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On the theory of the optical activity of crystals 

Vladimír Janků 
(Received 1. 6. 1966) 

In the last time we can meet with the more intensive interest in rotatory power 
of crystals. This revival was caused first of all by the fact that in the last years 
relatively a great deal of experimental data were assembled partly by the crystals 
optically known partly the rotatory power was proved by any other crystals (for ex. 
by the selen crystals) where the existence of this phenomenon was not yet provided. 
Besides this there could be found some indications on the dependence concerning 
optical activity of crystals on the heat and pressure. 

The experimental results obtained in present time have then evoked a new interest 
in the theoretical derivation of formulae with the aid of which may be described the 
rotatory power in the sufficiently large spectral region. Some authors try to derive 
these formulae by the means of the exciton theory, the others are using in their 
theories the models of coupled oscillators. 

In this work the author has tried to generalize by means of the model of coupled 
oscillators the relations gained till now for the dispersion of rotatory power and on 
the basis of the quantum-mechanical consideration with respect to the damping 
he came to the expression where as special cases all the most important and earlier 
derived relations for rotatory power of crystals are involved. 

In order to judge in what measure our equation then other ones, we shall show 
at least in the short summary the most important of them. 

I. F o r m u l a e for r o t a t o r y d i s p e r s i o n of c r y s t a l s 

For the description of rotatory dispersion of crystals there exist in the present 
time a lot of formulae. Most of them are empirical ones containing the greater or the 
less number of constants. 

The first formula describing the rotatory dispersion of crystals which was theore­
tically derived by means of the microscopic theory is Drude's formula 

(i,D L V- — A? 

where q is the rotatory power (in degrees/ mm of crystals thickness), K{ is the con­
stant, which is characteristic to the wave-length of the absorption Af (in micrometers). 



The summation in this case is made over all ' T \ of the characteristic wave-lengths 
of the crystal absorption. 

The formula (LI) is available for description of the rotatory power in the ultraviolet 
region for a-quartz, cinnabar, bcnzil and sodium chlorate[ l l 

This author[ 2] has shown however that all the experimental data obtained in the 
visible region till to the ultraviolet region may by described by means of the more 
general formula in the form of 

- * £ _ (12) 
(A2 - X{)2 1 

which is quadratic with respect to te hr 

Even when the formula (1,2) was originally derived for the crystals with the space 
group of the symmetry D.j or Df it was used successfully for describing the rotatory 
dispersion of another crystals belonging to the other group of symmetry (/5-quartz, 
ethylene diaminosulphate) [3]. The same authorsj 4 ] have shown later that in the case 
of the crystals of sodium bromate and sodium uranylacetate the formula (1,1) 
appears to be more useful. In the year 1964 Kizel and al.[3] have obtained the curve 
of the rotatory dispersion of benzil and found that it is the superposition of Chan-
drasekhar's and Drudejs curves. In the mesr MIS there can be found Cotton's 
effect and for this reason the curve is then asymmetric with respect to the characte­
ristic wave-length. This means that the part of the curve was corresponding to 
Drude's formula (1,1). 

In this correspondence it is very suitable to mention one formula which was given 
in the year 1933 by Born and G6ppert-Mayer[5]. This formula has the form 

* - 1 Xi - / f + w=W ' f *' if ' W-W (I'3) 

where the index " i " is valid in the visible and ultraviolet and the index " j " in the 
infrared region. The formula (1,3) is relatively general as well, it may be shown ho­
wever that in the case K^} = 0 it can be reduced in (1,2), in the case Kf — 0 
then in the Drudes' formula (1,1). 

As for practical use of this formula it seems tha t it can be truly used only in the 
case of benzil. 

In the year 1964 the situation appeared that the rotatory dispersion of crystals 
was described by means of various formulae with greater or less accuracy. 

Deriving his formula (1,2) Chandrasekhar had used the model of coupled oscil­
lators. His derivation appears to have the classical form taking no account of the 
damping. In his theory Chandrasekhar takes for granted that the oscillators strengths 
in the case of both modes of vibration are the same. I t is necessary then to mention 
that the concept of the oscillator strengthes has in his classical theory only a pure 
formal character, because it is impossible to express it on basis of the classical 
calculation in an explicit form. In the case of an individual characterictic wave­
length he came then to the expression 

n K)? 
? = T(n' -n^w:---W 

(1,4) 
__ Ne%P sin 9 cos 0 
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The classical generalization of Ohandrasekhar's formula (1,4) even in the case of 
damping was made on basis of a model of coupled oscillator by Vysin[6] who came to 
the relation 

1 1 

, ,- :2ig%o) — oy2 of + 2ig1co -
(1,5) 

B = rcNje2 ( a 2

0

+ f2)- Z sin 0 
2mc2 

In his work the author had shown also that after a modification and repartition of 
a real and imaginary parts in the relation (1,5) we may obtain the equation 

Reo = Ba)2' 
[ (cog — «>-)- + 4afo>2 (cof — co2)2 + 4 e / X j 

</2 i T ,/, ( I 6 ) 

7 m ~ Bw2 ! 2 f f i M -fya™ \ 
\ (cof — to2)2 -) 4c/f co2 (co| — co2)2 + 4c/|co2 j 

The first equation describes the dispersion of the rotatory power, the second one 
the circular dichroism. 

The equation (1,5) is then evidently more general then the equation (1,2) since 
in the case of cof2 > co2, t h a t means in the spectral region sufficiently distant from 
the absorption wThere the damping is not evident we can obtain Ohandrasekhar's 
equation (1,2) from the equation (1,5) as a special case. 

The same author[7] in the year 1966 had derived the equation of the rotatory 
dispersion of crystals in the quantum-mechanical way. In this work he used also 
the model of coupled oscillators and had shown among others t h a t the presumption 
of the equivalence of oscillator strengths for both normal modes of vibration must 
not be fulfilled in any time. 

He provided in his theory that these oscillator strengths are different. He has not 
taken in account the damping and had come to the expression 

xNe2(*2 + /?2) d sm&e(fq2 + fq,) % I2 

Q T r n c 4 ' " (A2 — XI)2 + 

nNe2(oc2 + j32)clsm&(fq2-fql) 1 

Я 2 - -% 
(IД) 

This formula involves, as we can see, a quadratic and a linear member with respect 
to the characteristic wave-length A0. 

In the case that the oscillator strengths of both modes of vibrations are equivalent 
the author is then passing to Ohandrasekhar's formula (1,2) and presuming at the 
same time the little binding among the oscillators (in this case it can be namely 
ommited sometimes the quadratic member towards the linear member) in Drude's 
formulae (1,1). 

The linear member of the expression (1,7) is suitable for the description of the 
rotatory dispersion of sodium bromatc and sodium uranylacetate. In the case of 
benzil it is evidently necessary to use the two members of the forgoing formula. 

I I . G e n e r a l i z a t i o n of t h e t h e o r y 

In the present work there is shown the quantum-mechanical description of the 
dispersion concerning the rotatory power of crystals with regard to the damping. 



By tliis evaluation we are going out again from a model of coupled oscillators, 
presuming that for the two normal modes of vibration the oscillator strengthes 
as so as the damping are different. The evaluation is then made on the basis of the 
results of the Chandrasckhar and Vysin works and it is in substance the further 
development an<i u< "<ii ligation of Vysm's| 7 | work. 

If ve should like generalize the that is preceding formulae for rotatory dispersion 
for the ease of resonance, that is for the case where the frequency of light on the 
crystal is confused with one of the characteristic frequencies, it is necessary to involve 
by the calculation the life time of the excited states of the oscillators. This life time 
can be, according Davydov[!>] formally included in this wray that we are overgoing 
H- • N mergh ha! is wc arc making the transformation 

" Et-»isk-±rth (11,1) 

where T^1 means the life time of the k-tli excited state. 
The Schrodinger equation for the two coupled oscillators can be then written in 

the normal coordinates in the following way 

h2 d2y.un mm2 „ _. h2 d2w.2n moA „ 

~ tonSW + -ST**- + R ^ * - 2ST-a_T + X * " + 

+ R»v>2„ - («„ - + rln%) F.„ + (E2„. - \ A.ft) V t a ( " .2) 

Applying normal coordinates the original frequency will be then split in the two 
adjacent frequencies col and eo2 and we obtain then two normal modes of vibration. 
The linearly polarized light wave propagating along the optical axis of the crystal, 
will be then split in the two circularly polarized waves. The force of the incident 
light wave on the coupled oscillator can be expressed in the normal coordinates 
using the expression [7] 

1^ = K 3 c <T0 cos (a>t + a) = (a») - ^ (e*«« + *-*>*) (11,3) 

where r\ — \.2 denotes the normal vibration modes of the oscillator,;. = r,l for the 
right and for the left circularly polarized light wave. 
For the right circularly polarized light wave 

(aq[)2 - (a 2 + /j2) (1 + cos 0 + & sin 0) 

(aql)
2 = (a 2 -|- (P) (1 — cos 0 0 sin 0) 

for the light wave circularly polarized on the left we have 

(a\)2 - (a2 + ft2) (I + cos 0 — 0 sin 0) 

(П,3а) 

(П,3b) 

Under the influence of a light field the state of a system will be then commonly 
described through the wave-function tpvn(q0,t), which must then fulfill the Schrodin­
ger equation (11,2) 

ih^-" = #>»>¥<„„ + # U , V W (H,4) 



2m dq* i 2 ? * ' 

B(1) = % 

Considering the influence of a light wave on a system as a disturbance the equation 
(11,4) may be solved with the aid of the disturbance theory. In what follows let us 
limit ourselves on the first approximation. 

Let us seek for the wave function y>m(qv, t) in the form 

?,«(&,' «) = W + S Kn* e':"jf + 61«* e"ift") <*> e~iC°*nt 

E \ <n«B> 
_ £g» _ l p 

where annk, 6,m/c represent the correction for the wave function y>\^ . y)n°n must then 
fulfill the equation 

H«%<o> __ ]$ w(0) 

Substituting (11,5) in (11,4) and omitting the products Ha)ajjnk and Ha)b)ink (which 
are proportional $2 and belonging to the second approximation) we have then 

a _ _ J _ _ _ _ _ _ J _ _ _ _ _ (a^fo<J]k 1 g„ 1 qn) g 

(a?*) e <^0 <^/c | ? /, | 7)71) 
°vi>i • f 7 i ' V1J->U 

2n]^nnk + ш-~(Г.1iП + ГnĄ 

Substituting (11,6) and (11,7) in (11,5) we have 

X 
eta.í 

Í + 1 i I I i 1 
Pnnk — w — 2~ (-"-,» + A*) « W + w — "2 (IVi + Pr,*) 

(H,8) 

Now it can be determined already the dipole moment of a system which is 

dqv = / ^*n e K * ) Ji.Vi.» d ? ^ ( n > 9 ) 
and further we obtain 

d^ = /A* e K3?^Sd 9 í í -

6 Sborník AUPO 8 1 



- 4̂̂ ° I<rin! q»l **> — —^r f ^r e(a^ " s d<?"" 
T1 %-* + <« + |(A« + A*r 

- " ( - | # -• y <*?» i ^ > * - — ^ (vs*ew «^s ^ -
V ^»*-*> + ~(An + A*r 

(*7 * W llf V I Pi0Jt r 

~ 2 J V ^ ) < ^ ! ?" ! W n > ~ ^ < » * 6 ( a ^ ) " " * d ? " 

' 7" *v*-^-i(A« + A*r 

~ 2fr° X <^' -"*! ^ l > i— - / *$' e W " $ d ? . . • 
A, «-«*+« —^(A» + A*) 

(11,10) 
Omitting in thes expression the first membere (a *) (rjn \ qv ! r\n) (which doesn't 

not take place by the dispersion) we have 
tn *\2 p 2 $ yr-\ 

Kn = --^ ----- X I <*»* ! 9* ! *"> 12 * M»*» X 

" [<nk - [» ~ | (T,n + A*)J} + 6-*- {<* - [<0 + -t (T,„ + T,,)]2} 

{<* - [« + |- (An + A,)]2} {<* - [" - | (An + A*)J} 
(11,11) 

or after some modifications 

к _ ад2e^0 
d * = 

\2 p 2 X" r-, 
,

T ~ - 2 , l < ^ l ^ 1 ^ > 1 2 c o ' ^ x 

[ < * - "« + J (An + A,)2] ( ^ + e-^') | 
A^ * J (11,12) 

« * " «>2)2 + ~ ^2(An + A*)' + 4 (An + A*)' 

Applying in this expression the oscillator strength by means of the expression [8] 

f x ™«\kn I <yk 1 q* I nn> I2

 ( I I n ) 

J qi} - k ' l 

then it is given 
(a *.2 e 2 t к 

d * = І V ! Z î L ^ - ' + e-i- X 

v-l <*-«>a + j (An + A*)2 1 

£ г г (ПД4) 

* « * - ^2)2 + i (T„w + гчł)i co
2 + — (Aи + гчł)* 
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Using the expression (11,14) we can then determine the coefficient of the polarizability 
of a system. Since 

y*=]™!L=X*A. (11,15) 

N 
where N' = — means the number of the coupled oscillators, we can write 

„ __ (a»Y e2N y Y 
"" 2m ~"~Jq*h ň2 + ~ «ĄГÌÌП + Гч ł)- + - 1 (T^ + Гчł)« 

1 
(i w + i „)* |: 

(11,16) 
« * - ™2)2 + \ <>Arnn + T„,)- + - L (Tw + T„,)* 

Since the coefficient of the polarizability of a system is then given through the 
summation of the corresponding coefficients over all modes of vibration[10] we can 
then for the light wave circularly polarized on the left and on the right write as 
follows 

(»?-• l)gn = 4тг£уД 
Чц 

(w2 — l)qn= 4я%у/ 
(IIД7) 

(»»-l) = 4 W IIy^ (11,18) 
9V, * 

Let us presume that for the both normal modes of vibration the oscillator strength 
doesn't depend on the polarization of the light wave. We can then write 

ft&ZfnZftl < n - 1 9 > 
J ql J q2 J q2 

From the relation (11,17) we can then easily determine the expression (T,,n, — 

= r,n, + rvt) 

2nNe2 

£ \fqá«)2 Kž)2lX 

4 J 2 * 

« * - t»*f + \^nnk+-^nlk « , -o,r+1-« 2 T i„ , + ^nn* 

+/?i[Ki)2-Ki)2lx 
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0Ąnl, — 0)ů T?„, 

«,~ o>*f + 1 co2Tfw, + ± Tt„, ( ^ - «>2)2 + -1 ô Tf „, + - i - Tf, 

(11,20) 
Substituting the expressions (a ?*) 2 with the use of the relations (II,3a) and (H,3b) 
we then have 

nf — n; — 

Щnt — CÚ 

iлN e2 

a 2 + |82) Ф sin <9 V 

-II-* 

« * - «>2)2 + ^ *> ł-0* + - I I * « * - o>2)2 + I o>2TL, + І T | M , 

0)f.иí, — OГ 
-PL* 

«*-<»2)2 + ^ 2 T L * + ^ PL* « * - ">2)2 + \ ">2PL*+-^TL* 

(11,21) 

Because of wf — w| = 2n{nl — nr), where n is the mean refraction index belonging to 

the phase-shift 0 = — (where d denotes the distance between the coupled 

oscillators measured along the optical axis of the crystal), we will have in this 

condition after inducing the substitution A = the modified expression (H,21) 

which will be substituted in the relation for polarizability 

Finally we obtain 

Q == -— (Щ ~ nr) (11,22) 

e = — - \~(*2 + ß*)àsm > 
mc2 Lл 

a>înt — coů 

« * - *>2)2 + 4 m%Гìnk + ŁПnk « * - co*f + l co*Г\nk + -L TL 

/ ? i 
OJÍ„i. ftГ 

-TL 

«*-^ 2) 2 + i^2TL + ІPL* «*-^Т-+^ 2 TL* + -^ TL* 

' (11,23) 

which is the expression sought for the dispersion of the polarizability of crystals. 
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I I I . D i s c u s s i o n of r e s u l t s 

The expression (11,23) is in fact more general than all the preceding ones. For 
rightness evidence of this expression we can consider the fact that this equation does 
involve as special cases the formulae (VI), (1,2) and (1,7). 

Let us presume to be in the region sufficiently distant from the absorption band, 
tha t it is valid eof2 > co2 and tha t for the both normal modes of vibration the oscil­
lator strengths are the same. While in the spectral region considered the damping 
doesn't take place, we will obtain under the above mentioned presumptions the 
equation (11,23) in the more simple form 

— ^ V + ^ s i n ^ P " 1 ^ AW-»_l_ 
mc2 v ' ' ' \{col — to2)* (wf--eo2)2 

____)_ Bco*í fî 

I eoš — ar eot 

__» _ \fM + 2 ^ — <*>*) — A K ~ 2*a« - «>2)t = 
\ (ai\ — 2 ^ e — ft)2) K + 2^2« — w2) I 

By the evaluation following presumptions, symbols and substitutions were used: 

MXnh = f 0 l > 

« _ _ * = « _ . t C0l,2 > G>*> 

J?l ==J_2 = / » 

<_2 _= tog + 27t2£ 1 [11] 

ft)| = eoo — -to*6 I 
7T P 2 N 

£ _ _ i L ^ ( a - + 0*)d___.0 

B'= _ : _ 2 _ . / . B 

Introducing in the expression (111,1) the further substitution co — —— , we can 

write it in the form 

* (*» — *§)»' 
(111,2) 

ф e e 2 N ( a „ + ^ ^ g i n ^ 

mc4 

Comparing this relation with (1,2) we can see t h a t the (III,2) will be really Chandra-
sekhar's formula (1,2) in the case of the single characteristic wave length. Let us 
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presume now that the oscillator strengths are different for both normal modes 
of vibration. With respect to the relation (111,1) we will have 

Q = Büŕ 
-, f%( -.\ + 2n2e —• co2) —/i+'Jo — 2n2E — (»2) I 
\ _ ( a | + + 2nH —" w ^ ( ^ " - j ~ 2 ^ a 7 " — o¥) | = 

^Bnfiv^pL+M+u-M aim 
{ [0)Q — CO2)2 W% O)2 j 

n e2N 
B = - (a2 + /?-) d sin 0 

or substituting <o = 
2лc 

7TN e 2(a 2 + 0*) d sin 0 e ( / a I ,/) ^ A2 

Q = 2?nc4 ~ • "(X8 — Af,)-" + 

TrN e 2(a2 + /J2) d s i n ^ / , - / - ) 1 

mc2 ' A2 — ^ l ; 

which is then the relation (1,7) derived by Vysin [7]. 
Let us discuss the possibility, which in all cases can take place. Namely if it is 

given ooi{ 2 > (o2,ft + / 2 , the damping can be then omitted and the dispersion of the 
rotatory power will be then described by the formula (111,4). This expression 
involve two members which must not be always maintained equally in the case of 
the. concrete crystal. 

The second member, which is linear with respect to the characteristic wave length 
1 0 , will be evidently of use in this case where the difference of oscillator strengths 
(/a—/i) belonging to the twro normal modes of vibration, is very considerable. 
In this case it is possible (provided that s the constant of the binding is very low) 
to omit the first of the expression (III,4) with respect to the second member and we 
obtain then even the third specific case of the generalized equation (11,23) namely 
the Drude's equation (1,1) for the case of th listic wave length of the 
absorption. 

The evaluation made in this way showrs that all the equations earlier derived for 
the rotatory power are really involved in the formula (11,23) as special cases. 

In the conclusion we can show that from the equation (11,23) follows even the 
equation of the normal (frequency) dispersion, taking no account of the effects of the 
second order (to which belong the optical activity) setting 

<'h = <-'H = «o> /i = / 2 =/'• 

The refraction index may be then determined from the equation 

< - 1 = \ [(»? " I ) * \ (»? - 1 ) * + « - l)(h ! (n? - 1),J (111,5) 

With respect to the expressions (11,16) we then obtain under the above mentioned 
presumptions the expression 

2 -, nfN e2 

ni - - 1 = — X 



Kï)2 [к-«>2)+xгi] [K-co2) + ÌT l ] 

I K - o,2)2 + ~ co*r\ + ~ r\ (coi - Co
2)2 + i . c-rf + i - Ti 

W)2 [ K - *>2) + \ Ti] Kl)2 [ K - «ň + -L Ti] | 

K *>2)2 + Y ^2I1 + ̂  I I K - «>2)2 + Y *>2P! + ̂  r l ( 

7ГN/e2 I [K-«> 2 ) +-4-^] tKí)2 + Kí)s 

•(a,g-a>-)» + -la,-Tf+ -1Г* 

[ к - <»-) + ̂ T i ] tKr

2)
2 + KУ2] 

(wj,-æ-)- + -Lűí-TŠ + -lT£ 
(Ш,Є) 

Let us set further aven Tx — T2 = T0. Then we can write after substitution for 
the expressions (II,3a) and (II,3b) obtain the forgoing equation in the form 

l — 1 = 
2тrN/e2 

(a2 + ßђ X 

K — c°2H-- -To K — ^2) + 

к >2)2 + I «AПí + ì Tf, к - *>2)2 + + ŷ-Ti + -L T* 

i j i N / e 2 

(a2 + ß*) (Ш,7) 

which represent the general relation for the frequency dispersion of the crystal. 
The merit of this relation lies in the fact that in the general form it describes 

the absorption band of the crystal where the damping will be expressed very expres­
sively. In the regions are very apart from the absorption region the members of 
damping may be omitted and we then have the expression 

.i = Ml?L(xг + ŕ ) . (Ш,8) 

which is wrell known. 

C o n c l u s i o n 

As basic contribution of the present work may be considered the derivation of the 
equation (11,23). 
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The derived expression does involve 4 members, the both of which in the brackets 
may be considered as the quantum effects. The interpretation of these quantum 
members however is very difficult, since they are involving the damping. Both 
these quantum members will exhibit themselves very expressively as far as in the 
close proximity of the absorption bands, wrhere there are, as we know, the experimen­
tal measurements practically unrealizable. 

The interpretation of the quantum members will be made difficult also by the 
fact that we have till now no suitable analytical method by means of which we could 
prove to estimate, a t least in an experimental way, the extent of damping. 

From this point of view the equation (11,23) has, for the time being, somewhat 
formal character. The correctness of the equation will be no doubt verified by the 
evaluations made in chapter I I I ? we have not but yet succeeded till now in the 
complete interpretation of the equation. 

The final verification of the correctness of the equation (11,23) as so as of the 
complete theory of the rotatory dispersion of crystals will be then possible only on 
basis of the further and new measurements. 

I would like to thank Dr. V. Vysin for valuable discussions concerning the problems 
of this work. 
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Shrnutí 

Teorie optické aktivity krystalů 

VLADIMÍR JANKŮ 

V předložené práci je ukázán kvantověmechanický výpočet disperse rotační 
polarizace krystalů. Výpočet vychází z modelu spřažených oscilátorů a je v něm 
také přihlédnuto k útlumu. Byla získána zobecněná rovnice disperse rotační polari­
zace krystalů, ze které jako speciální případy vyplývají všechny nejdůležitější dříve 
odvozené vzorce. 



Рез юме 

Теория оптической активности кристаллов 

ВЛАДИМИР ЯНКУ 

В настоящей работе показывается квантовомеханическое определение 
дисперсии оптической активности кристаллов. 

Используется метод связанных осцилляторов и принимается во внимание 
ташке затухание. Получено обобщенное уравнение, которое применимо 
для описания дисперсии оптической активности кристаллов и из которого 
вытекают фундаментальные предыдущие соотношения. 
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