r[X,(1)] = s(t) — ¢ — ka, whence it follows
that 2 p, is a countable set and &, py = {Y,; k being an integer}.

It becomes evident from our consideration that X € ?/’;;PQ exactly if there exists
beR: u(t + b) = v(t) for 1eR and Xe 2P, p exactly if there exists ceR
u(—t + ¢) = o(t) for teR.

Theorem. 3. Let (D), (q) be oscillatery equations, p, @ € C°(R) with at least one
of the following assumptions p # P, q # Q being true and r, s defired by (7) satisfy
r(R) # R # s(R). Then ‘@;IPQ and P, pg are atmost one-element sets.

The proof follows from Lemma 1 and Lemma 3.
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Souhrn

STRUKTURA PRUNIKU RESENI DVOU
DIFERENCIALNICH ROVNIC KUMMEROVA TYPU

SVATOSLAV STANEK

Necht p, ge C*(R), P, Qe C°(R), p — qe C*(R), P — Q € C*(R) a nechf " =
=q(t)y, ¥" = p(t) y jsou oscilatorické rovnice. Za uvedenych pfedpokladi je po-

psana struktura priniku feseni dvou diferencidlnich rovnic
—{X.t} + X% p(X) = q(1),
—{X,t} + X2 P(X) = Q(t),

_ 1 Xm(t) 3 Xz/(t) 2
e 0.0 = 500 =5 ()
Pesiome

CTPYKTYPA MEPECEUYEHU A PELIEHUU
ABYVX NUO®OEPEHLIUAJIBHBIX YPABHEHUU
TUITA KYMMEPA

CBATOCIJIAB CTAHEK

Iycts p, g€ CXR), P, Q € C°(R), p — g€ C*(R), P — Q e CX(R). Mycts )" =
= p()y, y" = q(t)y xonebmomuecs ypaBuenns. IIpH 3THX NPENIOKEHUAX HPH-
BOOUTCSl ONHCaHHE CTPYKTYpH mepeceveHus pemeHud JgByx mubdepenuanbHbIX
ypaBHeHMit
—{X, 1} + X2 p(X) = q(1),
—{X, t} +X"2.P(X) = Q(¥),

1 X" 3 (XY
e =3 S~ 5 ()
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