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1. Introduction 

We investigate the intersection of the set of solutions of two Kummer's differential 
equations 

-{X,t}+X'2.p(X) = q(t), (pq) 

-{X,t} + X'2. P(X) = Q(t), (PQ) 

where {X, t): = -= — 1 — — I is Schwarz's derivative of the function X 
1 ' - X'(t) 4 \x'(t)J 

at the point t. This intersection has been investigated with p = q, P = Q in [3] 
and [4], where an algebraic approach was applied for the set of solutions of (pp) 
which is a three-parametric continuous group with respect to the composition of 
functions, providing that the equation (p) : y" = p(t) y is oscillatory (see [1], [2]). 

2. Basic concepts and notation 

Throughout the differential equations of the type 

y' = q(t)y, qeC°(R), (q) 

are considered to be oscillatory on R, i.e. +oo are cluster points of zeros of any 
nontrivial solution of (q). 

A function a e C°(R) is a phase of (q) exactly if there exist independent solutions 
u, v of (q): 

tg a(t) = u(t)jv(t) for / e R - {t; v(t) = 0}. 
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Every phase a of (q) has the following properties: 

(i) a G C3(R); 
(ii) a'(t) ^ 0 for t e R; 

(iii) a(R) = R; 
(iv) - { a , t} - a'2(t) = q(t) for t e R. 

The set of phases of the equation y" = — y will be denoted by (£. This set forms 
a group with respect to the composition of functions. 

Let (p) and (q) be oscillatory equations with a and /? being their phases, 
respectively. The symbols S£pq, S£pq, S£~q refer to the set of all solutions, to the 
set of all increasing solutions and to the set of all decreasing solutions of (pq), 
respectively. Then 

S£p
v
q = {a-1E/J; s e (£, sign E' = sign a' . sign /?'j, 

S£~q — {a-1£/?; e e S , sign e' = —sign a' . sign /?'}, 

and for any Xe S£'pq we have X(R) = R (see [1], [2]). 
Let Sf c S£pq. Say that S£ is a c o m p l e t e set (in R x R) if and only if there 

exists for each (t0, x0) e R x R only one element Xe S£ such that X(t0) = x0. 
In what follows we take the equations (p), (q) to be oscillatory and P, Q e C°(R), 

which fact will be explicitly pointed out in assumptions of Theorems, only. 
The symbols 0*pqPQ and ^~qpQ refer to the sets S£*q n S£P<1 and S£pq n S£pQ, 

respectively. 

3. Lemmas 

Lemma 1. Let X, Y be increasing or decreasing solutions of (pq), X ^ Y and 
let X(t0) = Y(t0) for a t0 e R. Then the functions p, q are uniquely determined by 
the functions X, Y 

Proof. Let X, Ye S£'PQ. We prove p = P, q = Q. First we have 

T . X'(t) (| P[X(t)] - p[X(t)] | ) 1 / 2 = (| Q(t) - q(t) | ) 1 / 2 , (1) 

T . n o o w ) ] - Pcnoi D1/2 = o Q(o - q(o D1/2, leR, 
where T : = sign X'. Herefrom for t e R 

X'(tMI P[X(t)] - p[X(t)] D 1 / 2 = r ( t ) ( i P[Y(t)] - p[Y(t)] |)i/2 ( 2 ) 

Integrating (2) from t0 to t in applying the substitution method gives 
Y(t) 

${\P(s)-p(s)\)l,2ds = 0, teR. (3) 
X(t) 

By the theorem on the uniqueness of solutions of (pq) (see [1]) the equality 
X(t) = Y(t) holds on no interval. It follows from (3) that p = p and then from (1) 
we obtain q = Q. 
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Remark 1. It follows from Lemma 1 that the sets ^pqPQ, ^p~qpQ may be "at 
most" a complete set provided that at least one of the assumptions p # P, q =£ Q 
holds. 

Lemma 2. Let &pqPQ (or &pqPQ) be a complete set. Then 

(Q(0 ~ q(0) (P(t) - Pit)) > 0 for / e R. (4) 

Proof. Let ^pqPQ be a complete set. Then we have for every X e &pqPQ 

X'2(t) (P[X(0] - p[X(0]) = 6(0 - q(0, t e R, (5) 

and from this in view of the fact that ^~qPQ is a complete set 

(P(0 - p(0) (Q(0 - q(0) £ 0, t e R. (6) 

Let q(t0) = Q(t0), ti e R and let Xe^~PQ, X(t0) = tx. Then, putting t = t0 

in (5), gives p(t{) = P^). Therefore p = P and naturally also q = Q. Con­
sequently ^jPQ *s a three-parametric set. 

Letp(t0) = P(l0), tL e R and I e ^ P ( 3 , X(tx) = t0. Then, putting t = tx in (5), 
gives r/(tj) = Q(l!). Therefore q = Q and naturally also p = P. Consequently 
^pqPQ *s a three-parametric set. 

On that account (4) is true. Similarly for ^pqPQ. 

Lemma 3. Let X, Y e ^ P G (Or X, Y e 0^PQ), X ^ Y, and either p ^ P or 
q ^ Q. Let us put 

r(ty. = j(\P(s)-p(S)\y
!2ds,s(t):=i(\Q(s)-q(s)\)U2ds, teR. (7) 

fo *o 

Then r(R) = s(R) = R. 
Proof. Let us put T := sign X' (= sign Y'). Then, integrating (1) from t0 to t 

and with reference to definition (7) of the functions r and s, we obtain 

T.r[X(t)] =s( t ) + au 

T.r[Y(t)] =s(t) + a2i t eR , (8) 

where ax = T . r[X(l0)], a2 = T . r[Y(t0)]. If crt = <72, then we get 
Y(0 
| (| P(s) - p(s) |)1/2 ds = 0 for t e R 

Xit) 

from (8), which however holds exactly if p = P and q = Q. Consequently at # a2. 
To prove the above assertion is suffices to show that s(R) = R. The functions 

r, s are monotone on R. If lim s(t) = b > -co, then from (8) we get 
t-* - o o 

T lim r(t) = T lim r[X(0] = b + aY, 
f - > —TOO f - * — CO 

T lim r(t) = T lim r[Y(0] = b + a2, 



which, however, conflicts with a% ¥ a2. Hence b = - c o . If l ims(/) = c < oo, 
t-*C30 

then it follows from (8) 

T lim r(t) = T lim r[X(/)] = c + ax, 
r->roo f->oo 

T lim r(r) = t lim r[Y(0] = c + a2 , 
f -+TOO f~*CO 

which again conflicts with ax # a2. Thus c = oo.' 

Lemma 4. Let ^pqPQ (or ^ P Q ) be a complete set. Then 

p - P e C2(R), q - Q e C2(R). 

Proof . Let ^~qPQ be a complete set. Then necessarily p =£ P, q ¥ Q. Let the 
functions r, s be defined by (7). Then it holds for every X e ^~qPQ that 

- r [ X ( 0 ] = s(/) + a, / e R , (9) 

with a : = -r [X ( / 0 ) ] - It follows from Lemma 3 that r(R) = s(R) = R. 
Let a and /? be increasing phases of (p) and (q), respectively. Then there exists 

to every Xe^~qPQ (exactly one) e e (£, sign e' = — 1 : X = <x~1efi. From this and 
from (9) we find that - r a _ 1 e = s/T1 + a. Putting R(t) : = r [ a " J ( / ) ] , S(/) : = 
:= s~p-\t)~, / e R , yields 

- K [ e ( / ) ] = S(t) + a, / G R , (10) 

whereby to every beR there exists (exactly one) ex e (£, such that — K[ex(/)] = 
-= S(/) + b. The set of such e] will be denoted by d^ ( c (£). Let now e2 G (~t be 
such that -K [ e 2 ( t ) ] = S(t). Then Kle^eJ^t)]} = K(/) - band therefore C-eJx = 
= {ifc""1 [/£(/) + K(a)];aGR}. The set G^eJ1 is a complete set forming a group 
with respect to the composition of functions. We put T(t, a) := K"1^/) + R(a)~, 
(/, a) e R x R. Since T(/, a) = T(#, / ) , both T(., a) and i(t, .) are phases of y" = — j \ 
Consequently, T(t, a) has continuous partial derivatives of all orders on R x R . 
Differentiating with respect to the variable a in K[T(t, a)~ = R(t) + K(a), we find 

that R'[x(t, a)~ . - |^ - ( / , ~) = R'fa), and specially for a = 0: £ ' [< / , 0)] . - | i ( / , 0) = 

= R\0). Putting e3(t) := t(f, 0), v(/) := - | ^ ( / , 0) ( # 0) for / e R, gives K'[e3(/)] x 

x v(/) = R'(Q)> whence R'(t) = — •; , / e R, and, since e3 and v have deri­
ves l(t)~ 

vatives of all orders on R, it is easily seen that the function R possesses this property, 
too. Because of r = Ra and a e C3(R) we have r G C3(R) and from (9) we have 
s G C3(R). Further, on taking account of Lemma 2 we obtain the assertion of the 
Lemma. 

The proof proceeds similarly for &*pqPQ being a complete set. 
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Lemma 5. ^pqPQ is a complete set exactly if 

P{t) = p(t) + k . a'2(t), 6(0 = q(0 + k . P'2(t\ teR, (11) 

where k ?- 0 is a constant and a and P are appropriate or arbitrary phases of (p) 
and (q), respectively. 

Proof. (=>) Let a t and pt be some phases of (p) and (q), respectively, with r, s 
being defined by (7). By Lemma 4 r, s e C3(R). Let us put g : = a^"1 , h : = />is-1. 
Then g(R) = h(R) = R and g, h e C3(R). Let g and h be phases of (u) and (v), 
respectively. Then is u(t) = -{g, t} - g'2(t), v(t) = -{/?, t} - h'2(l), t eR. There 
exists exactly one e e (£ to every a eR, which can be proved in analogy with the 
proof of Lemma 4, such that g~i{e[h(t)"]} = t + a, t e R. For every a e R is thus 
the function t + a a solution of the equation —{X, t} + X'2 . u(X) = v(t). Then, 
of couse, u(t + a) = u(t), t e R, for every a e R and u(t) = v(t) = a constant 
(:= m). On account of the fact that (u) is an oscillatory equation, we have m < 0 
and so, there exist e1, e2 e (£: 

*x[r-\ty] = e i(V~mO, Pils-\ty] = e2(y/-mt), teR. (12) 

Putting a : = ejf 1a1, P : = e^Pi, then a and /? are phases of (p) and (q), respectively, 

and we obtain further from (12): r(t) = a(t), s(t) = - 7 = = P(t), that is 

I Pit) - P(0 I = - — oc'2(t), I 6(0 ~ q(0 I = - — /^'2(0. In putting fc : = m m 

: = sign (P — p) I = sign (Q - q) by Lemma 2 J, then relation (11) is 
m y m / 

satisfied, where k # 0. 
(<=) Let k ^ 0 be a constant with a and p being phases of (p) and (q), respectively. 

Let (11) be valid. It may be assumed without any loss of generality that sign a' = 
= sign j8' = 1. Then Xe0>+qPQ exactly if 

-{X , t} + X'2.p(X) = q(l), 
-{X, /} + X'2 . (P(X) + k . a'2(X)) - q(t) + k . pt2(t), 

hence Xe&>+qPQ exactly if l e ^ and X'2 . a'2(X) = P'2. Then a[X(0] = 
= p(t) + a, a e R , and if we put $f := { a " 1 ^ ) + d\\aeR} is & ( c j?+) 
a complete set and ^ = 0*pqPQ. 

4. Main results 

Theorem 1. Let (p), (q) be oscillatory equations, P, Qe C°(R). Let a and p be 
phases of (p) and (q), respectively, with r, s being defined by (7). Then PpqPQ and 
necessarily also 0*pqpQ are complete sets exactly if the functions <xr~1,Ps"1 are 
phases of (m), where m < 0 is a constant. 
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Proof . (=>) Let ^pqPQ be a complete set. Then it follows from the proof (=>) 
of Lemma 5 that the functions ar"1 , /fa"1 are the phases of (m), where m < 0 is 
a constant and it is clear from the proof (<=) of Lemma 5 that &pqpQ = 
= {a~1[""^(0 + a];aeUL} is a complete set. 

(<=) Letting ar"1 , /fa"1 be the phases of (m), where m < 0 is a constant, yields 
r, s e C3(R), r(R) = s(R) = R and there exist e{, s2 e (S: a(t) = e^-m . r(t)), 

P(t) = e2(J~~m~. s(t)), t e R, whence r(t) = *-0=_, s(t) = ^=L, where a, : = 
V~" m V ~ m 

:= e^a is a phase of (p) and p{ := e2
 lj8 is a phase of (q). Then, of course, 

p = n L. #'2 Q = q j?i2, where T = ± 1. By Lemma 5, P^PQ and thus 
m m 

also &p~qPQ are complete sets. 

Theorem 2. Let (p), (q) be oscillatory equations, P,Qe C°(R), p(t) ^ P(f> 
a(t) -̂  Q(t)for leR, p-P, q-Qe C2(R). Let a and p be phases Of(p) and (q), 
respectively, with r, s defined by (7), r(R) = s(R) = R. Let ar"1 be a phase of (u) 
and /fa"1 be a phase Of(v). Then 

(i) &pqpQ and &~qPQ are countable sets exactly if there exist a > 0, b, e sueh that 
u, v are inconstant a-periodic functions, u(t + b) = v(t), u( —t + e) = v(t) far 
t e R ; 

(ii) &pqPQ is a countable set and 0*pqPQ is the empty set exactly if there exist 
a > 0, b sueh that u, v are a-periodic functions, u(t + b) = v(t) for t e R and no 
number c exists such that u(~t + c) = v(t)for t e R ; 

(iii) &pqPQ is the empty set and ^pqPQ is a countable set exactly if there exist 
a > 0, c such that u, v are a-periodic functions, u( — t + e) = v(t) for t e R and no 
number b exists such that u(t + b) = v(t) far t e R ; 

(iv) &pqpQ and ^~qpQ are one-element sets exactly if u, v are not periodic functions 
and if there exist numbers b, e: u(t + b) = v(t), u( — t + e) = v(t) for t e R; 

(v) ^pqPQ Is a one-element set and 0*pqpQ is the empty set exactly if the functions 
u, v are not periodic, there exists a number b: u(t + b) = v(t) for t e R and there 
exists no number c such that u( — t + e) = v(t) for t e R ; 

(vi) £?pqPQ is the empty set and 0*pqPQ is a one-element set exactly if the functions 
u, v are not periodic, there exists a number c: u(~t + e) = v(t) for t e R and there 
exists no number b such that u(t + b) = v(t) for t e R ; 

(vii) 0*pqPQ and &~qPQ are the empty sets exactly if there exist no numbers b, c 
such that u(t + b) = v(t) and u(-t + e) = v(t) for t e R . 

Proof. Let ^pqPQ be a countable set, I i , I 2
e ^ P Q ' *"- ^ ^2 such that 

af : = r[X,(l0)] 7* 0, 1 = 1,2. Let us put g := ar"1 , h := /fa"1 and Xt = ct~'1Eip, 
where et e (£. Then it follows from the necessary part of the proof of Lemma 5 
that g -1{£j[h(l)]} = t + a£. Consequently t + at are solutions of 

- { X , t } + X,2.u(X) = v(t), (13) 
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hence u(t + at) = v(t) for t e R, / = 1, 2. Thence u(t + ai — a2) = u(t), and 
because ax ^ a2, u is a inconstant periodic function with respect to Theorem 1. 
Let a > 0 be a period of the function u. If we put b : = ax, then u, v are a-periodic 
functions and u(t + b) = v(t) for t e R. 

Let &~qPQ be a countable set, Yl9 Y2e0>~qPQ, Yx # Y2 such that d{: = 
:= r[Yf(t0)] 7-0, i = 1, 2, Let Yt = K~h$, where st e (£. Evidently dx •?- d2 

and it follows that (8) yields ^ { ^ [ M O ] } = - t + dt. Consequently - t + df. 
are solutions of (13). Hence u( —t + dt) = v(t). Then u(t + dx — d2) = u(t). 
Thus, u is a periodic function, inconstant, with respect to Theorem 1. Let d > 0 
be a period of the function u. If we put c := dr, then u, v are d-periodic functions 
and u(-t + c) = v(t) for t e R. 

Let the functions u, v be a-periodic and let u(t + b) = v(t) for t e R, where 
b e R. Let the function u be inconstant. For every integer k then t + b + ka are 
all solutions of (13), which are of the form t + d, where dis a constant. To every k 
there exists an sk e (£: g~1{ek[h(t)']} = t + b + ka. If we put Xfc := a_1efcjS, 
where k is an integer, then Xfc e S£*q and 

r[Xfc(0] = s(t) + b + ka, t e R, (14) 

whence it follows that ^ ^ P Q is a countable set and ^^qPQ = {Xfc; k being an 
integer}. 

Let u, v be inconstant a-periodic functions and u( — t + e) = v(t) for t e R, 
where c e R. For every integer k then — t + c + ka are all solutions of (13), 
which are of the form — t + e, where e is a constant. To every integer k there 
exists an sk e (£: g"l {efc[h(t)]} = — t + c + ktf. If we put Yfc := a_1efc/?, where k 
is an integer, then Yks ^~q and -r[X f c(0] = -KO — c — ktf, whence it follows 
that ^ ^ P Q is a countable set and ^ ^ P Q = {Yfc; k being an integer}. 

It becomes evident from our consideration that Xe ^pqPQ exactly if there exists 
beR: u(t + b) = v(t) for t e R and Xe0>~qPQ exactly if there exists ceR 
w ( - t + c) = v(t) for t e R . 

Theorem, 3. Let (p), (q) be oscillatory equations, p, Q e C°(R) with at least one 
of the following assumptions p # P, q i=. Q being true and r, s defined by (7) satisfy 
r(R) ^ R 7̂  s(R). Then ^pqPQ and ^~qPQ are atmost one-element sets. 

The proof follows from Lemma 1 and Lemma 3. 
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Souhrn 

S T R U K T U R A P R Ů N I K U Ř E Š E N Í DVOU 
D I F E R E N C I Á L N Í C H ROVNIC KUMMEROVA TYPU 

SVATOSLAV STANĚK 

Nechť p, q e C2(R), P,Qe C°(R), p - q e C2(R), P - Qe C2(R) a nechť / = 
= Q(t)y> y" •= P(t)y jsou oscilatorické rovnice. Za uvedených předpokladů je po­
psána struktura průniku řešení dvou diferenciálních rovnic 

-{X,t}+X'2.p(X)= q(t), 
-{X,t} + X'2 . P(X) = Q(t), 

kde {X, t} = l 1 X'"(t) 3 (X"(t)Y 
2 X'(t) " 4 \x'(t)J ' 

Резюме 

СТРУКТУРА П Е Р Е С Е Ч Е Н И Я Р Е Ш Е Н И Й 
ДВУХ Д И Ф Ф Е Р Е Н Ц И А Л Ь Н Ы Х У Р А В Н Е Н И Й 

Т И П А КУММЕРА 

СВАТОСЛАВ СТАНЕК 

Пусть р^е С2(К), Р, б е С°(К), р - ^ е С2(К), Р -^е С2(К). Пусть у" = 
= Р(1)у> У" = ч(()У колеблющиеся уравнения. При этих предложениях при­
водится описание структуры пересечения решений двух дифферециальных 
уравнений 

~{Х,1}+Х'2.р(Х) = Я(1), 

-{х,1}+х'2.пх) = <}«), 

f v , 1 X'"(t) 
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3 (X"(t)\2 

4\X'(t)J' 
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