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Nearly smooth points and near

smoothness in Orlicz spaces

Ji Donghai, Lü Yanming, Wang Tingfu

Abstract. Nearly smooth points and near smoothness in Orlicz spaces are characterized.
It is worth to notice that in the nonatomic case smooth points and nearly smooth points
are the same, but in the sequence case they differ.

Keywords: Orlicz space, nearly smooth points, near smoothness

Classification: 46E30, 46B20

For a Banach space X , we denote by S(X), B(X) and X∗ the unit sphere, unit
ball and the dual space ofX , respectively. For x ∈ X we write ∇x = {f ∈ S(X∗) :
f(x) = ‖x‖}, i.e. ∇x is the set of all norm-one supporting functionals f at x ∈ X .
In 1991, Banaś [1] introduced the notion of the modulus of near smoothness and
the modulus of near convexity. As refinements of the result of [1], in 1995, Banaś
and Sadarangani [2] introduced the concept of near smoothness and showed that:
For a sequence of Banach spaces {Ei}, if every Ei is near smooth, then c0(Ei)
and lp(Ei) (1 < p < ∞) are both near smooth, too.

Definition. x ∈ S(X) is called a nearly smooth point of X if ∇x is a compact
subset of X∗. X is said to be nearly smooth if every x ∈ S(X) is a nearly smooth
point.

In this note we will characterize nearly smooth points and near smoothness in
Orlicz spaces over a nonatomic finite and over the counting measure.

Let R = (−∞,∞) be the set of all reals, N be the set of all natural numbers
and m the set of all real sequences. Further, let (G,Σ, µ) be a measure space with
a non-negative, finite, atomless and complete measure defined on a σ-algebra Σ.
We denote by L0 the set of all µ-equivalence classes of real valued Σ-measurable
functions defined on G.
A convex even function M : R → [0,+∞) is called an N -function iff

M(u) = 0⇔ u = 0,
M(u)

u
→ ∞ as u → ∞ and

M(u)

u
→ 0 as u → 0.

For every N -function M(u), we define a complementary function N : R →
[0,+∞) by N(v) = maxu>0[u|v| − M(u)], v ∈ R. The function N(v) is also an
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N -function. Moreover, let p(u), q(v) denote the right-hand derivatives of M(u)
and N(v), respectively. We write M(u) ∈ ∆2 (M(u) ∈ ∆2) whenever M(u)
satisfies the ∆2-condition for large u (for small u) (cf. [3]). The functionals

̺M (x) =

∞∑

i=1

M(xi) for x ∈ m

and

̺M (x) =

∫

G
M(x(t)) dµ for x ∈ L0

are modulars on m and L0, respectively (cf. [4]). The space

lM =
{
x ∈ m : ̺M (kx) < ∞ for some k > 0

}

equipped with the so called Luxemburg norm

‖x‖(M) = inf
{

a > 0 : ̺M

(x

a

)

≤ 1
}

or with the Orlicz norm

‖x‖M = inf
k>0

1

k
(1 + ̺M (kx))

is said to be an Orlicz sequence space. A subspace hM ⊂ lM is defined as the set of
all x ∈ m such that ̺M (kx) < ∞ for any k > 0, i.e. hM = {x ∈ m : ̺M (kx) < ∞
for any k > 0}. To simplify the notation, we put

lM = (lM , ‖ · ‖M ), l(M) = (l(M), ‖ · ‖(M)),

h(M) = (h(M), ‖ · ‖(M)), hM = (hM , ‖ · ‖M ).

The Orlicz function spaces LM and L(M) equipped with the Orlicz norm ‖ · ‖M

and the Luxemburg norm ‖ · ‖(M), respectively, and the subspaces EM and E(M)

are defined analogously ([3]).
For x ∈ LM or lM we write

QM (x) = inf
{

c > 0 : ̺M

(x

c

)

< ∞
}

,

k∗(x) = inf {k > 0 : ̺N (p(k|x|)) ≥ 1} ,

k∗∗(x) = sup {k > 0 : ̺N (p(k|x|)) ≤ 1} ,

KM (x) =
[
k∗(x), k∗∗(x)

]
.

A linear functional ϕ ∈ L∗
M (l∗M ) is called singular if ϕ(EM ) = {0} (ϕ(hM ) =

{0}). In this case, we write ϕ ∈ F .
In this paper, the following result from [5] will be used.



Nearly smooth points and near smoothness in Orlicz spaces 723

(1) (Theorem 1.44 in [5]). For any x ∈ LM (or lM ), there exists ϕ ∈ F such
that ‖ϕ‖ = 1 and ϕ(x) = QM (x).

(2) (Theorem 1.54 in [5]). ϕ ∈ F, A ∩ B = φ ⇒ ‖ϕ|A∪B‖ = ‖ϕ|A‖+ ‖ϕ|B‖.

(3) (Theorem 1.76). For x ∈ S(L(M)), y ∈ LN and ϕ ∈ F , we have f = y+ϕ ∈

∇x iff: (i) ̺M (x) = 1; (ii) ‖ϕ‖ = ϕ(x); (iii) x(t)y(t) ≥ 0 and p−(|x(t)|) ≤
k|y(t)| ≤ p(|x(t)|) a.e. on G for some k ∈ KN (y).

(4) (A remark to Theorem 1.76 in [5]). x ∈ S(L(M)) (or x ∈ S(l(M))), QM (x) <

1⇒ ∇x ⊂ S(LN ) (or S(lN )).

(5) (Theorem 1.77 in [5]). For x ∈ S(LM ), y ∈ LN and ϕ ∈ F , we have
f = y+ϕ ∈ ∇x iff: (i) ̺M (y)+ ‖ϕ‖ = 1; (ii) ‖ϕ‖ = ϕ(kx); (iii) x(t)y(t) ≥ 0 and
p−(k|x(t)|) ≤ |y(t)| ≤ p(k|x(t)|) a.e. on G with some k ∈ KM (x).

(6) (A remark to Theorem 1.77 in [5]). x ∈ S(LM ) (or x ∈ S(lM )), QM (kx) <
1⇒ ∇x ⊂ S(L(N)) (or S(l(N))), where k ∈ KM (x).

Theorem 1. x ∈ S(L(M)) is a nearly smooth point of L(M) iff:

(i) QM (x) < 1;
(ii) µ{(t ∈ G : p−(|x(t)|) < p(|x(t)|)} = 0.

Proof: Sufficiency. Follows from the fact that any smooth point is nearly smooth
and from Theorem 2.49 in [5].

Necessity. Suppose that x ∈ S(L(M)) is a nearly smooth point. We first prove

(i) QM (x) < 1.
Otherwise, QM (x) = 1. Write G0 = G and G(j) = {t ∈ G : j − 1 ≤ |x(t)| < j},
j = 1, 2, . . . . Take a partition of G0(j) = G0 ∩ G(j) into G′

0(j) and G′′
0(j) such

that µ(G′
0(j)) = µ(G′′

0(j)), G0(j) = G′
0(j) ∪ G′′

0(j), j = 1, 2, . . . . Denote

G′
0 =

∞⋃

j=1

G′
0(j), G′′

0 =

∞⋃

j=1

G′′
0(j).

Then G′
0 ∪ G′′

0 = G0, G
′
0 ∩ G′′

0 = ∅. Take ϕ0 ∈ F with

1 = ‖ϕ0‖ = ϕ0(x) = QM (x).

Since ‖ϕ0‖ = ‖ϕ0 |G′

0
‖+‖ϕ0 |G′′

0
‖, we may assume without loss of generality that

‖ϕ0 |G′′

0
‖ ≥
1

2
.
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Put x1 = x |G′

0
. In view of ̺M (x1) < ̺M (x) ≤ 1 and the fact that for any η > 0,

there exist j0 ∈ N such that 1+2η
1+η ≥ j

j−1 whenever j > j0, we have

̺M ((1 + 2η)x1) =
∞∑

j=1

∫

G′

0
(j)

M((1 + 2η)x(t)) dµ

≥
∞∑

j=1

∫

G′

0
(j)

M((1 + 2η)(j − 1)) dµ ≥
1

2

∞∑

j>j0

∫

G0(j)
M((1 + η)j) dµ

≥
1

2

∞∑

j>j0

∫

G0(j)
M((1 + η)x(t)) dµ ≥

1

2
(̺M ((1 + η)x)− M((1 + η)j0)µG) =∞.

Hence QM (x1) = 1. Furthermore, there exists ϕ1 = ϕ1 |G′

0
∈ F such that

1 = ‖ϕ1‖ = ϕ1(x1) = QM (x1). It is easy to verify that ϕ1(x) = ϕ1 |G′

0
(x) =

ϕ1(x1) = 1, i.e. ϕ1 ∈ ∇x.
Write G1 = G′

0, G1(j) = G1 ∩ G(j), j = 1, 2, . . . . Repeating the same
argumentation as above, we can get a decompositionG1 = G′

1∪G′′
2 with G′

1∩G′′
2 =

∅, µG′
1 = µG′′

1 , ‖ϕ1 |G′′

1
‖ ≥ 1

2 and QM (x2) = 1, where x2 = x1 |G′

1
= x |G′

1
.

Moreover,
ϕ2(x) = ϕ2(x |G′

1
) = ϕ2(x1 |G′

1
) = ϕ2(x2) = 1.

Now, using induction, repeating the same argumentation, we get sequences
{ϕn}

∞
n=1 ⊂ F and {Gn}

∞
n=0 ⊂ G with G ⊃ G0 ⊃ G1 ⊃ G2 ⊃ . . . , Gn = G′

n ∪G′′
n,

G′
n ∩ G′′

n = ∅, µG′
n = µG′′

n, Gn+1 = G′
n, ϕn = ϕn |Gn

, ‖ϕn |G′′

n
‖ ≥ 1

2 and

1 = ‖ϕn‖ = ϕn(x), n = 0, 1, 2, . . . . For m > n, noticing Gm ⊂ Gn+1 = G′
n, we

have
‖ϕn − ϕm‖ ≥ ‖(ϕn − ϕm) |G′′

n
‖ = ‖ϕn |G′′

n
‖ ≥
1

2
.

Since m, n can be arbitrary, this implies that {ϕn} is not compact. This contra-
diction shows that QM (x) < 1.

Let us now prove (ii). Assume, on the contrary, that (ii) does not hold. Since
the set of the discontinuous points of p(u) is at most countable, there exist a point
r of discontinuity of p(u) such that

µF 0 = µ{t ∈ G : |x(t)| = r} > 0.

Without loss of generality, we can assume that x(t) ≥ 0. By (4), QM (x) < 1 ⇒
∇x ⊂ S(LN ). Thus, by (3) we have ̺N (p−(x(t))) < +∞. Take a partition
of F 0 into disjoint subsets F 1

1 , F 1
2 of equal measure. Divide F 1

1 and F 1
2 into

disjoint, equi-measure subsets F 2
1 , F 2

2 and F 2
3 , F 2

4 , respectively. Continue this

process, generally, divide Fn−1
i into disjoint, equi-measure subsets Fn

2i−1, Fn
2i,

(n = 1, 2, . . . , i = 1, 2, . . . 2n−1). Denote

zn(t) = p−(x(t))
∣
∣
∣
G\F 0

+ p−(r)
∣
∣
∣S
2n−1

i=1
F n

2i−1

+ p(r)
∣
∣
∣S
2n−1

i=1
F n

2i−1

(n = 1, 2, . . . ).
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Obviously, zn(t) ∈ LN and ‖zn‖N ≡ k (n = 1, 2, . . . ) for some constant k.
Denoting

yn =
1

k
zn,

we have yn ∈ S(LN ), n = 1, 2, . . . . Moreover,

1 ≥ 〈x, yn〉 =
1

k
〈x, zn〉 =

1

k
(̺M (x) + ̺N (zn)) =

1

k
(1 + ̺N (kyn)) ≥ ‖yn‖N ≥ 1.

This implies that 〈x, yn〉 = 1, i.e. yn ∈ ∇x, n = 1, 2, . . . . Obviously, we have

‖yn − ym‖N =
1

k
(p(r) − p−(r))

µF 0

2
M−1

(
2

µF 0

)

, m 6= n.

Hence {yn}
∞
n=1 is not compact and this contradiction completes the proof of

Theorem 1. �

Corollary 1. L(M) is nearly smooth iff M ∈ ∆2 and p(u) is continuous on

[0,+∞).

Theorem 2. x ∈ S(LM ) is a nearly smooth point of L(M) iff ̺N (p−(kx)) = 1

or QM (kx) < 1 and ̺N (p(kx)) = 1, for some k ∈ KM (x).

Proof: Sufficiency. Follows from Theorem 2.5 in [5].

Necessity. Without loss of generality, assume that x(t) ≥ 0. Suppose that the
necessity condition of the theorem does not hold. Only the following two cases
need to be considered.

(I) ̺N (p−(kx)) < 1, QM (kx) = 1.

From QM (kx) = 1, repeating the same argumentation as in the proof of the
necessity of condition (i) in Theorem 1, we obtain a sequence {ϕn}∞n=0 ⊂ F with
1 = ‖ϕn‖ = ϕn(kx) = QM (kx) and

‖ϕn − ϕm‖ ≥
1

2
, m 6= n, m, n = 1, 2, . . . .

Denote fn = (p−(kx) + (1− ̺N (p−(kx)))ϕn. Since
̺N (p−(kx)) + ‖(1 − ̺N (p−(kx)))ϕn‖ = 1, (1 − ̺N (p−(kx)))ϕn(kx) = ‖(1 −
̺N (p−(kx)))ϕn‖ and p−(kx(t)) ≤ p(kx(t)). By (5), {fn} ⊂ ∇x and ‖fm − fn‖ ≥
1
2 (1 − ̺N (p−(kx))), m 6= n, m, n = 1, 2, . . . . Hence ∇x is not compact.

(II) ̺N (p−(kx)) < 1 < ̺N (p(kx)).

Denote Fi = {t ∈ G : kx(t) = ri}, i = 1, 2, . . . , where {ri} is the set of all of
discontinuity points of p(u). Take a partition of Fi into F ′

i , F
′′
i in such a way that

y(t) = p−(kx(t))
∣
∣
∣
G\
S

i
Fi

+
∞∑

i=1

(

p−(ri)
∣
∣
∣
F ′

i

+ p(ri)
∣
∣
∣
F ′′

i

)

with ̺N (y) = 1.
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Without loss of generality we may assume that µF ′
1 ≥ µF ′′

1 > 0. Take E0 ⊂ F1

with µE0 = 2F ′′
1 .

For E0, repeat the same partition as in the proof of the necessity of condition
(ii) in Theorem 1 and define

yn(t) = y(t)
∣
∣
∣
G\E0

+ p−(r1)
∣
∣
∣S
2n−1

i=1
En

2i−1

+ p(r1)
∣
∣
∣S
2n−1

i=1
En

2i

.

Obviously, ̺N (yn) = ̺N (y) = 1, whence {yn} ⊂ ∇x, n = 1, 2, 3, . . . . Moreover,
we have

‖ym − yn‖(N) = (p(r1)− p−(r1))
1

N−1
(

2
µE0

) whenever m 6= n, m, n = 1, 2, . . . .

Hence ∇x is not compact. This contradiction completes the proof. �

Corollary 2. LM is nearly smooth iff M ∈ ∆2 and p(u) is continuous on [0,+∞).

For Orlicz function spaces, we know that smoothness and near smoothness are
equivalent. But for Orlicz sequence spaces, these properties differ very much.

Theorem 3. x ∈ S(l(M)) is a nearly smooth point of l(M) iff (i) QM (x) < 1,

(ii) QN (w) = 0, where w = (p(|x(j)|) − p−(|x(j)|))
∞
j=1 ∈ m.

Proof: Necessity. Denote x0 = x. If (i) is not true, then QM (x
0) = 1.

Take k′0 = 0. Since
∑

i≥k′

0
M((1 + 1)x0(i)) = ∞, there exists k1 > k′0 such

that
∑k1

i=k′

0
+1

M((1 + 1)x0(i)) ≥ 1. By
∑

i>k1
M((1 + 1)x0(i)) = ∞, we can

choose k′1 > k1 such that
∑k′

1

i=k1+1 M((1 + 1)x0(i)) ≥ 1. Since
∑∞

i>k′

1
M((1 +

1
2 )x

0(i)) =∞, we can find k2 > k′1 such that
∑k2

i=k′

1
+1

M((1 + 1
2 )x

0(i)) ≥ 1. By
∑∞

i>k2
M((1 + 1

2 )x
0(i)) = ∞, we can take k′2 > k2 such that

∑k′

2

i=k2+1 M((1 +
1
2 )x

0(i)) ≥ 1. Using induction, we can get a sequence k0 < k1 < k′1 < k2 < k′2 <
. . . , satisfying

kn∑

i=k′

n−1
+1

M
((

1 +
1

n

)

x0(i)
)

≥ 1,

k′

n∑

i=kn+1

M
((

1 +
1

n

)

x0(i)
)

≥ 1, (n = 1, 2, . . . ).

Put

x0
1(i) =

{
x0(i), k′n < i ≤ kn+1 (n = 0, 1, 2, . . . ),

0 otherwise

and

x0
2(i) =

{
x0(i), k′n < i ≤ k′n (n = 1, 2, . . . ),

0 otherwise.
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Then x0 = x0
1 + x0

2, supp x0
1 ∩ supp x0

2 = φ, and for any τ > 0

̺M ((1 + τ)x0
2) =

∞∑

n=1

k′

n∑

i=kn+1

M
((

1 +
1

n

)

x(i)
)

=∞.

So QM (x
0
2) = 1. For the same reason, QM (x

0
1) = 1. By (1), we can find ϕ0 ∈ F

with 1 = ‖ϕ0‖ = ϕ0(x) = QM (x). Noticing that 1 = ‖ϕ0‖ = ‖ϕ0 |supp x0
1
‖ +

‖ϕ0 |supp x0
2
‖, we can assume that ‖ϕ0 |supp x0

2
‖ ≥ 1

2 .

Denoting x1 = x0
1, we get QM (x1) = QM (x

0
1) = 1. Repeating the same

argumentation, we can get x1
1, x1

2 ∈ l(M) such that x1 = x1
1 + x1

2, supp x1
1 ∩

supp x1
2 = φ and QM (x

1
1) = QM (x

1
2) = 1. Take ϕ1 ∈ ∇x1 such that ϕ1 =

ϕ1 |supp x1 , ϕ1(x1) = QM (x1) = 1. Then ϕ1(x) = ϕ1(x |supp x1) = ϕ1(x
0
1) =

ϕ1(x1) = 1, and so ϕ1 ∈ ∇x.
Since 1 = ‖ϕ1‖ = ‖ϕ1|supp x1

1
‖+‖ϕ1|supp x1

2
‖, we can assume that ‖ϕ1|supp x′

2
‖

≥ 1
2 . Denoting x2 = x1

1, and repeating the same argumentation by induction, one
can find a sequence {ϕn}∞n=0 ⊂ F and a sequence {xn}∞n=1 ∈ l(M) such that x

n =

xn
1 + xn

2 , x
n = xn−1

1 , supp xn
1 ∩ supp xn

2 = φ, ϕn = ϕn |supp xn = ϕn |supp xn−1

1

,

‖ϕn |supp xn

2
‖ ≥ 1

2 , ϕn ∈ ∇x, n = 1, 2, . . . . It is easy to verify that

‖ϕm −ϕn‖ ≥ ‖(ϕm −ϕn) |supp xn

2
‖ = ‖ϕn |supp xn

2
‖ ≥
1

2
(m > n, n = 1, 2, . . . ),

i.e. {ϕn}∞n=1 is not compact.

Now we prove that (ii) is necessary. Otherwise, there exists ε0 > 0 such that
QN (w) > ε0. Take a sequence {mn} with m1 < m2 < m3 < . . . of positive
integers such that

‖(0, 0, . . . , 0, w(mn + 1), . . . , w(mn+1), 0, . . . )‖N > ε0, (n = 1, 2, . . . ).

Put

zn = (p−(x(1)), . . . , p−(x(mn)), p(x(mn + 1)), . . . ,

p(x(mn+1)), p−(x(mn+1 + 1)), . . . )

kn = ‖zn‖N (n =, 2, . . . ).

It is easy to prove that yn =
zn

kn
∈ ∇x and kn = KN (yn) n = 1, 2, . . . . From

QM (x) < 1 we know that there exist τ > 0 such that ̺M ((1 + τ)x) < ∞. By the
inequality

M((1 + τ)u) ≥

∫ (1+τ)u

u
p(s) ds ≥ τup(u) ≥ τN(p(u)),
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we have ̺N (p(x)) < ∞. By kn = ‖zn‖N = 1 + ̺N (knyn) ≤ 1 + ̺N (p(x)), {kn}
is a bounded set. So we can assume that limn→∞ kn = k (if necessary, we can
choose a convergent subsequence of {kn} and denote it still by {kn}). Therefore,
for n 6= t,

∥
∥yn − yt

∥
∥

N
≥

∥
∥
∥

(

0, . . . , 0,
p(x(mn + 1))

kn
−

p−(x(mn + 1))

kt
· · · ,

p(x(mn+1))

kn
−

p−(x(mn+1))

kt
, 0, . . .

)∥
∥
∥

N

≥
∥
∥
∥

(

0, 0, . . . , 0,
[p(x(mn + 1))− p−(x(mn + 1))]

kn
· · · ,

[p(x(mn+1))− p−(x(mn+1))]

kn
, 0, · · ·

)∥
∥
∥

N

−
∣
∣
∣
1

kn
−
1

kt

∣
∣
∣

∥
∥(0, 0, . . . , 0, p−(x(mn + 1)), . . . , p−(x(mn+1)), 0, . . . )

∥
∥

N

≥
ε0

kn
−

∣
∣
∣
1

kn
−
1

kt

∣
∣
∣

∥
∥p−(x)

∥
∥

N
→

ε0

k
(n, t → ∞),

i.e. ∇x is not compact. This contradiction completes the proof of the necessity.

Sufficiency. From the condition (i) QM (x) < 1, we have ∇x ⊂ lN . Taking
any sequence {yn} ⊂ ∇x with kn ∈ KN (yn), we have kn = 1 + ̺N (knyn) ≤
1 + ̺N (p(x)) < ∞. So we can assume that kn → k (if necessary, we can take
a convergent subsequence of {yn}). Using the diagonal method, we can get a
subsequence of {yn} (still denoted by {yn}) such that

lim
n→∞

yn(j) = y(j) (j = 1, 2, . . . ).

Denote ej = (0, . . . , 0,
j
1, 0, . . . ), j = 1, 2, . . . . By (ii), for any ε > 0, there exists

j0 such that ∥
∥
∥

∑

j>j0

(p(x(j)) − p−(x(j)))ej

∥
∥
∥

N
<

ε

2k
.

For m, n large enough, we have

∥
∥yn − ym

∥
∥

N
≤

∥
∥
∥

j0∑

j=1

(yn(j)− ym(j))ej

∥
∥
∥

N
+

∥
∥
∥

∑

j>j0

(yn(j)− ym(j))ej

∥
∥
∥

N

<
ε

2
+

∥
∥
∥

∑

j>j0

∣
∣
∣
p(x(j))

kn
−

p−(x(j))

km

∣
∣
∣ej

∥
∥
∥

N

→
ε

2
+
1

k

∥
∥
∥

∑

j>j0

(p(x(j)) − p−(x(j)))ej

∥
∥
∥

N
< ε,

i.e. {yn} is a Cauchy sequence in ∇x. Hence, ∇X is compact �

For the Orlicz sequence space l(M), the conditions for the near smoothness and

smoothness are different.
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Corollary 3. l(M) is nearly smooth iff: (i) M ∈ ∆2;

(ii)

lim
u→0

N(λ[p(u)− p−(u)])

M(u)
< ∞ for any λ > 1.

Proof: Sufficiency. For x ∈ S(l(M)), from M ∈ ∆2 we know that QM (x) = 0 <

1. For any λ > 0, by condition (ii), ̺N (λ(p(x)−p−(x))) < ∞. Thus, QN (w) = 0.
Hence, by Theorem 3, we deduce that x is a nearly smooth point.

Necessity. If (i) is not true, there exists x ∈ S(l(M)) with QN (x) = 1. By

Theorem 3, x is not a nearly smooth point. If (ii) is not true, there exists λ > 1 and
a sequence {un} with un ↓ 0 and N(λ(p(un)− p−(un))) > 2n+1M(un). Without

loss of generality, we can assume that M(un) < 1
2n+1 . Take a sequence {mn}

with 1
2n+1 < mnM(un) ≤

1
2n and u0 ≥ 0 with M(u0) +

∑∞
n=1 mnM(un) = 1.

Put

x =
(

u0,

m1
︷ ︸︸ ︷
u1, . . . , u1,

m2
︷ ︸︸ ︷
u2, . . . , u2, . . .

)

.

Then ̺M (x) = 1 and ‖x‖(M) = 1. On the other hand,

̺N (λw) ≥
∞∑

n=1

mnN(λ(p(un)− p−(un))) ≥
∞∑

n=1

mn2
n+1M(un) =∞.

This implies that QN (w) ≥
1
λ > 0. By Theorem 3, x is not a nearly smooth

point. �

Theorem 4. x ∈ S(lM ) is a nearly smooth point iff: (i) ̺N (p−(kx)) = 1 or (ii)
QM (kx) < 1 and ̺N (p(kx)) = 1 or (iii) QM (kx) < 1 and QN (w) = 0, where
k ∈ KM (x) and w = (p(k|x(1)|)− p−(k|x(1)|), p(k|x(2)|) − p−(k|x(2)|), . . . ).

Proof: Sufficiency. It is enough to deal with the following three cases:

(I) ̺N (p−(kx)) = 1;
(II) QM (kx) < 1, ̺N (p(kx)) = 1;
(III) QM (kx) < 1 and QN (w) = 0.

For (I) or (II), in view of Theorem 2.55 in [5], x is a smooth point and also a
nearly smooth point. For case (III), we can proceed analogously as in the proof
of the sufficiency of Theorem 3.

Necessity. If ̺N (p−(kx)) < 1 and QM (kx) = 1, repeating the proof of the
necessity of the first case in Theorem 2, we get a contradiction. So, if the condition
in theorem were not necessary, then

̺N (p−(kx)) < 1, QM (kx) < 1, QN (w) > ε0 > 0 and ̺N (p(kx)) 6= 1.

But Q(kx) < 1 ⇒ ∇x ⊂ l(N), hence ̺N (p(kx)) > 1. Suppose, without loss of

generality, that x(j) ≥ 0 (j = 1, 2, . . . ). In view of the fact that QM (kx) < 1 ⇒
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̺N (p(kx)) < ∞, we can take j′0, j′′0 > 0 such that

̺N (p−(kx)) +
∑

j>j′
0
N(p(kx(j))) < 1,

∑j′′
0

j=1 N(p(kx(j))) > 1. Denoting j0 =

max{j′0, j
′′
0}, we have

j0∑

j=1

N(p(k|x(j)|)) +
∑

j>j0

N(p−(kx(j))) > 1,

j0∑

j=1

N(p−(kx(j))) +
∑

j>j0

N(p(kx(j))) < 1.

By QN (w) > ε0, we can find a sequence {jn} ↑ ∞ with j1 > j0, satisfying

∥
∥
∥

jn+1∑

j=jn+1

w(j)ej

∥
∥
∥

(N)
> ε0 (n = 1, 2, . . . ).

Define {yn} by:
yn(j) = p(kx(j)) (jn < j ≤ jn+1), yn(j) = p−(kx(j)) (j0 < j ≤ jn or j > jn+1)
and p−(kx(j)) ≤ yn(j) ≤ p(kx(j)) (1 ≤ j ≤ j0), such that ̺N (yn) = 1, n =
1, 2, . . . . Then obviously {yn} ⊂ ∇x. For m 6= n, m, n = 1, 2, . . . , we have

∥
∥ym − yn

∥
∥

(N) ≥
∥
∥
∥

jn+1∑

j=jn+1

(p(kx(j)) − p−(kx(j)))ej

∥
∥
∥

(N)
> ε0,

i.e. {yn} ⊂ ∇x is not compact. This contradiction completes the proof of the
theorem. �

Corollary 4. lM is nearly smooth iff: (i) M ∈ ∆2;

(ii)

lim
u→0

N(λ(p(u)− p−(u)))

up(u)
< ∞ for any λ > 0.

Proof: Sufficiency. For x ∈ S(lM ), M ∈ ∆2 implies QM (kx) = 0 < 1 and for
any λ > 1, we have, by the assumption,

̺N (λw) =

∞∑

i=1

N(λ(p(kx(i)) − p−(kx(i)))) ≤ D

∞∑

i=1

k|x(i)|p(k|x(i)|)

≤ D(̺M (kx) + ̺N (p(kx))) < ∞.

Hence QN (w) = 0. By Theorem 4, we conclude that x is a nearly smooth point.
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Necessity. If M /∈ ∆2, it is easy to construct x ∈ S(lM ) with ̺N (p(kx)) < 1
and QM (kx) = 1, where k ∈ KM (x). By Theorem 4, x is not a nearly smooth
point.
If (ii) were not true, there would exist λ > 1 and un ↓ 0 such that

N(λ(p(un)− p−(un))) > 2n+1unp(un),

where un are the points of discontinuity of p(u). Without loss of generality, we
can assume that

unp(un) <
1

2n+1
.

Take {mn} with
1

2n+1 < mnunp(un) ≤
1

2n , n = 1, 2, . . . . Then

∞∑

i=1

mnM(un) < 1,
∞∑

i=1

mnN(p(un)) < 1.

Denote

u0 = Sup
{

s > 0 : N(p(s)) +m1N(p−(u1)) +
∑

n≥2

mnN(p(un)) ≤ 1
}

,

k = 1 +M(u0) +
∞∑

i=1

mnM(un),

x =
1

k

(

u0,

m1
︷ ︸︸ ︷
u1, . . . , u1,

m2
︷ ︸︸ ︷
u1, . . . , u1, . . .

)

.

Noticing that ̺N (p−(kx)) < 1, ̺N (p(kx)) > 1, we have k ∈ KM (x). So

‖x‖M =
1

k
(1 + ̺M (kx)) = 1.

On the other hand,

̺N (λw) >
∑

n≥2

mnN(λ(p(un)− p(un))) >
∑

n≥2

mn2
n+1unp(un) =∞,

i.e. QN (w) ≥
1
λ > 0. By Theorem 4, x is not a nearly smooth point. �

Remark. If M ∈ ∆2, then there exists D > 0 such that

M(u) ≤ up(u) ≤ DM(u).

So, the conditions of Corollary 3 and Corollary 4 are equivalent. This shows
that the near smoothness of l(M) and lM are equivalent. But recall that the

smoothness of l(M) and lM are not equivalent (see [5] and [7]).
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