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Evolution inclusions in non separable Banach spaces

F.S. de Blasi, G. Pianigiani

Abstract. We study a Cauchy problem for non-convex valued evolution inclusions in non
separable Banach spaces under Filippov type assumptions. We establish existence and
relaxation theorems.

Keywords: evolution inclusions, mild solutions, Lusin measurable multifunctions, Ba-
nach spaces, relaxation

Classification: 34A60, 34G20

1. Introduction

Let E be a real Banach space with norm ‖ · ‖, and let C(E) be the space of
all closed bounded nonempty subsets of E endowed with the Pompeiu-Hausdorff
distance h. Let I = [0, 1].
In this paper we consider the Cauchy problem for evolution inclusions of the

form

(Ca,F )

{

x′(t) ∈ Ax(t) + F (t, x(t))

x(0) = a.

Here A is the infinitesimal generator of a strongly continuous semigroup S(t),
t ≥ 0, of bounded linear operators on E, F is a multifunction from I × E to
C(E), and a ∈ E.
When E is finite dimensional, Filippov [4] (see also Hermes [6]) proved that the

Cauchy problem (Ca,F ), with A = 0, has solutions provided that F is continuous
in (t, x) and Lipschitzian in x, i.e.

h
(

F (t, x), F (t, y)
)

≤ k(t)‖x− y‖ (t, x), (t, y) ∈ I × E,

for some k ∈ L1(I). The more general case in which F is Carathéodory-Lipschitz,
i.e. F is measurable in t and Lipschitzian in x, was studied by Himmelberg and Van
Vleck [9]. It is worth while to observe that a crucial step in the proof of Filippov
theorem is the construction, for a C(E) valued multifunction, of a measurable
selector, which is usually obtained by virtue of a selection theorem of Kuratowski
and Ryll-Nardzewski [12]. More recently Frankowska [5], Tolstonogov [16] and
Papageorgiou [13] have shown that if E is infinite dimensional, Filippov’s ideas
can be suitably adapted in order to prove the existence of mild solutions to the
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Cauchy problem (Ca,F ), provided that E is separable. This restriction is actually
unavoidable if one has to apply in an infinite dimensional setting either selection
theorem, of Kuratowski and Ryll-Nardzewski [12] or of Bressan and Colombo [1].
In the present paper we will establish the existence of mild solutions for the

Cauchy problem (Ca,F ) in an arbitrary, not necessarily separable, Banach space
E, under assumptions on F of Filippov type. Our approach follows essentially the
pattern introduced by Filippov [4] and developed by Frankowska [5], Tolstonogov
[16], and Papageorgiou [13], however with the basic difference that measurable
selectors of multifunctions, when needed, will be constructed without relying on
either of the above mentioned selection theorems. Actually our existence result
(see Theorem 3.1) covers also the case of F Carathéodory-Lipschitz, where mea-
surability in t is understood in the sense of Lusin. Furthermore, for the Cauchy
problem (Ca,F ) we shall prove a corresponding relaxation result (see Theorem 4.1)
without assuming the Banach space E to be separable. This is made possible by
an argument which, unlike the ones of [5], [16], [13], again does not depend on
the above mentioned selection theorems.
Our existence and relaxation results for the Cauchy problem (Ca,F ) are only a

partial generalization of analogous results proved by Frankowska [5], Tolstonogov
[16] and Papageorgiou [13] under slightly different assumptions on A and F , in
separable Banach spaces. So far it is not clear if an analogous existence and
relaxation theory, in absence of separability assumptions, might hold also for
more general classes of systems, of the type considered by Papageorgiou [14] and
by Hu, Lakhsmikantham and Papageorgiou [10].
This paper consists of four sections. Notation and some properties of Lusin

measurable multifunctions are contained in Section 2. The existence and relax-
ation theorems for the Cauchy problem (Ca,F ) are discussed in Section 3 and
Section 4, respectively.

2. Lusin measurable multifunctions

Throughout this paper E denotes an arbitrary real Banach space with norm
‖ ‖, and C(E) the space of all closed bounded nonempty subsets of E. For x ∈ E

and A ⊂ E, A 6= ∅, set d(x,A) = infa∈A ‖x − a‖. C(E) is endowed with the
Pompeiu-Hausdorff metric

h(A,B) = max{e(A,B), e(B,A)} A,B ∈ C(E).

Here e(A,B) is the metric excess of A over B and e(B,A) the metric excess of
B over A, that is e(A,B) = supa∈A d(a,B) and e(B,A) = supb∈B d(b, A)
If A ⊂ E, A 6= ∅, and r ≥ 0 we set N(A, r) = {x ∈ E|d(x,A) ≤ r}. Clearly

N(A, r) is closed in E.
We recall below some properties of the metric excess functions, that we shall

use later.
Let A,B,C ∈ C(E). We have: (a1) e(A,B) = 0 if and only if A ⊂ B;

(a2) e(A,B) ≤ e(A,C) + e(C,B) (a3) e(A,C) ≤ e(B,C) and e(C,A) ≥ e(C,B),
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if A ⊂ B; (a4) e
(

N(A, r), C
)

≤ e(A,C) + r and e
(

C, N(A, r)
)

≥ e(C,A) − r;
(a5) e(A,B) ≤ r if and only if A ⊂ N(B, r), r ≥ 0.
For A ⊂ E, by coA and coA, we mean respectively the convex hull and the

closed convex hull of A.
Let X be a metric space. An open (resp. closed) ball in X with center x

and radius r is denoted by UX (x, r) (resp. ŨX(x, r)). For any set A ⊂ X , intA
and A stand, respectively, for the interior of A, and the closure of A in X . For
convenience we set U = UE(0, 1) and I = [0, 1].
A multifunction F : X → C(E) is said to be h-upper semicontinuous (resp.

h-lower semicontinuous , h-continuous) at x0 ∈ X if for every ε > 0 there exists
δ > 0 such that for every x ∈ UX(x0, δ) we have e

(

F (x), F (x0)
)

≤ ε (resp.

e
(

F (x0), F (x)
)

≤ ε, h
(

F (x), F (x0)
)

≤ ε). For brevity we write h-u.s.c. and h-
l.s.c. to mean, respectively, h-upper semicontinuous and h-lower semicontinuous.
F is called h-u.s.c. (resp. h-l.s.c., h-continuous) if it is so at each point x0 ∈ X .
Let L be the σ-algebra of the (Lebesgue) measurable subsets of R and, for

A ∈ L, let µ(A) be the Lebesgue measure of A.
For any set A ⊂ X , we denote by χA the characteristic function of A.
Let A ∈ L, with µ(A) < +∞. A multifunction F : A → C(E) is said to be

Lusin measurable if for every ε > 0 there exists a compact set Kε ⊂ A, with
µ(ArKε) < ε, such that F restricted to Kε is h-continuous.
It is clear that if F,G : A → C(E) and f : A → E are Lusin measurable, then

so are F restricted to B (B ⊂ A measurable), F + G, and t → d
(

f(t), F (t)
)

.
Moreover, the uniform limit F : A → C(E) of a sequence of Lusin measurable
multifunctions Fn : A→ C(E) is also Lusin measurable.
Further details about other notions of measurability for multifunctions and

their relations can be found in Castaing and Valadier [2], Himmelberg [8], Klein
and Thompson [11], and in [3].
The above definitions of h-upper or h-lower semicontinuity, h-continuity, Lusin

measurability are unchanged if the space C(E) is replaced by P(E), the space of
all bounded nonempty subsets of E endowed with the Pompeiu-Hausdorff pseu-
dometric h.
The following propositions show that h-u.s.c. and h-l.s.c. multifunctions are

Lusin measurable.

Proposition 2.1. If F : I → C(E) is h-u.s.c., then F is Lusin measurable.

Proof: For n ∈ N set In
i =

[

(i − 1)/2n, i/2n
[

, i = 1, . . . , 2n − 1, I2n =
[(

2n −

1
)

/2n, 1
]

. The family
{

In
i

}2n

i=1 is a partition of I. Now for n ∈ N define Gn : I →
C(E) by

Gn(t) =

2n
∑

i=1

(

⋃

s∈In
i

F (s)
)

χIn
i
(t).

It is clear that Gn is piecewise constant, and that Gn(t) ∈ C(E), for F is bounded
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on I. Moreover, we have:

(i) G1(t) ⊃ G2(t) ⊃ · · · ⊃ Gn(t) ⊃ · · · ⊃ F (t) for every t ∈ I;
(ii) for each n ∈ N, t→ h

(

Gn(t), F (t)
)

is measurable;

(iii) h
(

Gn(t), F (t)
)

→ 0 as n→ +∞, for every t ∈ I.

Property (i) follows immediately from the definition of Gn. To prove (ii), fix
n ∈ N and let t0 ∈ I, t0 6= i/2n, i = 0, 1, . . . , 2n. Clearly t0 ∈ int In

i , for some
1 ≤ i ≤ 2n. Since F is h-u.s.c., given ε > 0 there is δ > 0, with UI(t0, δ) ⊂ int I

n
i ,

such that t ∈ UI(t0, δ) implies e
(

F (t), F (t0)
)

≤ ε. Hence for every t ∈ UI(t0, δ)
we have

e
(

Gn(t0), F (t0)
)

≤ e
(

Gn(t0), F (t)
)

+ e
(

F (t), F (t0)
)

≤ e
(

Gn(t), F (t)
)

+ ε,

as Gn is constant on I
n
i . On the other hand, by (i), e

(

F (t), Gn(t)
)

= 0 for

each t ∈ I. Consequently, h
(

Gn(t), F (t)
)

≥ h
(

Gn(t0), F (t0)
)

− ε, for every
t ∈ UI(t0, δ), and (ii) follows, as a lower semicontinuous function is measurable.
It remains to prove (iii). Let t0 ∈ I and ε > 0 be arbitrary. Since F is h-u.s.c.,

there is a δ > 0 such that t ∈ UI(t0, δ) implies F (t) ⊂ N
(

F (t0), ε
)

. For every
n large enough, say n ≥ n0, there is 1 ≤ in ≤ 2n such that t0 ∈ In

in
⊂ UI(t0, δ).

Thus if n ≥ n0 we have

Gn(t) =
⋃

s∈In
in

F (s) ⊂ N
(

F (t0), ε
)

for every t ∈ In
in
,

and hence, e
(

Gn(t0), F (t0)
)

≤ ε. On the other hand, from (i), e
(

F (t0), Gn(t0)
)

=

0 for every n ∈ N, and so h
(

Gn(t0), F (t0)
)

≤ ε for every n ≥ n0, and also (iii) is
proved.
We are ready to show that F is Lusin measurable. Let σ > 0. Since each Gn

is piecewise constant, there is a compact set Hσ ⊂ I, with µ(I r Hσ) < σ/2,
such that each Gn restricted to Hσ is h-continuous. In view of (ii) and (iii),
using Egoroff-Severini theorem, one can construct a compact set Kσ ⊂ Hσ, with
µ(Hσ r Kσ) < σ/2, such that h

(

Gn(t), F (t)
)

→ 0 as n → +∞, uniformly on
Kσ. Therefore F restricted to Kσ is h-continuous, as each Gn restricted to Kσ

is so, and the convergence is uniform. Clearly µ(I rKσ) < σ. Hence F is Lusin
measurable, completing the proof. �

Proposition 2.2. If F : I → C(E) is h-l.s.c., then F is Lusin measurable.

Proof: For n ∈ N, let
{

In
i

}2n

i=1 be as in the proof of Proposition 2.1.
We claim that for every ε > 0 there is a k ∈ N such that if n ≥ k we have

(2.1)
⋂

t∈In
i

(

F (t) + εU
)

6= ∅ for each i = 1, . . . , 2n.
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Indeed, in the contrary case, there is an ε > 0 such that for every k ∈ N there
exist nk ∈ N and 1 ≤ ink

≤ 2nk such that

(2.2)
⋂

t∈I
nk
ink

(

F (t) + εU
)

= ∅.

Passing to a subsequence, without change of notation, we can suppose that
{

Ink

ink

}

converges to some point t ∈ I. Since F is h-l.s.c., there is δ > 0 such that
t ∈ UI(t, δ) implies F (t) ⊂ F (t) + εU . But for k large enough, say k ≥ k0,
Ink

ink
⊂ UI(t, δ), and so F (t) + εU ⊃ F (t) for every t ∈ Ink

ink
. As this contradicts

(2.2), the claim is proved.

Let ε > 0. Let k correspond to ε according to the claim, thus (2.1) holds with
n = k. If n > k, each interval In

i , 1 ≤ i ≤ 2n, is contained exactly in one interval

Ik
j , for some 1 ≤ j ≤ 2k, and hence

⋂

t∈Ik
j

(

F (t) + εU
)

⊂
⋂

t∈In
i

(

F (t) + εU
)

.

Now for each n ≥ k define Gε
n : I → C(E) by

Gε
n(t) =

2n
∑

i=1





⋂

s∈In
i

(

F (s) + εU
)



χIn
i
(t).

By definition each Gε
n is piecewise constant. Moreover the sequence

{

Gε
n

}

n≥k
has the following properties:

(i) Gε
k(t) ⊂ Gε

k+1(t) ⊂ . . . ⊂ Gε
n(t) ⊂ . . . ⊂ F (t) + εU for every t ∈ I;

(ii) for each n ≥ k, t→ h
(

Gε
n(t), F (t) + εU

)

is measurable on I;

(iii) h
(

Gε
n(t), F (t) + εU

)

→ 0 as n→ +∞, for every t ∈ I.

Property (i) follows at once from the definition of Gε
n. To prove (ii), fix n ≥ k

and let t0 ∈ I, t0 6= i/2
n, i = 0, 1, . . . , 2n. Clearly t0 ∈ int I

n
i , for some 1 ≤ i ≤ 2n.

Since F is h-l.s.c., given σ > 0 there is δ > 0, with UI(t0, δ) ⊂ int I
n
i , such that

t ∈ UI(t0, δ) implies e
(

F (t0), F (t)
)

≤ σ. Hence for every t ∈ UI(t0, δ) we have:

e
(

F (t0) + εU, G
ε
n(t0)

)

≤ e
(

F (t0) + εU, F (t) + εU
)

+ e
(

F (t) + εU, Gε
n(t0)

)

≤ e
(

F (t0), F (t)
)

+ e
(

F (t) + εU, Gε
n(t0)

)

≤ σ + e
(

F (t) + εU, Gε
n(t)

)

,

for Gε
n is constant on I

n
i . On the other hand, by (i), e

(

Gε
n(t), F (t) + εU

)

= 0 for

each t ∈ I. Consequently, h
(

Gε
n(t), F (t) + εU

)

≥ h
(

Gε
n(t0), F (t0) + εU

)

− σ for
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every t ∈ UI(t0, δ), and hence (ii) follows, as a lower semicontinuous function is
measurable.
It remains to prove (iii). Let t0 ∈ I and 0 < σ < ε be arbitrary. Since F

is h-l.s.c., there is δ > 0 such that t ∈ UI(t0, δ) implies F (t0) ⊂ F (t) + σU .
For every n large enough, say n ≥ n0 ≥ k, there is 1 ≤ in ≤ 2n such that
t0 ∈ In

in
⊂ UI(t0, δ). Thus for every n ≥ n0 and s ∈ In

in
we have F (t0)+(ε−σ)U ⊂

F (s) + σU + (ε− σ)U = F (s) + εU , which implies

F (t0) + (ε− σ)U ⊂
⋂

s∈In
in

(F (s) + εU) = Gε
n(t0).

Hence for every n ≥ n0, F (t0)+εU ⊂ Gε
n(t0)+σU . This and (i) imply h

(

Gε
n(t0),

F (t0) + εU
)

≤ σ for every n ≥ n0, and thus (iii) is proved.
We are ready to show that F is Lusin measurable. For each j ∈ N consider

the sequence
{

G
εj
n

}

n≥kj
, where εj = 1/j and kj corresponds to εj . Each G

εj
n is

piecewise constant, thus there is a compact set Hσ ⊂ I independent of j and n,
with µ(I rHσ) < σ/2, such that every G

εj
n restricted to Hσ is h-continuous. In

view of (ii) and (iii), with ε = εj , using Egoroff-Severini theorem, one can find a
compact set Kσ ⊂ Hσ independent of j, with µ(Hσ r Kσ) < σ/2, such that for
each fixed j ∈ N we have

h
(

G
εj
n (t), F (t) + εjU)→ 0 as n→ +∞,

uniformly on Kσ. Since each G
εj
n restricted to Kσ is h-continuous and the con-

vergence is uniform, one has that the multifunction t → F (t) + εjU restricted
to Kσ is h-continuous. But the sequence of these multifunctions, as j → +∞,
converges to F uniformly on Kσ, hence also F restricted to Kσ is h-continuous.
Clearly µ(I rKσ) < σ. Therefore F is Lusin measurable, completing the proof.

�

3. A Filippov type existence theorem

In this section we prove a theorem on the existence of mild solutions for the
Cauchy problem (Ca,F ) in an arbitrary (not necessarily separable) Banach space,
under assumptions on F of Filippov type ([4]).
About the operator A and the multifunction F : I × E → C(E), I = [0, 1], we

shall use the following assumptions.

(H1) A is the infinitesimal generator of a strongly continuous semigroup S(t),
t ≥ 0, of bounded linear operators from E into itself.

(H2) For each x ∈ E, t→ F (t, x) is Lusin measurable on I.

(H3) There exists a summable function k : I → [0,+∞[ such that

h
(

F (t, x), F (t, y)
)

≤ k(t)‖x− y‖ for every (t, x), (t, y) ∈ I × E.
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(H4) There exists a summable function q : I → [0,+∞[ such that F (t, 0) ⊂
ŨE

(

0, q(t)
)

, for all t ∈ I.

As is well known (see Pazy [15, p. 4]), under the assumption (H1) there is a
constant M ≥ 1 such that

‖S(t)‖ ≤M for every t ∈ I.

Furthermore, if (H3) is satisfied, we denote by m : I → [0,+∞[ the function given
by

m(t) =

∫ t

0
k(s) ds.

Given a multifunction G defined on I × E with nonempty values G(t, x) ⊂ E,
consider the Cauchy problem (Ca,G). By mild solution of the Cauchy problem
(Ca,G) we mean a function x : I → E satisfying the following conditions: (i) x is
continuous on I with x(0) = a, (ii) there is a Lusin measurable function v : I → E

integrable in the sense of Bochner such that:

v(t) ∈ G
(

t, x(t)
)

for each t ∈ I

x(t) = S(t)a+

∫ t

0
S(t− s)v(s) ds for each t ∈ I.

Remark 3.1. In the above definition the requirement that “v : I → E is Lusin
measurable” is equivalent to “v : I → E is strongly measurable” (in the sense
of Hille and Phillips [7, p. 72]). In fact if v is Lusin measurable then, by a stan-
dard iterative procedure one can easily construct a sequence of countably-valued
functions converging to v a.e. in I, thus v is strongly measurable. Conversely, if
v is strongly measurable then, by Hille and Phillips [7, Corollary 1, p. 73], v is
the uniform limit a.e. of a sequence of countably valued functions, from which it
follows that v is Lusin measurable.

Lemma 3.1. Let Fi : I → P(E), i = 1, 2, be two Lusin measurable multifunc-
tions and let ε1, ε2 > 0 be such that

(3.1) G(t) =
(

F1(t) + ε1U
)

∩
(

F2(t) + ε2U
)

6= ∅ for every t ∈ I.

Then the multifunction G : I → P(E) defined by (3.1) has a Lusin measurable
selector v : I → E

Proof: Since F1 and F2 are Lusin measurable, one can construct a sequence
{Jn} of pairwise disjoint compact sets Jn ⊂ I satisfying, for each n ∈ N, the
following properties:

(i) F1 and F2 restricted to Jn are h-continuous;

(ii) Jn+1 ⊂ I r
⋃n

i=1 Ji;
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(iii) µ (I r
⋃n

i=1 Ji) < 1/2
n.

Set J0 = I r
⋃

n Jn and observe that, by (iii), µ(J0) = 0. It is evident that
{Jn}n≥0 is a partition of I.
We claim that for each n = 0, 1, . . . there is a Lusin measurable function

vn : Jn → E which is a selector of the multifunction G restricted to Jn. To show
this, fix an arbitrary n ∈ N (the case n = 0 is trivial). For each t ∈ Jn pick
out a point ut ∈ G(t). Since G(t) is open and F1 and F2 restricted to Jn are
h-continuous, there is a δt > 0 such that

(3.2) ut ∈
(

F1(s) + ε1U
)

∩
(

F2(s) + ε2U
)

for every s ∈ UJn
(t, δt).

The family
{

UJn
(t, δt)

}

t∈Jn
is an open covering of Jn. As Jn is compact, it admits

a finite subcovering, say
{

UJn
(tk, δtk )

}q

k=1
. Now, consider the partition {Ik}

q
k=1

of Jn given by

I1 = UJn
(t1, δt1) Ik = UJn

(tk, δtk )r

k−1
⋃

i=1

Ii 2 ≤ k ≤ q,

and define vn : Jn → E by

vn(t) =

q
∑

k=1

utkχIk
(t).

It is evident that vn is Lusin measurable. Further, vn is a selector of the multi-
function G restricted to Jn. In fact let s ∈ Jn be arbitrary, thus s ∈ Ik for some
1 ≤ k ≤ q. Since s ∈ Ik ⊂ UJn

(tk, δtk), in view of (3.2) (with t = tk) we have

utk ∈
(

F1(s) + ε1U
)

∩
(

F2(s) + ε2U
)

,

thus vn(s) ∈ G(s), for vn(s) = utk . Hence vn is a Lusin measurable selector of G
restricted to Jn. Then the function v : I → E given by

v(t) =
∑

n≥0

vn(t)χJn
(t)

is a Lusin measurable selector of G, completing the proof. �

Lemma 3.2. Let F : I ×E → C(E) satisfy the hypotheses (H2) and (H3). Then
for arbitrary x : I → E continuous, u : I → E Lusin measurable, and ε > 0 we
have:

(a1) the multifunction t→ F (t, x(t)) is Lusin measurable on I;
(a2) the multifunction G : I → P(E) defined by

G(t) =
(

F (t, x(t)) + εU
)

∩ UE

(

u(t), d(u(t), F (t, x(t))) + ε
)

has a Lusin measurable selector v : I → E.
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Proof: (a1) Let {xn} be a sequence of piecewise constant functions xn : I → E

converging to x uniformly on I. Given ε > 0, let Kε ⊂ I be a compact set,
with µ(I r Kε) < ε, such that k restricted to Kε is continuous and, for each
n ∈ N, the multifunction t → F

(

t, xn(t)
)

restricted to Kε is h-continuous. Set
Mε = supt∈Kε

k(t).
Let t0, t ∈ Kε be arbitrary. We have:

h
(

F (t, x(t)), F (t0, x(t0))
)

≤ h
(

F (t, x(t)), F (t, xn(t))
)

+ h
(

F (t, xn(t)), F (t0, xn(t0))
)

+ h
(

F (t0, xn(t0)), F (t0, x(t0))
)

≤Mε‖xn(t)− x(t)‖ + h
(

F (t, xn(t)), F (t0, xn(t0))
)

+Mε‖xn(t0)− x(t0)‖

≤ 2Mεσn + h
(

F (t, xn(t)), F (t0, xn(t0))
)

,

where σn = supt∈I ‖xn(t)−x(t)‖. Since σn → 0 as n→ +∞, and t→ F
(

t, xn(t)
)

restricted to Kε is h-continuous, the multifunction t → F
(

t, x(t)
)

restricted to
Kε is h-continuous, and (a1) is proved.

(a2) For t ∈ I set G1(t) = F
(

t, x(t)
)

, G2(t) = ŨE

(

u(t), d(u(t), G1(t))
)

, and
observe that G1 and G2 are Lusin measurable on I. Furthermore, for each t ∈ I
we have G(t) =

(

G1(t)+εU
)

∩
(

G2(t)+εU
)

and G(t) 6= ∅. Hence, by Lemma 3.1,
G has a Lusin measurable selector v : I → E, thus also (a2) holds, and the proof
is complete. �

Theorem 3.1. If (H1)–(H4) are satisfied, then for every a ∈ E the Cauchy

problem (Ca,F ) has a mild solution x : I → E.

Proof: We will adapt a construction due to Filippov [4]. First we observe that
if z : I → E is continuous, then every Lusin measurable selector u : I → E of
the multifunction t→ F

(

t, z(t)
)

+U is Bochner integrable on I. In fact, for each
t ∈ I we have

‖u(t)‖ ≤ h
(

F (t, z(t)) + U, 0
)

≤ h
(

F (t, z(t)), F (t, 0)
)

+ h
(

F (t, 0), 0
)

+ 1

and hence, in view of (H3) and (H4),

(3.3) ‖u(t)‖ ≤ k(t)‖z(t)‖+ q(t) + 1, t ∈ I.

By Hille and Phillips [7, Theorem 3.7.4, p. 80], in view of Remark 3.1 and the
above inequality (3.3), if follows that u is Bochner integrable on I.
Let 0 < ε < 1 and, for n ≥ 0, set εn = ε/2n+2. Define x0 : I → E by

(3.4) x0(t) = S(t)a+

∫ t

0
S(t− s)v0(s) ds,
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where v0 : I → E is an arbitrary Lusin measurable function, integrable in the
sense of Bochner. Since x0 is continuous, by Lemma 3.2 there exists a Lusin
measurable function, say v1 : I → E, satisfying

v1(t) ∈
(

F (t, x0(t)) + ε1U
)

∩ UE

(

v0(t), d(v0(t), F (t, x0(t))) + ε1
)

t ∈ I.

Clearly, by (3.3), v1 is also Bochner integrable on I. Define x1 : I → E by

x1(t) = S(t)a+

∫ t

0
S(t− s)v1(s) ds.

Now by recurrence one can construct a sequence {xn} of continuous functions
xn : I → E, n = 1, 2, . . . , given by

(3.5)n xn(t) = S(t)a+

∫ t

0
S(t− s)vn(s) ds,

where vn : I → E is a Lusin measurable function satisfying

(3.6)n
vn(t) ∈

(

F (t, xn−1(t)) + εnU
)

∩ UE

(

vn−1(t), d(vn−1(t), F (t, xn−1(t))
)

+ εn
)

t ∈ I.

Furthermore vn is also Bochner integrable on I because, by (3.6)n and (3.3), we
have

(3.7) ‖vn(t)‖ ≤ k(t)‖xn−1(t)‖+ q(t) + 1, t ∈ I.

Now from (3.6)n, for n = 2, 3, . . . and t ∈ I we have

‖vn(t)− vn−1(t)‖ ≤ d
(

vn−1(t), F (t, xn−1(t))
)

+ εn

≤ d
(

vn−1(t), F (t, xn−2(t))
)

+ h(F (t, xn−2(t)), F (t, xn−1(t))
)

+ εn

≤ εn−1 + k(t)‖xn−1(t)− xn−2(t)‖+ εn.

Hence, for each n = 2, 3, . . . and t ∈ I,

(3.8)n ‖vn(t)− vn−1(t)‖ ≤ εn−2 + k(t)‖xn−1(t)− xn−2(t)‖,

as εn−1 + εn < εn−2. Set p0(t) = d
(

v0(t), F (t, x0(t))
)

, t ∈ I.
We claim that for each n = 2, 3, . . . and t ∈ I we have:

(3.9)n ‖xn(t)− xn−1(t)‖ ≤
n−2
∑

k=0

∫ t

0
εn−2−k

Mk+1
(

m(t)−m(u)
)k

k!
du

+ ε0

∫ t

0

Mn
(

m(t)−m(u)
)n−1

(n− 1)!
du+

∫ t

0

Mn
(

m(t)−m(u)
)n−1

(n− 1)!
p0(u) du.
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First we verify the above inequality when n = 2. In view of (3.5)n, (3.8)n,
(3.4) and (3.6)n, for each t ∈ I we have:

‖x2(t)− x1(t)‖ ≤

∫ t

0
‖S(t− s)‖‖v2(s)− v1(s)‖ ds

≤

∫ t

0
M
[

ε0 + k(s)‖x1(s)− x0(s)‖
]

ds

≤ ε0Mt+

∫ t

0

[

Mk(s)

∫ s

0
‖S(s− u)‖‖v1(u)− v0(u)‖ du

]

ds

≤ ε0Mt+

∫ t

0

[

M2k(s)

∫ s

0

(

p0(u) + ε1
)

du

]

ds

≤ ε0Mt+

∫ t

0

[

M2
(

p0(u) + ε0
)

∫ t

u
k(s) ds

]

du

= ε0Mt+ ε0

∫ t

0
M2
(

m(t)−m(u)
)

du

+

∫ t

0
M2
(

m(t)−m(u)
)

p0(u) du,

and so (3.9)2 is verified.
Now, assuming (3.9)n, we shall show that (3.9)n+1 holds. In view of (3.8)n

and (3.9)n, for each t ∈ I we have:

‖xn+1(t)− xn(t)‖ ≤

∫ t

0
‖S(t− s)‖‖vn+1(s)− vn(s)‖ ds

≤

∫ t

0
M

[

εn−1 + k(s)‖xn(s)− xn−1(s)‖
]

ds

≤ εn−1Mt+

∫ t

0
k(s)

[

n−2
∑

k=0

∫ s

0
εn−2−k

Mk+2
(

m(s)−m(u)
)k

k!
du

+ ε0

∫ s

0

Mn+1
(

m(s)−m(u)
)n−1

(n− 1)!
du

+

∫ s

0

Mn+1
(

m(s)−m(u)
)n−1

(n− 1)!
p0(u) du

]

ds

= εn−1Mt+

n−2
∑

k=0

∫ t

0

[

∫ s

0
εn−2−k

Mk+2
(

m(s)−m(u)
)k

k!
k(s) du

]

ds

+ ε0

∫ t

0

[

∫ s

0

Mn+1
(

m(s)−m(u)
)n−1

(n− 1)!
k(s) du

]

ds
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+

∫ t

0

[

∫ s

0

Mn+1
(

m(s)−m(u)
)n−1

(n− 1)!
k(s)p0(u) du

]

ds

= εn−1Mt+

n−2
∑

k=0

∫ t

0

[

∫ t

u
εn−2−k

Mk+2
(

m(s)−m(u)
)k

k!
k(s)

]

du

+ ε0

∫ t

0

[

∫ t

u

Mn+1
(

m(s)−m(u)
)n−1

(n− 1)!
k(s) ds

]

du

+

∫ t

0

[

∫ t

u

Mn+1
(

m(s)−m(u)
)n−1

(n− 1)!
k(s) ds

]

p0(u) du

= εn−1Mt+

n−2
∑

k=0

∫ t

0
εn−2−k

Mk+2
(

m(t)−m(u)
)k+1

(k + 1)!
du

+ ε0

∫ t

0

Mn+1
(

m(t)−m(u)
)n

n!
du

+

∫ t

0

Mn+1
(

m(t)−m(u)
)n

n!
p0(u) du

=

n−1
∑

k=0

∫ t

0
εn−1−k

Mk+1
(

m(t)−m(u)
)k

k!
du

+ ε0

∫ t

0

Mn+1
(

m(t)−m(u)
)n

n!
du

+

∫ t

0

Mn+1
(

m(t)−m(u)
)n

n!
p0(u) du.

Thus (3.9)n+1 holds true, and the claim is proved.

Now from (3.9)n, for n = 2, 3, . . . and every t ∈ I, we have

(3.10) ‖xn(t)− xn−1(t)‖ ≤ an,

where

(3.11) an =
n−2
∑

k=0

εn−2−k
Mk+1Lk

k!
+ ε0

MnLn−1

(n− 1)!
+
MnLn−1

(n− 1)!

∫ 1

0
p0(u) du

and L = m(1).

Clearly the series whose nth term is the first quantity on the right side of (3.11)
is convergent, as Cauchy product of absolutely convergent series. Thus the series
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whose nth term is an converges as well. From this and (3.10) it follows that the
sequence {xn} converges uniformly on I to a continuous function, say x : I → E.
On the other hand, in view of (3.8)n, for n = 3, 4, . . . and every t ∈ I

‖vn(t)− vn−1(t)‖ ≤ εn−2 + k(t)an−1,

which implies that {vn} converges on I to a Lusin measurable function, say v : I →
E. As {xn} is bounded by a constant, sayH , (3.7) yields ‖vn(t)‖ ≤ k(t)H+q(t)+1
for n = 1, 2, . . . and each t ∈ I, and hence v is also Bochner integrable on I. Then
from (3.5)n, letting n→ +∞ and using Lebesgue dominated convergence theorem,
we obtain

x(t) = S(t)a+

∫ t

0
S(t− s)v(s) ds for each t ∈ I.

On the other hand, by (3.6)n, vn(t) ∈ F
(

t, xn−1(t)
)

+ εnU for n = 1, 2, . . . and
t ∈ I, whence letting n→ +∞ we have

v(t) ∈ F
(

t, x(t)
)

for each t ∈ I.

Therefore x is a mild solution of the Cauchy problem (Ca,F ). This completes the
proof. �

When A = 0 the Cauchy problem (Ca,F ) takes the form

(Da,F )

{

x′(t) ∈ F
(

t, x(t)
)

x(0) = a.

By solution of the Cauchy problem (Da,F ) we mean a continuous function x :
I → E such that there exists a Lusin measurable function v : I → E, integrable
in the sense of Bochner, satisfying:

v(t) ∈ F
(

t, x(t)
)

for each t ∈ I

x(t) = a+

∫ t

0
v(s) ds for each t ∈ I.

When A = 0, Theorem 3.1 yields the following:

Corollary 3.1. If (H2)–(H4) are satisfied, then for every a ∈ E the Cauchy

problem (Da,F ) has a solution x : I → E.

4. A relaxation theorem

In this section we prove a relaxation theorem for the Cauchy problem (Ca,F ).
More precisely, we associate to (Ca,F ) the convexified Cauchy problem

(Ca, coF )

{

x′(t) ∈ Ax(t) + coF
(

t, x(t)
)

x(0) = a,

and we show that, if (H1)–(H4) are satisfied, then the set of the mild solutions of
(Ca,F ) is dense in the set of the mild solutions of (Ca, coF ).
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Lemma 4.1. Let G : A → C(E) be a Lusin measurable multifunction defined
on a measurable set A ⊂ R, with µ(A) < +∞. Then G has a Lusin measurable
selector g : A→ E.

Proof: By virtue of [3], Propositions 6 and 4, the statement holds true if A is
compact. If A is measurable, it suffices to consider a countable partition {Kn}n≥0
of A, where all Kn, n ≥ 1, are compact and K0 is of measure zero. �

The following lemma plays a crucial role in the proof of the relaxation theorem.

Lemma 4.2. Let (H1)–(H4) be satisfied. Let a ∈ E, and let y : I → E be a mild

solution of the convexified Cauchy problem (Ca, coF ). Then given 0 < ε < 1,
there is a mild solution x0 : I → E of the Cauchy problem

(Ca,F+ϕεU )

{

x′(t) ∈ Ax(t) + F
(

t, x(t)
)

+ ϕε(t)U

x(0) = a,

where ϕε(t) = ε [k(t)/(L+ 1) + 1] and L =
∫ 1
0 k(s) ds, such that ‖x0(t)− y(t)‖ ≤

ε/(L+ 1) ≤ ε for every t ∈ I.

Proof: The proof, rather long, will be divided into four steps.
By hypothesis y : I → E is a mild solution of (Ca, coF ). Thus y is continuous,

and there is a Lusin measurable function u : I → E, integrable in the sense of
Bochner, satisfying

u(t) ∈ coF
(

t, y(t)
)

t ∈ I(4.1)

y(t) = S(t)a+

∫ t

0
S(t− s)u(s) ds t ∈ I.(4.2)

Let ε > 0. Our aim is to construct a Lusin measurable function v0 : I → E

integrable in the sense of Bochner, and a continuous function x0 : I → E satisfying

v0(t) ∈ F
(

t, x0(t)
)

+ ϕε(t)U t ∈ I

x0(t) = S(t)a+

∫ t

0
S(t− s)v0(s) ds t ∈ I,

such that ‖x0(t)− y(t)‖ ≤ ε/(L+ 1) for every t ∈ I.

Step 1. Construction of v0 and x0.

Let 0 < ε < 1 be arbitrary. Fix δ such that

(4.3) 0 < δ <
ε

4(M + 1)2(L+ 1)
,

where M ≥ 1 is a constant satisfying ‖S(t)‖ ≤ M for every t ∈ I. Clearly
δ < ε < 1. Likewise in the proof of Theorem 3.1, one can show that each Lusin
measurable selector w : I → E of the multifunction t→ coF

(

t, y(t)
)

+δU satisfies

(4.4) ‖w(t)‖ ≤ ψ(t) t ∈ I,
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where ψ(t) = k(t)‖y(t)‖ + q(t) + 1. As ψ is summable, w is Bochner integrable
on I.
Take α > 0 such that for each measurable set A ⊂ I,

(4.5) µ(A) < α implies

∫

A
ψ(t) dt < δ.

The mappings t → u(t) and t → F
(

t, y(t)
)

are Lusin measurable, the latter by
Lemma 3.2, thus there is a compact set K ⊂ I, with

(4.6) µ(I rK) < α,

such that, when restricted to K, u is continuous and t → F
(

t, y(t)
)

is h-conti-
nuous.
For N ∈ N, denote by

{

Ii
}N

i=1
the partition of I given by

Ii = [ti−1, ti[ i = 1, . . . , N − 1 IN = [tN−1, tN ] where ti =
i

N
.

Now fix N ∈ N large enough so that for each i = 1, . . . , N we have: µ(Ii) < α
and, furthermore,

(4.7) ‖u(t′)− u(t′′)‖ < δ and h
(

F (t′, y(t′)
)

, F (t′′, y(t′′))
)

< δ,

for every t′, t′′ ∈ Ii ∩K.

Set ℑ′ = {1 ≤ i ≤ N |Ii ∩ K 6= ∅} and ℑ′′ = {1 ≤ i ≤ N |Ii ∩K = ∅}. In each
interval Ii, with i ∈ ℑ′, choose a point τi ∈ Ii ∩K. Since u(τi) ∈ coF

(

τi, y(τi)
)

,

there exists a finite set
{

ein
}pi

n=1 of points

(4.8) ein ∈ F
(

τi, y(τi)
)

n = 1, . . . , pi,

and there exist pi numbers λ
i
n ≥ 0, with λi

1 + · · ·+ λi
pi
= 1, such that

(4.9) ‖u(τi)−

pi
∑

n=1

λi
ne

i
n‖ < δ.

By Pazy [15, Corollary 2.3, p. 4], for each i ∈ ℑ′ the functions t → S(ti − t)u(τi)
and t → S(ti − t)ein, n = 1, . . . , pi, are continuous on the compact interval Ii.
Consequently, for each i ∈ ℑ′ we can construct a partition

{

J i
j

}ri

j=1 of Ii, where

J i
j = [s

i
j−1, s

i
j [ j = 1, . . . , ri, and sij = ti−1 +

j

riN
,
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(if i = N , JN
rN
is closed) so that the following inequalities are satisfied:

(4.10) ‖S(ti − t)u(τi)−

ri
∑

j=1

S(ti − sij)u(τi)χJi
j
(t)‖ ≤ δ for each t ∈ Ii, i ∈ ℑ′

(4.11) ‖S(ti − t)ein −

ri
∑

j=1

S(ti − sij)e
i
nχJi

j
(t)‖ ≤ δ for each t ∈ Ii, i ∈ ℑ′

n = 1, . . . , pi.

Furthermore, for i ∈ ℑ′ and 1 ≤ j ≤ ri consider a partition
{

Kij
n

}pi

n=1 of J
i
j ∩K

by measurable sets K
ij
n such that

(4.12) µ(Kij
n ) = λ

i
nµ(J

i
j ∩K) n = 1, . . . , pi.

By Lemma 4.1, the multifunction t → F
(

t, y(t)
)

restricted to I r K admits a

Lusin measurable selector, say w0 : IrK → E. Moreover, for each i ∈ ℑ′, denote
by vi : Ii ∩K → E the function given by

vi(t) =

ri
∑

j=1

pi
∑

n=1

einχK
ij
n
(t).

Now define v0 : I → E and x0 : I → E by

v0(t) =
∑

i∈ℑ′

vi(t)χIi∩K(t) + w0(t)χIrK(t) t ∈ I(4.13)

x0(t) = S(t)a+

∫ t

0
S(t− s)v0(s) ds t ∈ I.(4.14)

Clearly v0 is Lusin measurable, and also Bochner integrable, because

(4.15) v0(t) ∈ F
(

t, y(t)
)

+ δU t ∈ I.

To show (4.15) let t ∈ I be arbitrary, thus t ∈ Ii, for some 1 ≤ i ≤ N . If

t ∈ I r K, we have v0(t) = w0(t) ∈ F
(

t, y(t)
)

. If t ∈ Ii ∩ K, then t ∈ Kij
n for

some 1 ≤ j ≤ ri and 1 ≤ n ≤ pi, hence v0(t) = e
i
nχK

ij
n
(t) = ein ∈ F

(

τi, y(τi)
)

, by

(4.8). Since t, τi ∈ Ii ∩K, (4.7) implies F
(

τi, y(τi)
)

⊂ F
(

t, y(t)
)

+ δU . Whence

if t ∈ Ii ∩K, we have v0(t) ∈ F
(

t, y(t)
)

+ δU and (4.15) is proved.

Step 2. For each i ∈ ℑ′ we have:

(4.16)

∥

∥

∥

∥

∫

Ii∩K
S(ti − s)u(s) ds−

∫

Ii∩K
S(ti − s)v0(s) ds

∥

∥

∥

∥

≤ 2(M + 1)δµ(Ii).
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Denoting by Λi the quantity on the left side of (4.16), we have

Λi ≤

∥

∥

∥

∥

∫

Ii∩K
S(ti − s)u(s) ds−

∫

Ii∩K
S(ti − s)u(τi) ds

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

Ii∩K
S(ti − s)u(τi) ds−

ri
∑

j=1

∫

Ji
j∩K

S(ti − sij)u(τi) ds

∥

∥

∥

∥

(4.17)

+

∥

∥

∥

∥

ri
∑

j=1

∫

Ji
j∩K

S(ti − sij)u(τi) ds−

ri
∑

j=1

pi
∑

n=1

∫

K
ij
n

S(ti − sij)vi(s) ds

∥

∥

∥

∥

+

∥

∥

∥

∥

ri
∑

j=1

pi
∑

n=1

∫

K
ij
n

S(ti − sij)vi(s) ds−

∫

Ii∩K
S(ti − s)v0(s) ds

∥

∥

∥

∥

.

Let ΛI
i,...,Λ

IV
i be the first, . . . , fourth term on the right side of (4.17). Clearly,

by virtue of (4.7), we have

(4.18) ΛI
i ≤

∫

Ii∩K
‖S(ti − s)‖‖u(s)− u(τi)‖ ds ≤Mδµ(Ii).

Further,

ΛII
i =

∥

∥

∥

∥

∫

Ii∩K
S(ti − s)u(τi) ds−

∫

Ii∩K

[ ri
∑

j=1

S(ti − sij)u(τi)χJi
j
(s)

]

ds

∥

∥

∥

∥

and so, by (4.10), we have

(4.19) ΛII
i ≤

∫

Ii∩K

∥

∥

∥

∥

S(ti − s)u(τi)−

ri
∑

j=1

S(ti − sij)u(τi)χJi
j
(s)

∥

∥

∥

∥

ds ≤ δµ(Ii).

As far as ΛIII
i is concerned we have:

ΛIII
i ≤

∥

∥

∥

∥

ri
∑

j=1

∫

Ji
j∩K

S(ti − sij)u(τi) ds−

ri
∑

j=1

S(ti − sij)

pi
∑

n=1

λi
ne

i
nµ(J

i
j ∩K)

∥

∥

∥

∥

+

∥

∥

∥

∥

ri
∑

j=1

S(ti − sij)

pi
∑

n=1

λi
ne

i
nµ(J

i
j ∩K)−

ri
∑

j=1

pi
∑

n=1

∫

K
ij
n

S(ti − sij)vi(s) ds

∥

∥

∥

∥

≤

∥

∥

∥

∥

ri
∑

j=1

S(ti − sij)

(

u(τi)−

pi
∑

n=1

λi
ne

i
n

)

µ(J i
j ∩K)

∥

∥

∥

∥

+

∥

∥

∥

∥

ri
∑

j=1

pi
∑

n=1

S(ti − sij)λ
i
ne

i
nµ(J

i
j ∩K)−

ri
∑

j=1

pi
∑

n=1

S(ti − sij)e
i
nµ(K

ij
n )

∥

∥

∥

∥

.
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The last term on the right side of the above inequality is zero because, by (4.12),

µ(Kij
n ) = λ

i
nµ(J

i
j ∩K) for every j = 1, . . . , ri and n = 1, . . . , pi. Thus, in view of

(4.9), it follows:

(4.20)

ΛIII
i ≤

ri
∑

j=1

‖S(ti − sij)‖‖u(τi)−

pi
∑

n=1

λi
ne

i
n‖µ(J

i
j ∩K)

≤Mδ

ri
∑

j=1

µ(J i
j ∩K) ≤Mδµ(Ii).

It remains to evaluate ΛIV
i . Taking into account the definition of v0, we have

∫

Ii∩K
S(ti − s)v0(s) ds−

ri
∑

j=1

pi
∑

n=1

∫

K
ij
n

S(ti − sij)vi(s) ds

=

pi
∑

n=1

ri
∑

j=1

∫

K
ij
n

S(ti − s)ein ds−

pi
∑

n=1

ri
∑

j=1

∫

K
ij
n

S(ti − sij)e
i
n ds

=

pi
∑

n=1

∫

Ki
n

S(ti − s)ein ds−

pi
∑

n=1

∫

Ki
n

[ ri
∑

j=1

S(ti − sij)e
i
nχK

ij
n
(s)

]

ds,

where Ki
n =

⋃ri

j=1K
ij
n . Thus

ΛIV
i ≤

pi
∑

n=1

∫

Ki
n

∥

∥

∥

∥

S(ti − s)ein −

ri
∑

j=1

S(ti − sij)e
i
nχK

ij
n
(s)

∥

∥

∥

∥

ds.

Now each s ∈ Ki
n is in one set, say K

ij
n , for some 1 ≤ j ≤ ri, and thus s ∈ J i

j .

Hence by (4.11)

(4.21) ΛIV
i ≤ δ

pi
∑

n=1

µ(Ki
n) ≤ δµ(Ii).

From (4.17), by virtue of (4.18)–(4.21), it follows

Λi ≤Mδµ(Ii) + δµ(Ii) +Mδµ(Ii) + δµ(Ii) = 2(M + 1)δµ(Ii),

and Step 2 is proved.
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Step 3. We have ‖x0(t)− y(t)‖ ≤ ε/(L+ 1) for every t ∈ I.
Let t ∈ I be arbitrary, thus t ∈ Ih for some 1 ≤ h ≤ N . By virtue of (4.14)

and (4.2) we have

‖x0(t)− y(t)‖ ≤

∥

∥

∥

∥

∫ th−1

0
S(t− s)

(

v0(s)− u(s)
)

ds

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ t

th−1

S(t− s)
(

v0(s)− u(s)
)

ds

∥

∥

∥

∥

≤

∥

∥

∥

∥

h−1
∑

i=1

S(t− ti)

∫ ti

ti−1

S(ti − s)
(

v0(s)− u(s)
)

ds

∥

∥

∥

∥

+

∫ th

th−1

‖S(t− s)‖
(

‖v0(s)‖ + ‖u(s)‖
)

ds,

and hence

(4.22)

‖x0(t)− y(t)‖ ≤
h−1
∑

i=1

‖S(t− ti)‖

∥

∥

∥

∥

∫ ti

ti−1

S(ti − s)
(

v0(s)− u(s)
)

ds

∥

∥

∥

∥

+M

∫ th

th−1

(

‖v0(s)‖+ ‖u(s)‖
)

ds.

The last term on the right side of (4.22) is not greater than 2Mδ. In fact v0
and u are selectors of the multifunction t → coF

(

t, y(t)
)

+ δU , by (4.15) and
(4.1), therefore satisfy (4.4) i.e. ‖v0(s)‖ ≤ ψ(s) and ‖u(s)‖ ≤ ψ(s), s ∈ I. Further
µ(Ih) < α, thus by virtue of (4.5) the statement holds true. From (4.22), in view
of Step 2, we have

‖x0(t)− y(t)‖ ≤M

h−1
∑

i=1

∥

∥

∥

∥

∫

Ii

S(ti − s)
(

v0(s)− u(s)
)

ds

∥

∥

∥

∥

+ 2Mδ

≤M
∑

i∈ℑ′

i≤h−1

∥

∥

∥

∥

∫

Ii∩K
S(ti − s)

(

v0(s)− u(s)
)

ds

∥

∥

∥

∥

+M
∑

i∈ℑ′′

i≤h−1

∥

∥

∥

∥

∫

IirK
S(ti − s)

(

v0(s)− u(s)
)

ds

∥

∥

∥

∥

+ 2Mδ

≤M
∑

i∈ℑ′

i≤h−1

2(M + 1)δµ(Ii)
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+M

∫

IrK
‖S(ti − s)‖

(

‖v0(s)‖+ ‖u(s)‖
)

ds+ 2Mδ

≤ 2M(M + 1)δ + 2M2
∫

IrK
ψ(s) ds+ 2Mδ.

By (4.6) µ(I rK) < α, hence (4.5) implies that the latter integral is less than δ.
Consequently,

‖x0(t)− y(t)‖ ≤ 2M(M + 1)δ + 2M2δ + 2Mδ < 4(M + 1)2δ <
ε

L+ 1

for, by (4.3), δ < ε/[4(M + 1)2(L+ 1)]. Since t ∈ I is arbitrary, Step 3 is proved.

Step 4. x0 is a mild solution of the Cauchy problem (Ca,F+ϕεU ).

In view of the definition of x0 and v0 (see (4.14) and (4.13)), x0 is continuous
on I, with x(0) = a, and v0 is Lusin measurable and integrable in the sense of
Bochner on I. To prove the statement we have only to show that

(4.23) v0(t) ∈ F
(

t, x0(t)
)

+ ϕε(t)U t ∈ I.

Let t ∈ I rK. From (4.13), v0(t) = w0(t) ∈ F
(

t, y(t)
)

, thus

d
(

v0(t), F
(

t, x0(t))
)

≤ h
(

F (t, y(t)), F (t, x0(t))
)

≤ k(t)‖y(t)− x0(t)‖.

Since, by Step 3, ‖y(t)− x0(t)‖ ≤ ε/(L+ 1), we have

d
(

v0(t), F (t, x0(t))
)

< ε[k(t)/(L+ 1) + 1] = ϕε(t),

and hence (4.23) is satisfied, for each t ∈ I rK.
Let t ∈ K. Then for some i ∈ ℑ′, 1 ≤ j ≤ ri, and 1 ≤ n ≤ pi we have

t ∈ Kij
n . By virtue of (4.13) and (4.8), v0(t) = ein ∈ F

(

τi, y(τi)
)

. On the other

hand, by (4.7), F
(

τi, y(τi)
)

⊂ F
(

t, y(t)
)

+ δU as τi, t ∈ Ii ∩K and, consequently,

v0(t) ∈ F
(

t, y(t)
)

+ δU . By virtue of Step 3 we have:

d
(

v0(t), F
(

t, x0(t)
))

≤ h
(

F (t, y(t)) + δU, F (t, x0(t))
)

≤ h
(

F (t, y(t)), F (t, x0(t))
)

+ δ

≤ k(t)‖y(t)− x0(t)‖ + δ ≤ ε
k(t)

L+ 1
+ δ < ϕε(t)

as δ < ε, by (4.3). It follows that (4.23) is satisfied also for t ∈ K, and Step 4 is
proved. This completes the proof. �
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Theorem 4.1. Let (H1)–(H4) be satisfied. Let a ∈ E, and let y : I → E be an

arbitrary mild solution of the convexified Cauchy problem (Ca, coF ). Then, for
every σ > 0, there exists a mild solution x : I → E of the Cauchy problem (Ca,F )
such that ‖x(t)− y(t)‖ ≤ σ for every t ∈ I.

Proof: Let y : I → E be an arbitrary mild solution of the Cauchy problem
(Ca, coF ), and let 0 < σ < 1. Fix ε so that

0 < ε <
σ

7MeLM
,

where M ≥ 1 is a constant such that M ≥ ‖S(t)‖ for each t ∈ I, and L =
∫ 1
0 k(t) dt.
By Lemma 4.2, with the above choice of ε, there exists a mild solution x0 :

I → E of the Cauchy problem (Ca,F+ϕεU ), where ϕε(t) = ε[k(t)/(L + 1) + 1],
such that

(4.24) ‖x0(t)− y(t)‖ ≤
ε

L+ 1
≤ ε t ∈ I.

By definition of mild solution, x0 is continuous, with x0(0) = a, and there is
a Lusin measurable function v0 : I → E, integrable in the sense of Bochner,
satisfying

(4.25)

v0(t) ∈ F
(

t, x0(t)
)

+ ϕε(t)U t ∈ I

x0(t) = S(t)a+

∫ t

0
S(t− s)v0(s) ds t ∈ I.

With this choice of x0 and v0, following the argument and retaining the notation
of Theorem 3.1, we can construct a sequence {xn} of continuous functions xn :
I → E, n = 1, 2, . . . given by

xn(t) = S(t)a+

∫ t

0
S(t− s)vn(s) ds t ∈ I,

where vn : I → E is a Lusin measurable function, integrable in the sense of
Bochner, such that

(4.26)n
vn(t) ∈

(

F (t, xn−1(t)) + εnU
)

∩ UE

(

vn−1(t), d(vn−1(t), F (t, xn−1(t))
)

+ εn
)

t ∈ I,

and εn = ε/2
n+2. Let p0 : I → R and m : I → R be, respectively, given by

p0(t) = d
(

v0(t), F (t, x0(t))
)

m(t) =

∫ t

0
k(s) ds.
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Clearly, by (4.25), p0(t) ≤ ϕε(t) for each t ∈ I, thus

(4.27)

∫ 1

0
p0(t) dt ≤

∫ 1

0
ϕε(t) dt = ε

∫ 1

0

(

k(t)

L+ 1
+ 1

)

dt ≤ 2ε.

Now by virtue of (3.10), for every N ≥ 2 and t ∈ I we have

(4.28)

‖xN (t)− x0(t)‖ ≤
N
∑

n=2

‖xn(t)− xn−1(t)‖+ ‖x1(t)− x0(t)‖

≤
N
∑

n=2

an + ‖x1(t)− x0(t)‖,

where an is given by (3.11). Observe that, in view of (3.11) and (4.27),

(4.29)

N
∑

n=2

an =M

N
∑

n=2

n−2
∑

k=0

εn−2−k
(LM)k

k!

+ ε0M
N
∑

n=2

(LM)n−1

(n− 1)!
+ 2εM

N
∑

n=2

(LM)n−1

(n− 1)!

≤M

(

+∞
∑

k=0

εk

)(

+∞
∑

k=0

(LM)k

k!

)

+ ε0MeLM + 2εMeLM

≤
ε

2
MeLM +

ε

4
MeLM + 2εMeLM < 3εMeLM .

On the other hand, for every t ∈ I we have:

‖x1(t)− x0(t)‖ ≤

∫ t

0
‖S(t− s)‖‖v1(s)− v0(s)‖ ds ≤M

∫ 1

0
‖v1(s)− v0(s)‖ ds.

Since, by (4.26)1, ‖v1(s) − v0(s)‖ ≤ p0(s) + ε1, in view of (4.27) for every t ∈ I
we have

(4.30) ‖x1(t)− x0(t)‖ < 3εM.

Then from (4.28), by virtue of (4.29) and (4.30), for every N ≥ 2 and t ∈ I it
follows that

‖xN (t)− x0(t)‖ < 6εMeLM .

Let x : I → E be the uniform limit of {xN}. As shown in Theorem 3.1, this
limit exists and is a mild solution of the Cauchy problem (Ca,F ). Clearly,

‖x(t)− x0(t)‖ ≤ 6εMeLM t ∈ I.
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Combining the latter inequality and (4.24) gives, for each t ∈ I,

‖x(t)− y(t)‖ ≤ ‖x(t)− x0(t)‖+ ‖x0(t)− y(t)‖ ≤ 6εMeLM + ε ≤ 7εMeLM < σ,

for ε < σ/(7MeLM ). This completes the proof. �

Now consider the Cauchy problem (Da,F ), obtained by (Ca,F ) by letting A = 0.

We associate with (Da,F ) the convexified Cauchy problem

(Da, coF )

{

x′(t) ∈ coF
(

t, x(t)
)

x(0) = a.

By Theorem 4.1, with A = 0, we have the following:

Corollary 4.1. Let (H2)–(H4) be satisfied. Let a ∈ E, and let y : I → E be an

arbitrary solution of the convexified Cauchy problem (Da, coF ). Then, for every
σ > 0, there exists a solution x : I → E of the Cauchy problem (Da,F ) such that
‖x(t)− y(t)‖ ≤ σ for every t ∈ I.
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