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In the last time we can meet with the more intensive interest in rotatory power
of crystals. This revival was caused first of all by the fact that in the last years
relatively a great deal of experimental data were assembled partly by the crystals
optically known partly the rotatory power was proved by any other crystals (for ex.
by the selen crystals) where the existence of this phenomenon was not yet provided.
Besides this there could be found some indications on the dependence concerning
optical activity of crystals on the heat and pressure.

The experimental results obtained in present time have then evoked a new interest
in the theoretical derivation of formulae with the aid of which may be described the
rotatory power in the sufficiently large spectral region. Some authors try to derive
these formulae by the means of the exciton theory, the others are using in their
theories the models of coupled oscillators.

In this work the author has tried to generalize by means of the model of coupled
oscillators the relations gained till now for the dispersion of rotatory power and on
the basis of the quantum-mechanical consideration with respect to the damping
he came to the expression where as special cases all the most important and earlier
derived relations for rotatory power of crystals are involved.

In order to judge in what measure our equation then other ones, we shall show
at least in the short summary the most important of them.

I. Formulae for rotatory dispersion of crystals

Tor the description of rotatory dispersion of crystals there exist in the present
time a lot of formulae. Most of them are empirical ones containing the greater or the
less number of constants.

The first formula describing the rotatory dispersion of crystals which was theore-
tically derived by means of the microscopic theory is Drude’s formula

(8]

where p is the rotatory power (in degrees/ mm of crystals thickness), K, is the con-
stant, which is characteristic to the wave-length of the absorption 4; (in micrometers).

77



The summation in this case is made over all *'1’
of the crystal absorption.

The formula (I.1) is available for description of the rotatory power in the ultraviolet
region for o-quartz, cinnabar, benzil and sodium chlorate[1].

This author(2] has shown however that all the experimental data obtained in the
visible region till to the ultraviolet region may by described by means of the more
general formula in the form of

K2 .

which is quadratic with respect to te ;.
Lven when the formula (1,2) was originally derived for the crystals with the space
group of the symmetry Dy or D§ it was used successfully for describing the rotatory
dispersion of another crystals belonging to the other group of symmetry (f-quartz,
ethylene diaminosulphate)[3]. The same authors|4 | have shown later that in the case
of the crystals of sodium bromate and sodium uranylacetate the formula (I,1)
appears to be more uscful. In the year 1964 Kizel and al.[3]have obtained the curve
of the rotatory dispersion of benzil and found that it is the superposition of Chan-
drasekhar’s and Drude’s curves. In the measuring regions there can be found Cotton’s
effect and for this reason the curve is then asymmetric with respect to the characte-
ristic wave-length. This means that the part of the curve was corresponding to
Drude’s formula (I,1).

In this correspondence it is very suitable to mention one formula which was given
in the vear 1933 by Born and Géppert-Mayer[5]. This formula has the form

—y Kj._]r I(s‘_wlz . K‘f“ . K;'Z)XZ
0= Z,»; —rtE ! Z;f” P (13)

i
i

. of the characteristic wave-lengths

s

where the index “i”" is valid in the visible and ultraviolet and the index “§” in the
infrared region. The formula (I,3) is relatively general as well, it may be shown ho-
wever that in the case K" = O it can be reduced in (I.2), in the case K@ — O
then in the Drudes’ formula (I,1).

As for practical use of this formula it seems that it can e truly used only in the
case of benzil.

In the year 1964 the situation appeared that the rotatory dispersion of crystals
was described by means of various formulae with greater or less aceuracy.

Deriving his formula (I.2) Chandrasekhar had used the model of coupled oscil-
lators. His derivation appears to have the classical form taking no account of the
damping. In his theory Chandrasekhar takes for granted that the oscillators strengths
in the casc of both modes of vibration are the same. It is necessary then to mention
that the concept of the oscillator strengthes has in his classical theory only a pure
formal character, because it is impossible to express it on basis of the classical
calculation in an explicit form. In the case of an individual characterictic wave-
length he came then to the expression

4
0= }—(n, —n,) =

Net f2 sin O cos &
2mmPd2ct

(L4)
K=
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The classical generalization of Chandrasekhar’s formula (I,4) even in the case of
damping was made on basis of a model of coupled oscillator by VySin[6] who came to
the relation

-

1 1
0F 4 2gyor - - 2 @ - ¢ ﬂ@lujiﬁ'}’

(L5
2 1
B = aNfer RGNy lsin @
mc

In his work the anthor had shown also that after a modification and repartition of
a real and imaginary parts in the relation (I,5) we may obtain the equation

w3 — w? % — w?
Rep = Bw? . 2 S 1 _—
= ! (0§ — w?)® + 4g3m? (w§ — w?)? + 4g30?
(1.6)
Imo = Bw? - %'q'—(r’.) U ;7',(’.2{? \
h (0] — w?)? 4 dgim?® (0 — )2 | 4g2m?

The first equation describes the dispersion of the rotatory power, the second one
the circular dichroism.

The equation (I,5) is then evidently more general then the equation (I,2) since
in the case of w}, > ?, that means in the spectral region sufficiently distant from
the absorption where the damping is not evident we can obtain Chandrasekhar’s
equation (L,2) from the equation (I.b) as a special case.

The same author[7] in the year 1966 had derived the equation of the rotatory
dispersion of crystals in the quantum-mechanical way. In this work he used also
the model of coupled oscillators and had shown among others that the presumption
of the equivalence of oscillator strengths for both normal modes of vibration must
not be fulfilled in any time.

He provided in his theory that these oscillator strengths are different. He has not
taken m account the damping and had come to the expression

~ aNeXo® -+ %) d sin O (fro +f ) A %”'
= e e T
AN B O f) 1 w

me? 222

This formula involves, as we can see, a quadratic and a linear member with respect
to the characteristic wave-length 4.

In the case that the oscillator strengths of both modes of vibrations are equivalent
the author is then passing to Chandrasekhar’s formula (I,2) and presuming at the
same time the little binding among the oscillators (in this case it can be namely
ommited sometimes the quadratic member towards the lincar member) in Drude’s
formulae (I,1).

The linear member of the expression (1,7) is suitable for the description of the
rotatory dispersion of sodium bromate and sodium uranylacetate. In the case of
benzil 1t is evidently necessary to use the two members of the forgoing formula.

I1. Generalization of the theory

In the present work there is shown the quantum-mechanical description of the
dispersion concerning the rotatory power of crystals with regard to the damping.
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By this evaluation we are going out again from a model of coupled oscillators,
presuming that for the two normal modes of vibration the oscillator strengthes
as 80 as the damping are different. The evaluation is then made on the basis of the
results of the Chandrasekhar and Vysin works and it is in substance the further
development and generalization of Vysin's[7| work.

If ve should like generalize the that is preceding formulae for rotatory dispersion
for the case of resonance, that is for the case where the frequency of light on the
cerystal is confused with one of the characteristic frequencies, it Is necessary to involve
by the calculation the life time of the excited states of the oscillators. This life time
can be. according Davydov[?] formally included in this way that we are overgoing
to the complex energies, that is we arc making the transformation

- Lt
Ey—k,— 51-';]1 (1L1)
where 77" means the life time of the k-th excited state.

The Schrodinger equation for the two coupled oscillators can be then written in
the normal coordinates in the following way

h2 oy, moi h* 0%y, mm3
e T g2 . E? L oL B 4
om o 2 G+ Bty am’ og3 1 g B2V +
- 7
-+ Rﬂ’]z”/’zn - (Elu 9 1 1;17") Yin + (Em 9 quh) Y2 (11,2)

Applying normal coordinates the original frequency will be then split in the two
adjacent frequencies o, and w, and we obtain then two normal modes of vibration.
The linearly polarized light wave propagating along the optical axis of the crystal,
will be then split in the two circularly polarized waves. The force of the incident
light wave on the coupled oscillator can be expressed in the normal coordinates
using the expression [7]

R = (a,) ¢ & cos (ot 4 0) = (a2 ©

o) -

eiol | g-inl) (IL.3)

P
4

where 7 — 1.2 denotes the normal vibration modes of the oscillator, % = r,{ for the
right and for the left circularly polarized light wave. :
For the right circularly polarized light wave

(2,32 = (e 4 %) (1 + cos O 4 P sin O)

(@) = (o2 4 ) (1 —c0s @ — P sin O) (IT.32)
for the light wave circularly polarized on the left we have
e — (o 4 %) (1 + cos @ — D sin @
(a,1) = (o 4 f?) (1 + cos sin ) (I1.3b)

(@) = (x% -+ ) (1 —cos O | D sin O)

42

Under the influence of a light field the state of a system will be then commonly

described through the wave-function y,,(¢,, f), Which must then fulfill the Schrodin-
ger equation (II,2)
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2 2 2
o P moy,

2m 0g% g I
HW = R3q,
Considering the influence of a light wave on a system as a disturbance the equation
(I1,4) may be solved with the aid of the disturbance theory. In what follows let us
limit ourselves on the first approximation.
Let us seek for the wave function 'an(’lm t) in the form

P 1) = (9RF X (g 0+ b 0700 i) eom
B (IL5)

(3
— nn
=L 2T,

where a,,;, b, represent the correction for the wave function () . 3!9 must then
fulfill the equation

HOYR = B9
Substituting (I1,5) in (IT,4) and omitting the products HWa, ,, and HWb, ;. (which
are proportional &2 and belonging to the second approximation) we have then

_ (e edynklg, lyn> _ (a;) e nklg, | nn)
= — L) LD, 0D . (IT)
! 20w, — 0, — o) . 1
2h Oy = O — o (rnn + I .,x~)
byt = (ag7) e (m <’7’: AV ) (IL7)
2h [u),mk + w— Z 0, + F,M)]
O == Wy~ Oy
Substituting (1L,6) and (I1,7) in (II,5) we have
. e d
Pl ) = {8 o — L2 S 2 Gkl g, 1> %
% B Ei:tu‘, b evzf.,r ————— T | o
- ) uk
O O — 2'(1 T+ Pm-)l lwm.x: + o — Bl (L + rm)]
(11,8)
Now it can be determined already the dipole moment of a system which is
g = [ vinele) 4,9, dg, (IL9)

and further we obtain
da: = f'#f?f (a 0;7) q'lwi‘(": dq" -
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ay)ed e—uul
~~(—l’i;hf "Z Sl gy [y = f v elagy) g, ¥in dg, —
k @ — 0+ (1 wn T, nk)
a)ed, eiwf
e z <l | gy |y e f Yo elag) g, 9% dg, -
Wy = O — (rm: )
an) e &,

e—iwt

(0)%

I

i Z {nk g, ingn) ) 4,950 dg,, -
-

O+ 0 = 5 (L + T)
(I1,10)

Omitting in thes expression the first membere (a,%) <y | ¢, | ) (which doesn’t
not take place by the dispersi(m) we have

(a

dg = Z [l | gy L) 12 oy

ewl {,,,,Mv lm — s (Lt ,,k)] }+e ot {(o . [w o, F")l
X | = -

RER [r T D[ ot — [m—-%(r,,,l +r|)

(IL,11)
or after some modifications
a2 et é
dy= (7“’)7 o Z [k | q, [ qn) 2@, <
&
’ ["’v,nk"“z + (P,,,, + Ink)z] (et 4 e~ir) l
X — —— (I1,12)

9 1
| @02+ g o (L T+ g (T T |
Applying in this expression the oscillator strength by means of the expression  [8]
Fry= e \7<n’%lﬁ{1nﬂ\ ) |* (IL13)
then it is given
)2 g2f *
dq: R a_'ljl)/,:,fq'jr (5",,(0{”" + C»imt) %
1

e 0 (L Tl |
PR - S A1)

ol (R T R R |

7
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Using the expression (I1,14) we can then determine the coefficient of the polarizability
of a system. Since

Ndx  Ndg

e T & 11,15
Yan z 9E ( )
N . ) )
where N’ = -5~ means the number of the coupled oscillators, we can write
L (e ] et )
Yo = 2m Jan

1 1 ’
k l(w%uk — o) 4 b} oI, 4 Ty) + 16 (L, + Tt

1 .
3 Do £ 10

e T i
(@2 — ) 5 0T+ Tl 5 (T + Tl

(I1,16)

Since the coefficient of the polarizability of a system is then given through the
summation of the corresponding coefficients over all modes of vibration[10] we can
then for the light wave circularly polarized on the left and on the right write as
follows

(i — 1), =47 X, ]
Iy

(I1,17)
mZ—-1) w= 4x quq,’l I
"
or
(2 = 1) =4z 3 Yy (I1,18)

0, %

Let us presume that for the both normal modes of vibration the oscillator strength
doesn’t depend on the polarization of the light wave. We can then write

fi=fa=rn
Ti=ré=re

From the relation (IT,17) we can then easily determine the expression (/

=T, 4T
N ,  2aNe? O
n}oond = -
m

Tt
P

(11,19)

ek =

Salla)? (@] x

1
« w3, — w? \ Tl ik ’
R e e e B Sel &
@ = 0+ b TR b Tha (s o b S0l s T

+fall@gd)* — (@, x
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, — I
i 0 0? 4

TR e ' - i -
(")ri)nt_‘"’?)Z + 2'“’2ny“ =+ EF{M (0f, — o) 1‘70’ Flnl 1 P%uk l

(I1,20)

Substituting the expressions (@) with the use of the relations (I1,3a) and (I1,3b)
we then have

ny —n? = 4:'5]\( ¢ (o ﬁz)(bsm()z

o
F ok

o3, A ——?
fol T T

1
("’w *"’2)2 4’—‘0 T3k + r"uA (@3, 0?2 + '(”21 21;1(4 F?;;A

f (U%nl. - w* o TFLMI
“Jn — — — S D S S
(0f,— P+ o g @ 2%, Jr' Flul ("’1:.4“"”2)2 + "'Zrm + ’wr'{nk
(11,21)
Because of n} — n2 = 2n(n, —mn,), where n is the mean refraction index belonging to
1 5 dl ging
the phase-shift @ = 1: (where d denotes the distance between the coupled

oscillators measured along the optical axis of the crystal), we will have in this

condition after inducing the substitution 2 = Zme the modified expression (11,21)
o

which will be substituted in the relation for polarizability

0= F0n - n) (11,22)
Finally we obtain

Ed L2Nm
=1 (2+ﬁ2d9m02
' 1
—TI'%.
ny ] “’mk — w” T ~_4 2k
T 2 2)2 2] 1 [ 4 2 2)2 _p p
(05,1 ’U) +""’ 2nk l S (@350 %) !‘"“ 2nk + 2nk
—F

mf P 0° tnk

~fo | =t -

, 1 1 )
(@ — 0%+ le R 16 Iy (0fi— ”'2)2+ o Flwlr"'\ ank

(11,23)
which is the expression sought for the dispersion of the polarizability of crystals.
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II1. Discussion of results

The expression (11,23) is in fact more general than all the preceding ones. For
rightness evidence of this expression we can consider the fact that this equation does
involve as special cases the formulae (I,1), (I,2) and (I,7).

Let us presume to be in the region sufficiently distant from the absorption band.
that it is valid wf, > ®? and that for the both normal modes of vibration the oscil-
lator strengths are the same. While in the spectral region considered the damping
doesn’t take place, we will obtain under the above mentioned presumptions the
equation (II,23) in the more simple form

nel\

ot floh N

w3 — w?)? (102 — w2

(o + ﬂz)dqm@wz{
= B(02=w2 7——~——7fli }ﬁ

— o 0} —o?

— Bo? {fz(wo + 27% — ) — fi(wf — 2n% — wz) _
B (0F— 22% — o) (0] + 27% — w?)

. 0)2 ———

(0f —w?)?

=B.f. 4n% .

g Y (11L,1)

(0§ — w?)?

By the evaluation following presumptions, symbols and substitutions were used:

Oy = Oy
Wy == Wy, “’%,2 > w?
f q =f 92 =f )

o} = wf + 2a% ) [11]
0 = wf— 2n%

neN

B=" (a2 + p*)dsin @

B =4n% .f.B
Introducing in the expression (III,1) the further substitution & = 2—;0 , we can

write it in the form
4.2
e= e

= nf eeN — (a2 + p*) dsin @

(I11,2)

Comparing this relation with (I,2) we can see that the (III1,2) will be really Chandra-
sekhar’s formula (I,2) in the case of the single characteristic wave length. Let us
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presume now that the oscillator strengths are different for both normal modes
of vibration. With respect to the relation (IIL.1) we will have

0= 11,,,2{f2(‘”5 + 2% — o) —fifef — 2% ";”‘EZ} -
N (0f — 27% — 0?) (0 - 27% — ©?)
27%e( fi + 1) fo—h
= Bw? - - 4 — <
Bor { (0f — w22 " o} ._wz}‘ (IL3)
wetN 1
B= Tt (e + ) dsin @
Do
or substituting o = ';"'
AN ot | 1) dsin Oc(fy +f) A A2
¢ 2met T mr
aN eXa? + %) dsin O(f, — f) 1
3 Nt (11L4)

which is then the relation (I.7) derived by Vyiin [7].

Let us discuss the possibility, which in all cases can take place. Namely if it is
given w}y, > 0. f; # f,, the damping can be then omitted and the dispersion of the
rotatory power will be then described by the formula (ITI.4). This expression
involve two members which must not be always maintained equally in the case of
the. concrete crystal.

The second member, which is linear with respect to the characteristic wave length
A, will be evidently of use in this case where the difference of oscillator strengths
(fs— f1) belonging to the two normal modes of vibration, is very considerable.
In this case it is possible (provided that & the constant of the binding is very low)
to omit the first of the expression (IT1.4) with respect to the second member and we
obtain then even the third specific case of the generalized equation (1I,23) namely
the Drude’s equation (I.1) for the case of the single characteristic wave length of the
absorption.

The evaluation made in this way shows that all the equations carlier derived for
the rotatory power are really involved in the formula (11,23) as special cases.

In the conclusion we can show that from the equation (II,23) follows cven the
equation of the normal (frequency) dispersion. taking no account of the effects of the
second order (to which belong the optical activity) setting

M = Wy = (g, h=f=]

The refraction index may be then determined from the equation
1
nt —1 = ) [(nf— 1), -1 (f —1),, + (7 —1),, 4 (¥ -1),] (I1L5)

With respect to the expressions (11,16) we then obtain under the above mentioned
presumptions the expression

AT ot
e 1= AN
m
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B R B
(Oh w P} [} 5 16 2 |

MWHwﬂ
(IT16)

Let us set further aven Iy = I'y = I'y. Then we can write after substitution for
the expressions (II,3a) and (I1,3b) obtain the forgoing equation in the form

2
ng -1 = 2aNfet (o 4- %) x
m
(2 2 L o 2 Loy
(0§ — o)+ T I3 (wg — w?) + TFO
N ot Ve L e Lo |
(mf @) - 9 e + gl (@f = @) -+ 9 o 17+ STkl
1
. (wf - @)+ —T7
A v 2
A | - L anm

(oF - w?)? 4 % " 4 ]16 I

which represent the general relation for the frequency dispersion of the crystal.
The merit of this relation lies in the fact that in the general form it describes
the absorption band of the crystal where the damping will be expressed very expres-
sively. In the regions are very apart from the absorption region the members of
damping may be omitted and we then have the expression
p2
wg 1= AN gy ]

o n Pl (IL8)

which is well known.
(fonclusion

As basic contribution of the present work may be considered the derivation of the
equation (I1,23).
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The derived expression does involve 4 members, the both of which in the brackets
may be considered as the quantum effects. The interpretation of these quantum
members however is very difficult, since they are involving the damping. Both
these quantum members will exhibit themselves very expressively as far as in the
close proximity of the absorption bands, where there are, as we know, the experimen-
tal measurements practically unrealizable.

The interpretation of the quantum members will be made difficult also by the
fact that we have till now no suitable analytical method by means of which we could
prove to estimate, at least in an experimental way, the extent of damping.

From this point of view the equation (II.23) has, for the time being, somewhat
formal character. The correctness of the equation will be no doubt verified by the
evaluations made in chapter III, we have not but yet succeeded till now in the
complete interpretation of the equation.

The final verification of the correctness of the equation (II,23) as so as of the
complete theory of the rotatory dispersion of crystals will be then possible only on
basis of the further and new measurements.

I would like to thank Dr. V. Vysin for valuable discussions concerning the problems
of this work.
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Shrnuti

Teorie optické aktivity krystalii
VLADIMIR JANKU

V piedlozené prdci je ukdzdn kvantovémechanicky vypolet disperse rotaéni
polarizace krystald. Vypodet vychdzi z modelu spfaZenych oscilitorii a je v ném
také piihlédnuto k dtlumu. Byla ziskdna zobecnénd rovnice disperse rotaéni polari-
zace krystald, ze které jako specidlni pifpady vyplyvaji viechny nejdilesitsji difve
odvozené vzorce.
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Pesziome
TB()]HIH ONTHYECKOH AKTHBHOCTH l(pllCTﬂJlﬂ(‘l!
BIATMMUP STHKY

B IlaCTUHLLIOii [)6601‘0 LOKA3bIBACTCA KBAHTOBOMEXaHUYECKOE OlpecIenuc
JCHepeMu ONITIHYLCKON AKTHBHOCTI KpucTauios.

MCHOHL:}yOT('ﬂ METOJ CBA3AHHBIX OCHW/IIATOPOB M LIPMHXNMAeT A BO BHHMAHUC
TaKMKe 3aTyxXauue. IIOJIy‘lG]IO 06()6[“01[1108 ypasuenue, KOTOpoe NPUMEHHMO
1A ONTHCANMA JcIe peuu OTNTMYECKOIT AKTUBHOCTH KPUCTAIOB M U3 KOTOPOTOo
BBITCKAIOT q)y"l{aMeHTﬂﬂbllHO npejpayiue cooTHOMeHU .
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