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1. Introduction

In some branches of physics (optics, quantum dispersion theory, communica-
tion theory) there occurs a problem which may be mathematically formulated
as follows:

Let g(») be a physically important function of a real variable ». Suppose
g(v) is not directly accesible to measurement, but the modulus of its Fourier
transformation y(z) is measurable (x is a real variable). As y(x) is generally
complex function p(z) = | y(x) | €@ it will be possible to obtain g(») as the
inverse Fourier transformation of y(x)if we construct the phase @(x) of the
function y(x). )

The solving of this problem is trivial in the case that g(») is real and symme-
tric with respect to a fixed point vy, i.e. g(vy + ») = g(v, — »). In this case

A

4o
y(®) =7f g(v) eizer dy = ei2amv f gl vo) etz dy = ei2ave | p(2) |, (1)

g

where 24v is the width of the function g(»). We see that in this case the phase
of the function y(x) is D(x) = 2mav,.

In the most of physically important problems g(») is an one-side function,
i.e. we may write

gv)=0 » <O (2)
or a finite function, i.e.
g(v) =0 [v]>a (3)
where @ is a real number.

This conditions allowed us to continue the function y(x) analytically over
the upper half complex plane eventually over the whole complex plane; then *
we can deduce (on the base of Cauchy integral) the relations between the real
and imaginary part of the function y(x) (Hilbert transformations, dispersion
relations). As it is necessary to obtain a relation between |y(x) | and phase
@(x) for the solving of the up formulated problem, it is usual to apply the
dispersion relations on the function In y(z) = In | y(z) | -+ i®P(x) [9].
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Let us quote some authors who worked in this region. J. S. Toll [1] has
studied the question of a connection between causality and the dispersion
relations (his work is attended more on the quantum theory of dispersion).
E. Wolf [2] formulated this problem in optics as a problem of determination
of the energetic spectrum from the measurement of the degree of coherence
(i.e. the visibility of the interference patterns). Wolf showed that this problem
is uniquely soluable in the case that p(z) has no complex zeros in the upper
half plane (it is the case of the blackbody radiation [3]). The important step
in the solving of this problem with respect to the possibility of complex zeros
in the region of analyticity was given by introducing the most general form
of unimodular analytical signal [4]. The problem of analyticity from the
standpoint of Fourier formulation of the optical imaging theory with respect
to the condition (3) is considered by O’Neil and Walther [5], [6] and the
relation between the amplitude and phase effect of an optical system on the
image of an object structure with respect to (3) was dealt with in [7]. The
complex work on this problem was given by P. Roman and A. 8. Marathay [8]
where is this problem moreover transferred on a some nonlinear eigenvalue
problem.

In this work we shall give another way of deducing the relation between
[ y(x)| and @(x) based on the solving of a some singular integral equation
of the Cauchy type by the method given by N. I. Muschelisvili [10]. Then we
shall deduce the general formula for the spectrum of the function p(z) [ie.
for g(v)] with the use of the general unimodular analytical signal which allowed
us to expand y(z) as the product of a function y,(z) which has no zeros in the
region of analyticity and so called factors of Blaschke containing zero points.
On the base of this formula we shall show that the requirement of real spectrum
g(v) leads to the symmetrical distribution of zero points with respect to the
imaginary axis (it was shown by another way in [8]). At the end of this work
we shall take interest in some connections between the unicity of the solution
of this problem and moments of spectrum.

2. Reconstruetion of the phase in the case that p(z) has no complex zeros

Let us suppose that the condition (2) is valid and that|y(z \tuldq to zero
at least as | z |~! for |z | = oo. Let moreover the function y(z) is quadraticly
integrable on the real axis (this requirement is ensured by the ﬁnitness of

energy, i.e. f[(/ (»)]2dv <~ o0 and by the equation f [g(»)]2 dy = } \ /() 2 da).
0

Then for the real and imaginary part of the fun(*tmu y(x) we m“w write the
Hilbert transformations [11]

{-EV ¥) da . (5)
—_2

o
Re y(z) = —f;p / 1",‘— Y(i? 4o, (4)
Im y(z) f
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On the base of this relations we can get the relations between modulus | y () |
and the phase @(x) of the function

y(@) = | y(@) | €. (6)
1t is valid that o B
[7@) | = |[Re y(@)1* + [Im y()P? (7)
and
oy Imy(a)
tg d(x) = Re y(2) - (8)
Substituting from (8) to (4) we obtain
Imy@) 1 I'AOIm y@) o,
o)  wl ] o ©)

=3

This is a singular integral equation of the Cauchy type for the function f(z) =
= Im p(z). We shall solve this equation with the aid of the method given by
Muscheligvili [10]. We shall suppose all functions are satysfying the Lipschitz
condition. First, we shall deduce the auxiliary formulas of Sochotzki—Plemelj:

Let us consider the function y(z) analytical in the upper half plane including
the real axis, which may be represented in the integral form

R B A 5 B
Ve = | o 1)
Using the symbolical identity
S 1y
EE} P i P (,{) + @id(x), (11)
>0

where P denotes the principal value of Cauchy and §(x)is Diracs delta funetion,
we obtain from (10) Sochotzki—Plemelj formulas

p(@) — p=(@) = f@), (12)
piw) + p(x) = %P f ;[(‘i),{ da’. (13)

where yt(x) and y (x) are the boundary values of the function p(z) on the
real axis from the upper and lower half plane respectively.*)
Let us return now to the equation (9). We shall denote
= — ...7:,
T tg D(x)

*) If f(x) satisfies the Lipschitz condition, y(z) may be continually extended on the
real axis from the upper and lower half plane.

Az)
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s0 that we may write (9) in the form

+
R J@y g
Ax) f(v) + = f o da’ = 0.. (14)
Substituting from (12) and (13) we obtain
A@) {p* (@) = p- (@)} + {p"@) + yp- (@)} = 0. (15)
Hence, if y(z) has no zeros in the upper half plane*) we get
; e g A@)y—1
[In p(@)]* — [In p@)]- = In Ay £1= 129 (x). (16)

"T'his equation will be satisfied with the analytical function

+o |-
1 " , 1 D’ ,
In p(z) = e / E )d:v = f ?L—-)z' da’, (17)
ie. o ”
v,
p(z) = Hw @ . (18)

From (12) with respect to (11) we have

+o
Lp f @) gy
a vx

)

fl@) = pt(x) — p-(x) = 2isin D(x)e (19)

With regard to the fact that we are solving the homogeneous equation, a solu-
tion (19) is determined apart from the constant. We shall choose this constant

s0 that for @ = git would be f(x) = 1. Hence

2
+o
Lo e
flx) = Im y(x) = sin P(x)e ~= (20)
and from (8)
Re y(x) = cos P(x)e . (21)
With respect to (7) we have finally
] r mllﬁ{z') ,
P f o
lyl@)] = ¢ “© . (22)
*) In this case the function In :‘:E;;}% is not changed after the circulation around

the conture and henco it is unambiguous
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This relation allowed us to compute the amplitude of the function p(x)
when the phase @(«) is known. For the solving of the above formulated problem
it is necessary to have the relation which permits to compute the phase when
the amplitude is known. Such expression may be obtained by the inversion
of (22). On the base of the Sochotzki— Plemelj formulas the validity of this
relation may be proved: If for the functions G/(x) and H(x) satisfying the Lip-
schitz condition holds

Gx) = (23)
then
H(x) = (24)
On the base of these relations it follows from (22)
1 ) 1 lm D2’ ,
7 In|yx) | = o P L E . da (25)
and finally ’
Lp [y, :
) — LA 9
D(x) P I f P de’ . (26)

This is the required expression for the determination of the phase when the
modulus is known.

3. The phase reconstruction in the case of existence of complex zeros of the
funetion y(z)

The formula (26) gives us the phase only in' the case that the function y(z)

has no zeros in the upper half plane, because, if some zeros occured,

the function In | p(z) | would have the singularities and (26) would not be

valid. It was shown in [4], that the most general function regular in the upper
half plane and unimodular on the real axis can be represented by

"
A,(2) = e [] By(z) (27)
k=1
where ¢ is a real nonnegative constant, B,(z) is the Blaschke-tactor defined by
B =274 (28)

where 2z, is an arbitrary point in the upper half of the complex z-plane. On the
base of (27) we can express the general function y(z) having zeros in the points
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z, of the upper half plane as the product of a function y,(z) which has no zeros
and for which the results of the preceeding section are valid, and the function
A, (z) which is determined by the positions of zeros, i.e.

o T 22,
7(2) = yolz) etz [T 2% (29)
Ll B 2y
On the real axis it will hold
[r@) | = [yol@) |, (30)
but the phase of the function y(x) will be given
D) = %y 2mex (31)
*

where @(x) is so called minimal phase determined by the expression (26).
Therefore we may also write

o

e (M) | N PR .
D(x) = -—wy;] f e dx }Zarg ;u"—g,:-+2mx‘ (32)

xr
- k=1

The last term on the right causes the shifting of the whole spectrum g(v)
on the constant value ¢; hence it does not affect the spectral profile and may
be dropped from our considerations. The second term on the right of
(32) shows us that our task will be uniquely soluable only in the case that
we shall know the positions of all the zero points z, of the function y(z). As y(2)
is the function which we want to réconstruct, we cannot know a priori the
positions of its zeros. On the other hand we shall show in the next that some
restrictions on the zeros 'distribution may be derived on the basis of some
physical assumptions,

t. The influence of some physical conditions on the positions of zeros of y(2)
We shall study in this part, how the distribution of zeros will be affected by
the natural physical assumptions that the spectrum g(v) is real and nonnegative.

This question was investigated by another way in [8].
The condition that the spectrum is real

g(v) = g*(v) (33)

may be formulated with the aid of the function y(x) as the relation of crossing-
symmetry
y@) = y*(-2) (34)

which express the function y(x) for negative values of the argument with the
aid of the positive values.
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To determine, how will this conditions affect on the spectrum g(v) let us
write (the exponential term is dropped)

7@ H i (35)

Alx*"k

and for the Fourier transformation of this function we have

gr) = f ) 1 22 ot " (36)
k=1
1f we write
+ @
Yolz) = fgn(y) eitars dy (37)
o
we obtain from (36)
o+
g0 - / aula0) d# ll LT g nida, (38)
-1 - 2y

0

Now it will be necessary to compute the integral according to x. This integral
(denoted /) we shall compute with the use of the Cauchy theorem. Let us write

CoE R TRy ) (39)
a2y 0 x—azp e
where
¥ -
wlo) = 7 (40)
Tk
Then
K Y
e
LS ;,,: [] I
1 2\ ﬂ"
+ 5 Z }_‘ @) o) | Z Z Z 2,(2) o 1,(x) L aw) (41)
IE ;*I*

e

We shall suppose firstly that x > ». With this assumption it is necessary to
enclose the integration conture over the upper half plane; of course here the
function under the integral qlgn has no singularities and therefore J = 0 in
this case.
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Le

3

us consider now the case g = v. From (41) we have

J = f TT1 4 o)) erzeme » dy =
k=1

= O(u ) -l /,[ E\x‘,(,n) - zl’ },’: i a’.(\‘,-) ay(x) -
W=t el

Lo . -
Far I Y ) w@) ) e ae @)
ST - !

"

The integration conture must be enclosed over the lower half plane now and
with the use of the residual theorem we obtain

»

.\ . .
Jos (e -w) - 2mi }_, (2] — z;) ef Bmestu-m) —

jo

v ow
1 . o
-7 21 Z Z (:j‘ %) a,(z’?‘) ei2mzip V)
) j+l
w o
| R M T
57 27 z Z a;(2)) (& — 7)) e tnatwr)
! 4 .
- "
1 AN \" L * Y i 2z 3
L= 2ai Z Z(;, ) m) ) e —
[EE "

2,) ei s (43)

”»

o 1 .
Z,) eiZ.tl/U‘"") {l _l, ,IT Z 5‘1(2;‘) + -

I

‘;ﬁ@} =

— o) - 2mi z @z oo 4 o) (44)
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and we have the result

”

0ok
J o= 0 — v) — 270 2 (zf —z) e 2z [ ;;_ -

kej T

(45)
i1

The substitution (45) into (38) gives us

f Folpr) 024 A, (46)

[

" nok
90) = gulo) — 2i Y (& ) e~ [T 70
1

W
ki % T A

The formulas (45) and (46) are the generalisation of the formulas (2.5) and (2.6)
from [8]. It is obvious that according to the original assumption we have again
g(») = 0 for v < 0.

Ifor the next considerations let us denote

Szh = iz (=12 ...n) 7

where 4;, B; are real. From (47) it may be verified that as long as for every j

there exists | + j so that z; = -2 then
Sizh = S"zp (G #D (48)
is valid, i.c. k
A = A, B = B, (j#I). (49)

The condition (33) gives us with the use of (46) and (47)

"

z Siz} e itz ’ doli) e P23 dp = Z Sz} cz,m,.»fy:(lu) o iz Ay (50)
0 0

i=1 o jeel

n v

According to (48) it is obvious that this identity will be fulfilled if for every j
on the left there exists [ on the right so that z;, = —=2/. It may be noted that
wo shall gain the same result by putting Im g(v) = 0 directly from (46). If we
write z; = a; + ib; (;, b; real) it must hold
Im : Z (A; + iB;) e *0(cos 2ave; — @ sin 2mva;) f Jolpe) €2 (cos 2mpa; +
j=1 0

- a8in 27:,uai)d,41 =0 (51

and consequently

n v

Z e Zarhs {(A]-('os 2mva; + B; sin 27va;) fy],,(y) et gin 2mpa; du +
j=l 0
+ (B; cos 2nva; - A sin 2mva;) / Golp) e¥uh cos 2n;mld[u} = 0. (52)
6
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It is obvious according to (49) that for every j there must exist I so that a; =
= —a;, b; = b, i.e. again z; = —2]. Hence zero points must be distributed
symmetricly with respect to the imaginary axis or must lay on this axis.
According to representation (29)it means that the poles corresponding to these
zeros of the function y(z) in the lower half plane are distributed symmetricly
with respect to the imaginary axis, too. Besides this, therc may exist other
poles y(z) in the lower half plane, we have no information about.

We have seen that the requirement the spectrum is real admitted the
existence of zero points in the upper half plane including the imaginary axis.
We shall see now that the requirement of nonnegative spectrum g(») = 0
excludes zeros on the imaginary axis. Let us suppose that y(z) has the zero in
the point z = ia (a > 0 is real). Then the Fourier transformation gives us

®

ylia) = [g(v) e2ady > 0 (563)
¢

and consequently z = ia cannot be the zero point.

The condition that the spectrum is nonnegative leads moreover to some
nonlinear eigenvalue problem as it was shown in [8].

5. The unieity of the phase reconstruction problem and moments of spectrum

In quantum theory of decay there occurs a problem of the similar type we
have formulated here. Chalfin [12] studied the connection between the first
order moment of spectrum and soluability of this problem. We shall try to
generalise and apply his methods on our optical case.

Let us consider the function y(z) = M () e'¥@ where M, N are real functions.
Let it be possible to continue analyticaly this function over the upper half
plane, let on the real axis the relation of crossing-symmetry

y(@) = y*(—x)  [M@) = M(—z), N(@)=—N(—2)] (54)

be valid, let p(0) = 1, 0 < M(z) =1 and moreover let |[Inypz) | =4 |z,
|z ]rm
l<2n—1:|InyQ@) | =Blz2,1>2n—1, (4, B>0).
1210
We shall compute the ix‘ltegml

g fl'i("’ & =), - (55)

" on a2
¢

where the integration conture is formed by the real axis and a half circle with
the center in the origin and with a radius R. With respect to the above formul-
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ated assumptions the integral over the half-circle vanishes with R — oo;
with the use of (54) we have

1 luy ln M (w) N(x)
J =5 f x*zn f Aot f o
1 ln M (x) ln M ( ) -
g f Sdr= [P (56)
0 0

With the aid of the integration per partes we obtain

Y'(z)
2n(2n4 1)/y(z P 1d (67)

n(R)
—(—Zn— 1) R#-1
number of zero points of the function y(z) inside the region determined by C.
For R — oo this expression vanishes. Using the residual theorem and the
theorem on the number of zeros and poles (we suppose the zeros are single)
we have from (57) with R — «

o i y'(z) J@» i i 1 ;
T = 9m — lﬁ[ 7() ]n Fon 1 Z e (58)

where the summation is taken over the all zero points z, of the function y(z)
in the upper half plane. Acaording to (56)

J=_ 1 Inyk)
2x (20— 1) z:“‘"‘

The first term here is equal to —i where n(R) is the

I AN 2 _ L In M@) s
2(2n — 1)!| (z) o 2n —] 2l 2n do.  (59)
Hence separating the real and imaginary parts we have
1 y'(z) |2 1 Imz»t 1 cUln M(x)
220 —1)! fm [ y(@) |o T [z, (2200 " 7 | “am dx (60)
T 0
and 1 y'(z) Jen-D 1 Re 2271
i Ri — ST = ), ¢
s G [ e D e 1

But it holds
y'(x) M'(z)

we) M TN (62}
As” [—((—)21s an odd, N'(x) an even function, is
Re .V,E,]‘E” o ',Mf(i),,]“‘" v 1 [1’,(3)_]‘2””'2’: ren0) (6
0 A B A L O A L
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Moreover also In p(0) = 0. With the use of (63) we get from (60), (61) and (62

NeEr=Diy 1 Im =t hl ﬂl(a,) .
T2(2n — 1)t R z |z, o0 nj P (6:4)
I
n 21

z ':‘ = (65)

v

As z, = —2, (k # 1) it holds

Re 23" ! = — Rezp” 1, Pzl =1z | (66)

and we see that the condition (65) requires the symmetrical distribution of
zeros with respect to the imaginary axis.

Let us compute now the (2n — 1) order moment of spectrum of the
function In y(2), i.e.

Hon—y = 2111 f 7"3""( { Inyp(x)e-ivr (Lr) dw. . (67)

After the changing of the order of integration we have
™ \ o v - tao
Hap-1 = fln y(2)dw 35 va"" e~ivr dy = qan-t f 8 =D(x) In p(x) da (68)

where §2*-1(x) is the (2n — 1)* order derivative of the Dirac’s delta function.
The integration per partes of (68) gives us

(__l)llll -j‘ (L) ( 7[)1”1 I:V'(‘l;) }(2"*1’.} N
SN " aen-2(x) de ! LA 69)
Han-1 ; 7 ;/( ) () i @) o (69)
With respect to (63)

oy = ()N () (70)

Instead of (64) we are getting

In M(L Pon—1 Im 21
PRy — (—1)n = n AT
f 2o D e 1yl 271—12.2,;2<2H)' an

This expression gives us the relation among the behaviour of the modulus of
the function at the surroundings of zero and at infinity, the moment of the
spectrum of the function In y(z) and the number and a distribution of zero
points of p(z) in the upper half plane.

If n = 1 we have according to (69)

= —y'(0) . (12)
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because p(0) = 1 and for the 1* order moment of the spectram of y(x) it holds
o

Lo “ foo
Wy = 217 f v( f y(.u)e"'"'dn:) dy = fy(n:)drc 21_[ [ve"“’(lv:

s 3
too

=1 f () 0'(2) dv = - ~ip'(0) (73)

-

and consequently w, = g, and from (71) the relation follows given in [12]

U M :
j In {(.L) dy r;, + lﬁrgrz, ) (74)
7 x° 2

A
y

From this relation with respect to 0 < M(x) = 1 and Tmz, > 0 it follows
that the minimal value of the moment o, is

. o n M
i — J M@ gy o (75)
n x?
§
and
2 - In Mz O Im . -
o —-—7[ ---)32( ) dr + 2 Z iz = oyt (76)
f v
is valid.

If we reconstruct the phase of the function y(x) with the use of the dispersion
relation under the assumption that the 1* order moment of the function y(x)
will be minimal, the function p(z) will not have zeros in the upper half
planc and the reconstruction is unique. The phase of the function y(x) is
determined by (26).

The existence of the integral (74) leads to the existence of the moment ,
and vice versa.

6. Conclusion

In this paper we ha¥e given the general solution of the problem of the phase
reconstruction. We have shown that this solution was unique only in the case
that the function y(z) has no zeros in the upper half plane. If there are some
zeros of p(z) the resulting phase depends on the positions of these zeros. We
have studied how the natural physical condition of real and nonncgative spec-
trum leads to the requirement of a symmetrical distribution of zeros ac-
cording to the imaginary axis and nonexistence zeros on the imaginary axis.
It seems to be truc that it will not be possible to determine the positions of
zeros without any other physical information. It is possible that these informa-
tion might be given by measurements of moments of spectrum. This question
was not yet investigated in detail.
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On the other hand there exists another way for finding some additional
restrictions on the function p(z) in the optical case [when y(x) is the optical
autocorrelation function] from some knowledge of the statistical fluctuations
in the beam as it was suggested by Wolf and Mandel [2], [13] in a connection
with the analysis of the experimental results [14]. From the knowledge of the
radiation mechanism of the light source it would be possible to gain the informa-
tion on zeros [for example Kano and Wolf have proved [3] that for the
blackbody radiation the function y(z) has no zeros in the upper half plane|.

There exists still one possibility of solving this problem. As it was mentioned
at the end of the part 4, this problem may be transferred on some nonlinear
eigenvalue problem. The solution of this mathematical task leads then to
defining some regions in the upper half plane in which no zeros can occure.

At present it cannot be decided which of the methods given above will
be more succesful. In every case it is obvious that this is the problem, a definite
solution of which would have certain importance not only in optics but in
many other branches of physics.

The authors wish to thank Professor B. Havelka for the possibility of
discussing this problem in his seminar on actual problems in optics.
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SHRNUTI
REKONSTRUKCE FAZE A PODMINKA ANALYTICNOSTI
JAN PERINA A JOSEF TILLICH

V' préci byl studovan problém rekonstrukee faze fyzikalnd vyznamné
funkee yI(z) 2 jejf amplitudy na zakladé analyti¢nosti této funkee v horni polo-
roviné, Redenf tohoto problému dovoluje uréit energetické spektrum z na-
méfenych hodnot kontrastu interferenénich prouzki. Bylo ukdzano, Ze problém
je fesitelny jednoznac¢né jen v ptipadsd Ze funkee y(z) nemé nuly v horni polo-
roviné. Dale byla diskutovana otédzka vlivu nékterych fyzikélnich podminek
na rozlozeni nulovych bodit a souvislost jednoznaéné fesitelnosti problému
s pozadavky kladenymi na momenty spektra.
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