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An improved version of a theorem concerning

finite row-column exchangeable arrays

Bruno Bassan, Daniela Capello, Marco Scarsini

Abstract. We improve a result of Bassan and Scarsini (1998) concerning necessary con-
ditions for finite and infinite extendibility of a finite row-column exchangeable array, and
provide a simpler proof for the result.
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Bassan and Scarsini (1998) generalized the idea of extendibility to row-column
exchangeable processes and provided necessary conditions for the (r, q)-extendibi-
lity of a (n × m) row-column exchangeable matrix. Their result will be proved
here under more general conditions and by means of a simpler proof.
We will keep their notation, and we will prove their Theorem 4 under the

assumptions r, q ≥ 2 instead of r, q ≥ 4. The proof is also somewhat simpler.
Theorem 4 can be reformulated as follows:

A ≥ 0,(1)

C(k) ≥ 0 and D(2, k) ≥ 0, ∀ k ∈ {1, . . . , q},(2)

B(h) ≥ 0 and D(h, 2) ≥ 0, ∀h ∈ {1, . . . , r},(3)

D(h, k) ≥ 0, ∀ k ∈ {1, . . . , q}, ∀h ∈ {1, . . . , r}.(4)

To prove that A ≥ 0, observe that

0 ≤ Var(X11 − X12 − X21 +X22) = 4σ
2(1 − ρ − β + α) = 4σ2A.

The relation B(h) ≥ 0 ∀h ∈ {1, . . . , r} can be proved as follows.

0 ≤ Var ([X11 + . . .+Xh1]− [X12 + . . .+Xh2])

=

h∑

i=1

Var(Xi1) +

h∑

j=1

Var(Xj2) +
∑

i6=j

Cov(Xi1, Xj1) +
∑

i6=j

Cov(Xi2, Xj2)

Work partially supported by MURST and CNR.



198 B.Bassan, D.Capello, M. Scarsini

− 2

h∑

i=1

h∑

j=1

Cov(Xi1, Xj2)

= 2

h∑

i=1

Var(Xi1) + 2
∑

i6=j

Cov(Xi1, Xj1)− 2

h∑

i=1

Cov(Xi1, Xi2)

− 2

h∑

i6=j

Cov(Xi1, Xj2)

= 2hσ2[1 + (h − 1)β − ρ − (h − 1)α]

= 2hB(h).

Relation (2) is proved similarly, by considering the sum of the terms on
the first row minus the terms on the second row. Finally, inequalities (4)
were proved in Lemma 7 of Bassan and Scarsini (1998), by showing that 0 ≤

Var(
∑h

i=1

∑k
j=1Xij) = hkσ2D(h, k).
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