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On conditions for the boundedness of the Weyl
fractional integral on weighted LP spaces

L. DE RosA, A. DE LA TORRE

Abstract. In this paper we give a sufficient condition on the pair of weights (w,v) for
the boundedness of the Weyl fractional integral I from LP(v) into LP (w). Under some
restrictions on w and v, this condition is also necessary. Besides, it allows us to show
that for any p : 1 < p < oo there exist non-trivial weights w such that IZ is bounded
from LP(w) into itself, even in the case o > 1.

Keywords: Weyl fractional integrals, weights
Classification: Primary 26A33; Secondary 42B25

1. Introduction and main results

Let 0 < a < 1. Given a locally integrable function f on R, its Weyl fractional
integral is defined by

i ()
(1.1) It f(x) :/ L
¢ x (y - x)l—a
Similarly, the Riesz fractional integral is given by

(1.2) i = [ ALY

—00 (,T - y)l—a

By a weight w we mean a locally integrable, non-negative function defined on
R. For any Lebesgue measurable set £ C R we denote the w-measure of E by
w(E) = [ w(z) dx, and the characteristic function of E by x .

Throughout the paper, C' shall be a positive constant not necessarily the same
at each occurrence.

Let w and v be two weights on R and 1 < p < co. We consider the weighted
norm inequality,

+o0 1/p
[ t@ra@|

—0o0

(1.3)

~+o00 1/p
/ | f () [Pw(x) d:v} <C
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for every f in LP(v). If we denote o(z) = v(z) ™7, where 1/p+ 1/p’ = 1, then
(1.3) is equivalent to

+00 1/p
(1.4) / f@Po(e)de|

—00

+00 1/p
/ IIJ(fU)(x)Ipw(I)dI] <c

—00

for every f in LP(0).
The fractional maximal operator,

n 1 z+h
MT f(x :sup—/ t)| dt
@) = [ 150)

satisfies the inequality M f(z) < IS (|f])(z). The boundedness of M from
LP(v) into LP(w) implies that there exists a constant C' > 0 such that for every
a <b,

o ([ t) " ([wm) <

see proof of Theorem 3 in [4]. Then, this condition (1.5) is necessary for the
inequality (1.4) to hold. The following theorem gives a sufficient condition for
(1.4), which is also necessary in some cases.

Theorem 1.1. Let w and o be two weightsonR. Let 1 < p < co and 0 < a < 1.
Then (1.4) holds if I;w belongs to L}, (o) and

(1.6) I w)P ol(z) < CLyw(z) o -ae.

Theorem 1.2. Let 1 < p < oo and 0 < a < 1. If w and o satisfy

00 _ _ prp pr _ 1/p'
e T T L e
r>0 LJ2r p p 0 p p

for all x € R, then condition (1.6) is necessary for the inequality (1.4) to hold.

Let w be any weight and o = v'™7" = (I;w) P w. Clearly, the pair (w, o)
satisfies condition (1.6). Therefore, the inequality

—+00

+oo
/ () @) Pule) de < C / @) Peo(@) P I (w) ()P de

—00 — 00
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holds. If w is a power weight, for instance w(z) = 27 x(0,00)(2), ¥ > —1, it is easy
to see that w(z)~PI; (w)(z)P ~ Cx'y"'o‘px(opo)(x) and therefore

o o
| @ ds<c [T p@parterd,
0 0

A similar result for I, was obtained by E. Herndndez in [3]. Furthermore, if
the weight w satisfies I, w(z) < Cw(x) almost everywhere, then I maps LP(w)
boundedly into itself. It is easy to check that w(x) = e® satisfies this condition.
Therefore, the class of weights w such that /- maps LP(w) boundedly into itself,
is not empty This is in sharp contrast with the case of the two-sided operator

Inf(x f too [ (yl — dy, for which this class is trivial. Indeed, there does not
oo |y—uz]

ex1st a non-zero weight w satisfying the condition
(Apa) w(h) PP (DY < ot
for all intervals I, which is necessary for the boundedness of 1.

Remark 1.3. We can consider the operators I} and I, defined as in (1.1) and
(1.2) for every @ > 0. In the case a > 1 the weights for these operators were
studied by F.J. Martin Reyes and E. Sawyer in [5].

Definition 1.4. For fixed 1 < p < oo and 0 < «, we say that the weight w
belongs to the class F s Tespectively -, if the operator I}, respectively I
maps LP(w) boundedly into itself.

We have seen above that these classes are non-trivial, at least in the case
1 <p<oo 0<a< 1l The following theorems give us a characterization of
them.
Theorem 1.5. Let 0 < a < 1. The following are equivalent:
1. we F1+ o
2. There exists a constant C such that for any f

—+o00 —+00

ME(D@ ) de <C [ f@ul) da.

—00 — 00

3. There exists a constant C such that I w(x) < Cw(x) a.e.

Actually the result is true for pairs of weights.

Theorem 1.6. Let v and w be two weights and 0 < a < 1. The following are
equivalent:

1. There exists a constant C' such that for any f

o0 +0o0
| @@ <c [ i@l do

— 00 — 00
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2. There exists a constant C such that for any f
+oo +o00
MEDE@u@) e <C [ @) de
— 0o —0o0

3. There exists a constant C such that I w(z) < Cv(x) a.e.

Remark 1.7. By a duality argument, parts (1) and (3) of the previous theorem
are equivalent even in the case o > 1.

Theorem 1.8. Let 1 < p < co and a > 0. The following are equivalent:
1. we F;:a.
2. There exist two weights wqy € F1+a and wy € F| , such that w = wowi_p.

Clearly we obtain similar theorems for I, reversing the orientation of the real
line.

2. Proof of Theorems 1.1 and 1.2

p/
loc

Let w and o be two weights on R. If I w belongs to L; (o), we denote
(2.1) v=(I;w) o
Then, we can write condition (1.6) in the form
(2.2) I,v<CI,w o -a.e.
The following three lemmas shall be needed in the proof of Theorem 1.1.

Lemma 2.1. Let 1 < p < co and v be defined by (2.1).

(i) Suppose that
oo, qUP
[ |
—o

+00 BRRY
| izrs|  <c
for all g € Lp/(l/). Then, for any r : 1 < r < p’ the inequality

— o0
+o00 roq1/r 400 1/r
/ u] sc/’|w@ |
—o0 -0

holds for all g € L"(v).

(2.3)

15 (gv)
I, w

(2.4)
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(ii) If (2.2) holds, then (2.4) holds for all v : 1 < r < co. (In the case r = 00,
inequality (2.4) is to be interpreted in the L°°(dv) norm.)

PROOF: In order to prove (i) we will make use of the theory of interpolation in
the setting of Lorentz spaces. We recall that for 0 < p < o0, 0 < ¢ < o0, the
space LP4(v) is defined as the set of all measurable functions f for which

1
[ fllp.g = [1t7 £* ()l La(ar/e) < o0
where f* is the decreasing rearrangement of f with respect to the measure v. It
is known that if 1 < p < oo then the associate space of LP:1(v) is LP*°(v) and
that if a quasilinear operator T maps LP!(v) boundedly into LP(v) and L4(v)
into L9(v), where 1 < p < ¢ < 0o then T is a bounded operator on L*(v) for any
p < s <q (see [1]).
We define the operator A by

(2.5) Ag = IOI_‘Eing) .

Taking into account (2.3) we have that
(2.6) ||A9|\Lp’(l,) < C||g||Lp’(,,)-

That is, the operator A is bounded from L¥ (v) to L¥ (v). We shall show that for
all 1 <r <y,

(2.7) A9l -y < CllglliLrag)-
The adjoint operator of A is defined by
A*f = I [ w) ™,
and (2.7) can be rewritten as
(2.8) MUz w) ™l ey < U (1
This inequality is equivalent to

HI;_gHLT'/,OO(V) < CH (Iojw)ry_lgHLTI((I(:w)*TI/)

= CHg”L”",((I(;u))"/ylff'/)'
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This is the same as asserting that I is bounded from LT/((Iojw)’Jul_’J) to

L"°°(). By Theorem 2 in [4] this is equivalent to the existence of a constant
C > 0 such that for any interval I,

(2.9) /1

Using (2.3) with g = x7, we get

T

71‘;0([]/) v < Cv(I).

Iow

(2.10) /I Iz ()P o < Cu(D).

Applying Hélder’s inequality with exponents p’/r and its conjugate, by (2.10) we

have that
_ r _ / T/Pl
”Ia<_xzu>] )< [ / {m_xmr ] T
I Iaw I Iaw

< Cv(I).

Then (2.9) holds, and it implies (2.8). Therefore, by duality we have (2.7). Now,
by (2.6) and an interpolation theorem for L™!(v), we obtain (2.4) for all 1 < r <
7
p.
(ii) By inequality (2.2), the operator A defined in (2.5) is bounded on L*°(v)
that is,

(2.11) A9l L) < Cllgll oo w)-

On the other hand, (2.2) implies that

[ lzoan)” o < ¢ [uzor's = cu),
I I

for any interval I. Then (2.10) holds and, as in part (i), (2.7) holds for all r < p'.
Now, interpolating (2.11) and (2.7) we have that (2.4) holds for all 1 < r < oo.
The case r = oo is straightforward and left to the reader. ([l

Lemma 2.2. Let w and o be two weights defined on R. Let 0 < o« < 1. Then,
for every positive integer m, the inequality

e} «

(2.12) I3 [(IF o)™ w] < C{ (g w)(IF o)™ + I (15 w) (I o)™ 1ol }
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holds with a constant C' depending on o and m.
Proor: Taking into account that m > 0 we get,

x +0’ m
o) ala) = [ %w@) dy

[ == ([ )

s [ e ([ ) ]
42m U_xoo @ ;)1_a (/yx (ZU_(Zy);llz_a>m w(y) dy]
= Am + B,

We have the estimate

® 1 © o(z)dz \™
< (e — P S
e[ oo ([ e ) e
= CIfo(z)™ I, w(z).
Then, in order to prove (2.12), by (2.13), it will be enough to show that
(2.14) By, < CI5 (I w)(If o)™ Lol ().

We can write By, in the form

sume | ([ ) [ v

Applying Fubini’s Theorem we have that

(2.15) Bm_c/oooﬂéa/; <[%)mw(y)dydt.

If we prove that for every positive integer m, the inequality
z T g(2)dz \™ z _ _

e [ ([ vww<c [ e ) d,
z—t\Jy (z—v) z—2m¢

holds with a constant C' depending on m and « only, then by (2.15) and Fubini’s
Theorem, we obtain (2.14). We shall show (2.16) by induction. If m = 1, changing
the order of integration,

/x:</y””(z_())dz ) y)dydt = /mt/m I P 1 aa(z)dz

S/x_ztlaw( 2)o(2) d.
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That is, (2.16) holds in the case m = 1.
Let m > 1 and assume that (2.16) holds for m — 1. Integrating by parts, we
observe that

Then applying Fubini’s Theorern,
([ s
em = [ e (/y 2 )" st dunte) iy
_m/x t/x e (/y )m_lw(y)dya(u)du.

By (2.17), we can write I, in the form

2(“ y ds u o(2)dz m—1
Im_C/ / / 2-a (/ ( )l—a) w(y) dy o(u) du.
r—t Jr—t Ju— S y (Z — y)
Changing the order of integration and enlarging the domain we have that
u—x+t u—8/2 ( ) m—1
Im = / / / </ > w(y) dy dso(u) du
" x—t s2—a U—s ( ) ( ) ( )
(u—z+t) q u— s/2 m—1
+ O/ / —a / < > w(y) dy ds o(u) du
z—tJu—ax+t S (
u—x+t Z dz m—1
< C/ / / ( ol ) w(y) dy ds o(u) du
r—t 32 o (z y)l ( ) ( )
(u—z+t) d m—1
+O/ / 2— a/ </ U 1Za) w(y)dydsa(u)du
z—tJu—x+t S y
T 2(u—z+t) u u m—1
- C/ / 2—a / (/ %) w(y) dy ds o(u) du.
z—tJ0 S u—s \Jy (z—vy)

Using (2.16) in the case m — 1, we get

x 2(u—z+t) q u
mec| | = | o)™ o) dy dso(u) du
z—tJ0 B u—2m—1g
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Applying Fubini’s Theorem, we obtain the estimate

T u 9 2(u—z+t) ds
mec[ [ Iru) o)™ o) [ gegotu)dudy
x—t Ju—2m(u—z+t) Ly s

om—1

x u I_w(y)I+0(y)m_2
= C/ / R dy o (u) du.
r—t Ju—2" (u—z+t) (u —y)l-o o(y) dy o(u) du

Changing the order of integration again, we have that

x—t x olu
<c [ uiew™? | o ) dydu

—2mt %ﬁ;t) (u—y)l-a

C m—2 [T o(u)
+C /m » IS wy)ITo(y) /y Wa(y) dy du.

Enlarging the domain of integration in the first term on the right hand,
* 2
Iy < C Igw(y) Igo(y)™ 2 I o(y) o(y) dy

z—2mt

T
e / Tzl 1) o) dy
Tr— m

This shows that (2.16) holds for every positive integer m, and finishes the proof
of this lemma. O

The following two lemmas are simple variants of Lemma 4 and Lemma 5 in [6],
therefore we omit their proofs.

Lemma 2.3. Let w and o be two weights, 0 < o < 1 and 1 < p < co. We
assume that m < p < m + 1, where m is a positive integer. Let 6 = (p — 1)/m.
Then, the inequality

(2.18) I3 [(Ifo)P~ ]
< c{Uzw) (ko= + (15 w)' 15 [(Ig w) (I o)™ o))}

holds, with a constant C' depending on «,p and m.

Let w and o be two weights on R and 1 < p < co. We define the operator B,
in the form

(2.19) Bp(f) = 1o [I1d (fo) P~ Hu),

for each f € LP(0).
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Lemma 2.4. Let 1 < p < oo and 1/p + 1/p’ = 1. Suppose that for every
f € LP(0), we have the inequality

+oo
(2.20) | B e < il

Then, (1.4) holds.

PROOF OF THEOREM 1.1: Let v be defined as in (2.1), that is v = (I w)? 0.
Condition (1.5) is I;v < CI;w, 0 — a.e. Then, by Lemma 2.1(ii), we get (2.4)
for every r: 1 < r < co. In the case r = p’ we have that the inequality

(2.21) 1z @) 0y < Clgll o)
holds for every g € LP'(v). By duality (2.21) is equivalent to
(2.22) s (fo)l oy < ClFllLo(o)s

for every f € LP(o). We shall show that (2.22) implies (2.21). Thus, applying
Lemma 2.4 we obtain (1.4).

Let f € LP(0), f > 0. We consider the operator B), defined in (2.19). First of
all, we prove that (2.20) holds for all positive integers p > 2. By Lemma 2.2 with
m=p-—1,

By(f) < C{(Ig w)(IE (fo)P~* + I3 (g w) (I (fo)P =2 fol }

Raising both sides of this inequality to the power p’ and integrating with respect

to the weight o,
+oo +oo
/ Vo< / P (I (fo) o

+C /_ 15 [Ty w) (I (fo)P 2 folP o

By (2.22), the first term on the right hand is bounded by C’||f||1£p(a). To estimate
the second term we consider the function
9= (zw) P (o)l 2.
Using (2.21), we have that
+00 , /
|z o ool o = 1z @)1

—00

/ +oo AV, / /
< C||g|\f’£p,(u) = C/ (15 w) PP (I (fo)) P2 p7's,

—00
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This inequality gives (2.20) for p = 2 From now on, assume that p > 2. By
Holder’s inequality with exponents and p, and using the identity (2—p)p ) i 5

= p/, we obtain that the last expressmn is bounded by
p=2

+oo 12 p—1 /
[t woruze | I < Il

—00

C

In consequence, (2.20) holds for every positive integer p.
Now, we suppose that p is not an integer and m < p < m+ 1 with m a positive
integer. By Lemma 2.3 we get

By(f) < ¢ { Uz )T o)~ + (15 w) 15 (g w) (I fo)™ L fo])° )

p—1
m
st

. Raising both sides of this inequality to the power p’ and inte-
o(z)dz, we have

where § =
grating again

+00 , +00
[ T mre<c [ aiuops

— o0
+00 , 'S5
v [z 0 {17 (g ) sor el o
— 00
Using (2.22), the first term on the right hand is bounded by C’||f||1£p(a). Now, let
r=p'6 <p' and
9= Igw)" VL (fo)™ £
Applying Lemma 2.1(i), more precisely using (2.4) we have that

/

p'é

/+00(L;w)10’(1—6) {I(;[(L;w)(f(jfa)m_lfg]} o

—0o0
+00
vee[ "

_/"‘00 I; (gv)
i +007, p
¢ [ ey D o e e,

—00

If 1 < p < 2then m =1 and the proof is complete in this case. Suppose p > 2.
Applying Holder’s inequality with exponent m and its conjugate, and taking into
account (2.22) we obtain that

+oo ,
/ (Iyw)P' =) (1t fo) = w P fig

—00

<

+00 , 1_% ya
| azwr'izuers| Wl < Il

—00

Thus, (2.20) is proved for every 1 < p < co. This completes the proof of Theo-
rem 1.1. ]
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Remark 2.5. We observe that applying Lemma 2.4 we have proved that (2.22)
implies (1.4).

We observe that by duality (1.4) is equivalent to
(2.23) |‘I&(fw)||Lp’(U) < C”f”Lp’(w)

PROOF OF THEOREM 1.2: Let us assume that (1.4) and (1.7) hold. We can write

I[(Iw C/ [(I5w)P [a:—r:z:])ﬁ

r

For each r > 0, let w = w1y ; + wa, Where,
Wip = WX[g—2rz] and w2, =w—wy,.

Then,
I;w = I(;(’LULT) + I(;(’LUQ,T)v

and it follows that
I [(Ig w) ol ()
(I wi,e)? o) ([x = 7, 2]) dr 0 [(Iy wa, )P o) ([x — 7, 2]) dr

<C /0 +C /0

=A+B.

By (2.23), we have the estimate

xT
!

(I wy ) ol ([ — ry2]) = / 13 (X2 ) 0 () dy

“+oo ,
<c / IXo—2ra) ()P w0() dy = Cuo([z — 21, 2]).

Therefore,
-2 dr
A<C/ (= T:CD7=CI07w(x).

On the other hand, taking into account the definition of wy ,., for each z € [x—r, 2]
we have that

_ war([z—p,2]) dp
I3 (w302 >:c/ warlle — £, 21) p1 o
SC/ 2p,$—27°])@
P
w([x—p,x—%])dp
-C e iy
2r P P
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Then,
z / S — — 2N d P rx
I e e e N L
r—r 2r P P xr—r
In consequence,
- o w([z — p,x — 2r]) dp\ ¥ d
(2.24) B<C/ xl Zﬂf (/ w(lz f’_i T])_p) r
r 2 p p r

Applying Fubini’s Theorem, we observe that

o) = /:’ w(fe g 2r)) d—pp _ /00 p21_ ] /:—er(z) s

T

r—2r 0o z—2r
= / w(z)/ ;lfa dz = / L)l—a dz.
—00 x—2z P —00 (‘T - Z)

(:c 27“)

Thus, the derivative ¢’(r) is equal to —C'~ . Integrating by parts from (2.24)

it follows that we can dominate B by

_ 00 _ _ p'/p _
| / o —p.el) do ( [ele=p 2r]>dp> wa—),
p 2r P

< C/ a: —2r) dr
since (1.7) implies that

Sup/ora([wpl—_gw])dp (/ w([z —pf,:i—%])dp)”/péa

r>0 P P

Then,
B<C/ ——= dy = Cl w(),

and the proof of this theorem is complete. O

In order to state the next proposition, we need to introduce the following
definition.

Definition 2.6. Let 5 > 0. We say that a weight w belongs to RD~(0) if there
exists a constant C' > 0, such that

w(le—p.a)) < € (2)  w(le —r,a)),

forallzeR,»>0and 0 < p <.

29
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Proposition 2.7. Let 1 < p < oco. Let w and o be two weights on R. If
o € RD™(0) for some 8 > 1 — «, then (1.5) implies condition (1.7).

PRrROOF: We suppose that w and o satisfy condition (1.5) and o € RD™ () with
B >1— «. For each r > 0 we have that

/T o(lx —p,2]) dp < CU([:Z: ) /T pPra=2g,
0 0

pl=e  p = P

rli—a
Therefore,
" o(lz —p,a))dp [ [ w(z—p,x—2r]) dp\P' !

(2.25) ——4—a T— —

o P p \Jar p p

/ '—1
ol /°° w(lz = p,x—2r)) o(fz —r,a))P/” dp\"
ot Uy, pl-e p

/ -1
<C 1 /Oow([x—p,x—r]) 0([w—r7x+p—2r])p/p@ P
ot g pl-e P '

On the other hand (1.5) implies condition AI",', o> that is, there exists a constant C'
such that for every a € R and h > 0

(w(la — h,a)))"/?(o([a, a + h])/?" < Chl=e.

Applying condition A, it follows that (2.25) is bounded by

p?a’

0o -« p'-1
oL / (=nU=Pdp\" " _ 1 aae-nw-n_ o
rl—a o pl—a p - T pl-a

Then, w and o satisfy (1.7). O

Corollary 2.8. Let o belong to RD™(8) for some 8 > 1 — «. Then (1.6) is a
necessary and sufficient condition for the inequality (1.4) to hold.

PRrOOF: It is an immediate consequence of Proposition 2.7 part (ii) and Theo-
rem 1.2.

O
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Remark 2.9. As an application of these results we consider the existence of
non-negative solution of the non-linear integral equation

(2.26) u=1, (ulo)+Iw o -ae.,

where we suppose that I w < co o -a.e. and we have the following result:
Let 1 < g < o0, %—l—%=1,A(p):(p—1)p_qand0<a<1. Let w and o be
two locally integrable weights.

(i) If I, w belongs to L{ (o) and the inequality
(2.27) I, (I w)io)(z) < A(p)I w(x) o -a.e.

holds, then equation (2.26) has a non-negative solution in L{. (o).

(ii) Assume that there exists a constant C' such that

)

(2.28) /OfwdpgCff<[w—m]>1/q;<_[z—zr,x_r])up

for all z € R and 7 > 0. If (2.26) has a non-negative solution in L{ (o), then

I, w belongs to L?OC(U) and there exists a constant A > 0 such that

(2.29) I, (I w)lo)(z) < Al w(z) o -a.e.

The proof is similar to the one in [6].

Definition 2.10. We say that a weight w belongs to D™ if there exists a con-
stant C' > 0, such that for all x belonging to R and r > 0,

w(lz,z +7r]) < Cw(lx —r,z]).

Taking into account Definition 2.10 we state the next proposition.

Proposition 2.11. Let 1 < ¢ < oo, % + % =1and 0 < a < 1. If o belongs to
D~ with a constant C : 0 < C' < (217® —1)~! then condition (2.28) holds.

PROOF: Since o € D™ with constant C' we have that
1+ C)o([z,x+7]) < Co(lx —r,z+T7]).

Then,

(2.30) o([z,x +7r]) < o[z —r,xz +7]),

—
—+
Q
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for every z € R and r» > 0. Let 8 > 1 — « such that

1
281"

(2.31) 0<C<

We shall show that o € RD™ (/) with constant % = A"l Letz € Randr > 0.
Fixing p : 0 < p < r, there exists a positive integer i such that, 27%r < p < 2741y,

Then, using (2.30) we have that

(2.32) o[z = p.a]) S o(lx =27 ra]) < Ao ([z — r,a])
' < 47142 (£) (o — ).

r

Taking into account (2.31) we have that A = %@ < 2%. Then, by (2.32) we
obtain that

o[z — p,a]) < A71 (B)ﬁa([ac —r,z)).

r
Since § + « > 1 we have the estimate

To(fx—pa])dp _ AT /’" Bta—2
— < o(lt —r,x d
| T < Sa(a = ral) [ 0

< A1 o[z —r x])
“B+a-1 glma

(2.33)

From the hypothesis ¢ € D™ it follows that o([x — r,2]) < Co([x — 2r,z — 7]).
Then, applying (2.33), we have that

/7” ofz —pal)dp ATV ol —ra) Y o(lw — 2r e — )P
o P p T fta-1 ri-o

This shows that (2.28) holds and completes the proof of the proposition. O

3. The case of equal weights

As we have observed in Section 1, the class of weights w such that I maps
LP(w), 1 < p < oo, boundedly into itself, is non-empty. In fact, it is non-empty
even in the case p = 1.

PROOF OF THEOREM 1.5: (1) =(2): It follows from the inequality MJ (f)(x)
< I3 (If)(@).
(2) =(3): We assume that

/ M f(@yw(z) de < C / @) |w(z) da.
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Let 2 be a Lebesgue point for w, h >0 and I = (x,z + h). If a = essinfy e w(y)
and € > 0 we consider the set F = {x € I : w(y) < a + ¢} and the function
f=|E|"'xg. It is clear that for any y < =

MF f(y) > ;/th(y)dy— S —
ST ey, (@ -yt
Therefore,
v w(y) c /
—>——dy < — [ xgw < C(a+¢).
/_oo (z +h—y)l-« B[] P (ate)
Thus,
T w(y) 1 /:c—i-h
— - dy < < = dy.
/—oo(:c—l—h—y)l—a y_Ca_h . wly) dy

When & goes to zero the left hand side converges to I, (f)(z) while the right hand
side converges to w(x).

(3) =(1): Indeed,

o0 400
/ IIi(f)lwd:vg/ IF(If)w da

—00 —00

_ /;OO I (w) da < c/;oo |l da.
0

PrROOF OF THEOREM 1.6: The proof is similar to the previous one and we omit
it. O
PROOF OF THEOREM 1.8: (1) =(2): By duality w € F]j,_a is equivalent to w! =" €
F, - It follows easily that the operators M; (9) = [w/PIF (w=/P|g|P")]L/?" and
Ms(g) = [w™/PI; (w'/P|g|P)]/P are bounded from LPP (R) into itself. Applying
the Rubio de Francia algorithm, see [2, Lemma 5.1, p. 434], we can obtain a weight

v such that
Mi(v) <Cv and Ms(v) < Cwo.

Then, wg = w!/PvP belongs to F1+a and wi = w1/Pyp’ belongs to F| . Clearly
w = wow%_p.

(2) =(1): We suppose that w = wow}_p, with wqg € Fl—i,_a and wy € B, It
follows easily from Hoélder’s inequality that

L (D@ < 13 (1 Pwy ™) @) I (wn)@)P
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Therefore, by duality

“+oo “+oo 1—
| n@Pe@ds < [ el @ ) uw) dr

400 o
- / @) Py ()P T (1 (w1)P~ ) (x)
<cC / T @) P (@) P I [ () do

e / (@) P ()P I (wo) () di

+oo
<C/ 2)|Pwy () "Pwo (z) da

—c/_ (@) Pw(z) dr.

In the rest of the paper we will make some remarks about the classes sz,_ o

Proposition 3.1. Let w be a weight and 0 < o < 1. Then
(a) F, C Ff, for 1 < p < oo;

(b) if we Ff‘a and f is a non-negative increasing function then fw € F1+a;

(c) there exists a weight ug € F1+ ., for all 0 < o < 1, that is not essentially
increasing;
(d) for any 1 < p < co there exists a weight u € F]j,_a \ Fl":a;

(e) there exists an increasing weight w such that w ¢ F;

PRrROOF: (a) Theorem 1.5 states that w € F1+a is equivalent to I, w < Cw.

Therefore (I&w)p/wl_p/ < Cw and the result follows from Theorem 1.1.

In order to prove (b) we observe that it is easy to check that if w satisfies
part (3) of Theorem 1.5 then so does fw for any non-negative increasing f.

(c) Simple computations show that the function u defined by

,T) = Z 2”X(2—2n7272n+2}($) + exX(l,oo) ($)7

satisfies I, (u)(z) < Cu(z) almost everywhere and it is clearly not increasing.
(d) Let ug be the function defined in part (¢) and uj(z) = ug(1l — z). From
the equality I (u1)(z) = I (up)(1 — ) it follows that ui belongs to Fy . By

Theorem 1.8 we have that w = uoui_p belongs to the class F]j,_a'
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We shall show that there does not exist a constant C' such that I (w)(z) <
Cw(z) a.e. Let z be such that 27270 < 1 — 2 < 27270F2 for some ng > 1. Then,
u(z) = 270(=P)+L while for any = € [3/4,1)

272n+2 1

/4, 00
w2 [ et [ G

o0
>3 Z gntl=np 9=2n _ A - (.

n=2

In consequence the inequality I (w)(z) < Cw(z) a.e. would imply 0 < A <
9n0(1=p)+1 for every ng > 1. .
The function w(z) = x[o,00)(2) satisfies that I (w)(2) = % X[0,00)(%) and (e)
follows.
Proposition 3.2. Let w be a weight. Then,
(a) for any 0 < v < 1, there exists u satisfying:
(i) ue Fl—i,_a for every a1 y < a < 1,
(i) u ¢ Fl—i,_a for every 0 < a < y;
(b) let o, 5> 0. If w € FY",, then I (w) € F{;

B

(c) for every 1 < p < o0, if0<a<ﬁthean;faCF;ﬁ.

Remark 3.3. It follows from (a) of Proposition 3.1 and (c) of Proposition 3.2
that for any 0 < o <1 < fand 1 < p < 0o we have F1+a C F;ﬁ. This inclusion

provides easy examples of equal weights satisfying conditions (1.4) and (1.5) in
[5, p.728).

PROOF: In order to prove (a) we consider the sequence a, =1 — 2%, n > 0 and
we define the function

> 1
u(z) = 2—31 m X(an,l,an](iv) + exX[Loo)(x)'

an—1
It is an easy but tedious computation to check that I (u)(x) < Cu(z) for any

v < a < 1. On the other hand, for 0 < a < v and any positive integer ng, if
1<z <1427"0 we have

1 u
17 (u)(x) > /0 (i)_dy

> [ i
B an—1 (y - an—l)'y(l +2—no — y)l—a :

n=1

35
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A change of variables gives
no
Iy (u)(z) > C Y 2n0=e),
n=1

Therefore, the inequality I (u)(z) <
1+27"0 would imply > 7%, on(r—a) <

Part (b) is a consequence of the equality I o Iy (w) = Igoly (w).

Cu(z) almost everywhere for 1 < z <
Ce? for every ng > 1.

We shall prove part (c). Let us assume that w € FI;’: o- There exists a positive
integer n > 1 such that o < § < na. Then, for any positive f we have

e = [T L

*  fly) o fy)
= /:v—l—l (y — x)l—na a + /:v (y —x)t—e I

<y ol ool (@) +1g(f) (),
which implies that IE is bounded from LP(w) into itself. O
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