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Nearly smooth points and near
smoothness in Orlicz spaces

JI DONGHAI, LU YANMING, WANG TINGFU

Abstract. Nearly smooth points and near smoothness in Orlicz spaces are characterized.
It is worth to notice that in the nonatomic case smooth points and nearly smooth points
are the same, but in the sequence case they differ.
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Classification: 46E30, 46B20

For a Banach space X, we denote by S(X), B(X) and X* the unit sphere, unit
ball and the dual space of X, respectively. For x € X we write V, = {f € S(X¥) :
f(z) = ||z||}, i-e. Vg is the set of all norm-one supporting functionals f at € X.
In 1991, Banas$ [1] introduced the notion of the modulus of near smoothness and
the modulus of near convexity. As refinements of the result of [1], in 1995, Bana$
and Sadarangani [2] introduced the concept of near smoothness and showed that:
For a sequence of Banach spaces {E;}, if every E; is near smooth, then co(FE;)
and IP(E;) (1 < p < o0) are both near smooth, too.

Definition. z € S(X) is called a nearly smooth point of X if V, is a compact
subset of X*. X is said to be nearly smooth if every z € S(X) is a nearly smooth
point.

In this note we will characterize nearly smooth points and near smoothness in
Orlicz spaces over a nonatomic finite and over the counting measure.

Let R = (—00,00) be the set of all reals, N be the set of all natural numbers
and m the set of all real sequences. Further, let (G, X, 1) be a measure space with
a non-negative, finite, atomless and complete measure defined on a o-algebra X.
We denote by LY the set of all pu-equivalence classes of real valued Y-measurable
functions defined on G.

A convex even function M : R — [0, +00) is called an N-function iff
M (u) M (u)

— o0 as u—oo and ——~= — 0 as u— 0.
u

M(u)=0<u=0,

For every N-function M(u), we define a complementary function N : R —
[0, +00) by N(v) = max,so[ulv]| — M(u)], v € R. The function N(v) is also an

This subject is supported by NSFC and NSFH.



722 Ji Donghai, Lii Yanming, Wang Tingfu

N-function. Moreover, let p(u), g(v) denote the right-hand derivatives of M (u)
and N(v), respectively. We write M(u) € Ay (M(u) € Ay) whenever M (u)
satisfies the Ag-condition for large u (for small u) (cf. [3]). The functionals

o0
om(z) = ZM(&:Z) for x em
1=1

and
/ M(z(t))du for z € L0

are modulars on m and LY, respectively (cf. [4]). The space
Iy ={x €m:op(kx) < oo for some k> 0}

equipped with the so called Luxemburg norm

il ar) = inf{a >0: oy (g) < 1}

or with the Orlicz norm
1
= inf —(1 k
lillar = uf 21+ oy (k)

is said to be an Orlicz sequence space. A subspace hp; C I,y is defined as the set of
all © € m such that gps(kz) < oo for any k > 0, i.e. hyy = {z € m: gpr(kz) < 00
for any k > 0}. To simplify the notation, we put

= (lany 11 lany)s

I = (s - )y Lo
hary = (hanys - llany)s par = (has - [l ag)-

The Orlicz function spaces Lys and L,y equipped with the Orlicz norm || - ||
and the Luxemburg norm | - [, respectively, and the subspaces Epy and E(yp)

are defined analogously ([3]).
For © € Ly or lj; we write

Qu(z) = inf{c>0:gM (%) <oo},

k*(z) = inf {k > 0: on(p(kl|2])) > 1},
K () = Sup{k >0: on(p(klz])) <1},
Ky (z) = [K*(2), k" (x)] .

A linear functional ¢ € L}, (I3,) is called singular if o(Eyr) = {0} (¢(hyp) =
{0}). In this case, we write ¢ € F'.
In this paper, the following result from [5] will be used.
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(1) (Theorem 1.44 in [5]). For any x € Ljs (or lyy), there exists ¢ € F such
that [|¢l| = 1 and ¢(2) = Qs ().

(2) (Theorem 1.54in [5]). ¢ € F,ANB = ¢ = [lplausll = #lall + ¢l 5]l

(3) (Theorem 1.76). For z € S(L(yr)), y € Ly and p € F, we have f =y+¢p €
Vo it () o(x) = 1 (i) ol = o(e); (i) 2(2)y(t) > 0 and p_(2(t)]) <
Ely(t)] < p(Jx(t)]) a.e. on G for some k € Kn(y).

(4) (A remark to Theorem 1.76 in [5]). = € S(L(ay)) (or = € S(l(ar))), @umr(z) <
1=V, C S(LN) (OI‘ S(ZN )

(5) (Theorem 1.77 in [5]). For z € S(Lps), vy € Ly and ¢ € F, we have
f=y+ee Vi (i) on() +llell =1; () [lell = e(kz); (i) x(t)y(t) = 0 and
p—(klz(t)]) < |y(t)| < p(k|z(t)]) a.e. on G with some k € Kps(x).

(6) (A remark to Theorem 1.77 in [5]). = € S(Lps) (or z € S(Ipr)), Qu(kx) <
1=V, C S(L(N)) (OI‘ S(Z(N))), where k € KM(:E)

Theorem 1. z € S(L(y)) is a nearly smooth point of L,y iff:

(i) Qu(z) <1;
(i) p{(t € G:p-(lz@®)]) <p(z(®)])} = 0.

PRrOOF: Sufficiency. Follows from the fact that any smooth point is nearly smooth
and from Theorem 2.49 in [5].

Necessity. Suppose that x € § (L( M)) is a nearly smooth point. We first prove

(i) @um(z) <1.

Otherwise, Qps(z) = 1. Write Go = G and G(j) = {t € G : j — 1 < |[z(t)| < j},
j =1,2,... . Take a partition of Go(j) = Go N G(j) into G{(j) and G{(j) such
that JUGh(j)) = p(GA())> Goli) = Gy(7) UGH(j), § = 1,2, . - Denote

o0 (o]
Go=J Goli), 68 = Go0).
j=1 =1
Then Gy U Gjj = Go, G{ NGy = 0. Take g € F with
1= |lpoll = ¢o(z) = Qpr(x).

Since |0l = |l¥o |G6 |+ lleo] Gy I, we may assume without loss of generality that

N =

leolayll =

723
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Put 1 = 3:|G/ . In view of ops(z1) < QM( ) <1 and the fact that for any n > 0,

there exist jo € N such that 1+277 > 7 7 Whenever j > jo, we have
m((1+2n)z1) = Z M((1+2n)z(t)) dp
Go(9)
oS [ MG - Dydez Z M((1+n)j) dp
j=1 0 () ]>]0 Go(j)
1 1 )
1y oy M@ 0 di > 5 oar((3 1)) = MG+ ) =
j>jo " OV

Hence Qps(z1) = 1. Furthermore, there exists ¢1 = g01|66 € F such that
1= llo1ll = ¢1(21) = Qu(x1). It is easy to verify that ¢1(z) = ¢1]g (v) =
@1(:171) =1,ie 1 € V.

Write G1 = Gy, G1(j) = G1 N G(j), j = 1,2,... . Repeating the same
argumentation as above, we can get a decomposition G1 = G} UG with GiNGY =
0, uG| = pGY, ||<p1|G/1/|| > % and Qpr(z2) = 1, where xz9 = 331|G’1 = 3:|G/1.
Moreover,

p2(x) = p2(z] @) = p2(21gy) = pa(w2) = L.

Now, using induction, repeating the same argumentation, we get sequences
{on}oe, C F and {Gp}52 0CGw1thG3G03G13G23 ., Gn =G}, UGH,
G, NGy =0, uGy, = pGy, Gny1 = Gy, vn = onla,, lenlarll > % and

!
n

1= |lpnll = ¢n(x), n=0,1,2,... . For m > n, noticing Gy, C Gp+1 = G,
have 1
lon = emll = ll(en = em) eyl = lenlayll = 5 -

Since m, n can be arbitrary, this implies that {¢y} is not compact. This contra-
diction shows that Qps(z) < 1.

Let us now prove (ii). Assume, on the contrary, that (ii) does not hold. Since
the set of the discontinuous points of p(u) is at most countable, there exist a point
r of discontinuity of p(u) such that

pFO = pu{t e G:|z(t) =7} > 0.
Without loss of generality, we can assume that z(¢) > 0. By (4), Qu(z) <1 =
Ve C S(Ly). Thus, by (3) we have on(p—(z(t))) < +oo. Take a partition
of FY into disjoint subsets Fll, F21 of equal measure. Divide Fll and F21 into
disjoint, equi-measure subsets F12, F22 and F32, F42, respectively. Continue this
process, generally, divide Fi"_1 into disjoint, equi-measure subsets F3;_;, F3},
(n=1,2,..., i=1,2,...2"" 1), Denote

n(t) = p—(x(t)) +p-(r) +p(r)

el 1 (n=1,2,...).
G\F? Uz Fy Uz Fgy o
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Obviously, zn(t) € Ly and |znl|ly = k (n = 1,2,...) for some constant k.
Denoting

1

yn - kZTLv

we have yp, € S(Ly), n=1,2,... . Moreover,
1 1 1
12 () = (o 2n) = 1 (0n1(2) + on () = (1 + o (kym) = lymln 2 1.
This implies that (x,yn) =1, i.e. yp € Vg, n=1,2,... . Obviously, we have
1 FO L/ 2
I = vl = £ 60 = p-0) 207 (5 ) mt

Hence {yn}o2; is not compact and this contradiction completes the proof of
Theorem 1. O
Corollary 1. L is nearly smooth iff M € Ay and p(u) is continuous on
[0, +00).

Theorem 2. z € S(Lyy) is a nearly smooth point of Ly iff on(p—(kz)) = 1
or Qpr(kx) <1 and on(p(kx)) = 1, for some k € Kp(z).

ProoOF: Sufficiency. Follows from Theorem 2.5 in [5].

Necessity. Without loss of generality, assume that x(t) > 0. Suppose that the
necessity condition of the theorem does not hold. Only the following two cases
need to be considered.

@ on(p-(kx)) <1, Qu(kx) =1

From Q) (kz) = 1, repeating the same argumentation as in the proof of the

necessity of condition ( ) in Theorem 1, we obtain a sequence {¢p}>2, C F' with

1= |lenll = pn(kz) = Qp(kx) and
1
llon — @mll > 3 m#n, mn=1,2,....

Denote fp, = (p—(kz) + (1 — on(p—(k
N(p—(k2)) + |1 — on (p—(kx)))en
p(k

1,

x) ) . Since

= (1 — on(p—(kx)))pn(kz) = [|(1 -
a(t )) Yy (5); {fn} C Va and |[fm — ful =
2,.

Hence Vg is not compact.

on (p—(kx)))en| and p—(kx(t)) <
%(1 - QN( _(k(E))), m 7é n, m,n =
D) on(p-(kz)) <1 < on(p(kz)).
Denote F; = {t € G : kx(t) = r;}, i = 1,2,..., where {r;} is the set of all of
discontinuity points of p(u). Take a partition of Fj into F, F!" in such a way that

o0

y(0) =p- ()] o, D0 (p )], +000)] ,) with on() =1
it g i i
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Without loss of generality we may assume that pF] > pFy > 0. Take EYc Ry
with uE9 = 2F/.

For EY, repeat the same partition as in the proof of the necessity of condition
(ii) in Theorem 1 and define

yn(t):y(t) G\E0+p ( ) U2n 1E£LZ 1+ ( ) U27L 1

Obviously, on(yn) = on(y) = 1, whence {yn} C Vz, n =1,2,3,... . Moreover,
we have

1
lym _ynH(N) = (p(r1) —1)_(7“1))_172 whenever m #n, m,n=1,2,... .
N~ (o)
Hence V is not compact. This contradiction completes the proof. (I

Corollary 2. Ly is nearly smooth iff M € Ag and p(u) is continuous on [0, +00).

For Orlicz function spaces, we know that smoothness and near smoothness are
equivalent. But for Orlicz sequence spaces, these properties differ very much.

Theorem 3. = € S(l()y)) is a nearly smooth point of Iy iff (i) Qu(z) <

(i) @n(w) =0, where w = (p(|z(5)]) — p-(lz(1)])jZ, € m-

PROOF: Necessity. Denote 20 = z. If (i) is not true, then Q;(z%) = 1.

Take kjy = 0. Since Zi>k6 M((1 + 1)2%(i)) = oo, there exists k1 > k{ such

k . .

that > 1k,+1M((1 + 1)z 0(1)) > 1. By Y jup, M((1+1)2°(i)) = oo, we can

choose k} > ki such that ZZ ppr1 M+ 1) 0(i)) > 1. Since Zz>k’ M1+

%)xo(z)) o0, we can find kg > k] such that Ek2k,+1 M((1+ —) 0(i)) > 1. By
ok, M((1+ $)20(i)) = oo, we can take ky > ko such that ZZ rpr1 M((1+

%)xo (1)) > 1. Using induction, we can get a sequence ko < k1 < kj < kg < kf) <

, satisfying
o 1 n 1
AN 0/, V20 =
3 M(<1+ n):z: (z)) >1 3 M((1+ n)x (z)) >1, (n=1,2,...).
i=k],_;+1 i=kp+1
Put 0/ , )
0,0 [ 200@), kyp<i<kpy1 (n=0,1,2,...),
z (i) = .
0 otherwise
and

N 200G), kK, <i<k, (n=1,2,...),
zy(i) = .
0 otherwise.
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Then 20 = 3:(1) + 3:(2), supp 3:(1) N supp 3:(2) = ¢, and for any 7 > 0

(1 4+ 7)2d Z Z M((1+ )())

n=1i=k,+1

So Qs (29) = 1. For the same reason, Qs (z9) = 1. By (1), we can find ¢g € F

with 1 = leoll = ¢o(x) = Qu(x). Noticing that 1 = [lpoll = llvolsupp 201l +
1
110 [ supp ng, we can assume that [0, wg” >

Denoting 71 = 29, we get Qpr(z1) = Qu(29) = 1. Repeating the same
argumentation, we can get x%,x% € Z(M) such that x; = ,T% + x%, supp x% N
supp 73 = ¢ and Qu(z}) = Qp(2d) = 1. Take 1 € Vg, such that p; =
901|supp a1s P1(71) = Qp(w1) = 1. Then ¢1(x) = (Pl(xlsupp z) = (Pl(x?) =
w1(x1) =1, and so 1 € Vy.

Since 1 = 1| =191 spp o191 supp o e can assume et 1 s |

L. Denoting 22 = x%, and repeating the same argumentation by induction, one

can ﬁnd a sequence {gon} ~ o C I and a sequence {z"}72; € [()y) such that 2" =

] +of, 2" = xl , supp ] Nsupp 5 = ¢, Yn = ©n|supp 27 = Pn |Supp 2L
llen | supp 2z Il > L pn €Va,m=12,...1tis easy to verify that

1
l[om = enll = [[(em — en) [ supp wQ” = [ln [ supp wQ” 2 ) (m>n, n=1,2,...),

ie. {on}o2 is not compact.

Now we prove that (ii) is necessary. Otherwise, there exists £g > 0 such that
Qn(w) > go. Take a sequence {mp} with m; < mg < mg < ... of positive
integers such that

[1(0,0,...,0,w(my +1),...,w(Mp+1),0,...)||n >0, (R=1,2,...).
Put
zn = (p—(z(1), ..., p—(x(ma)), p(x(mn + 1)), ...,
p(@(mn41)), p—(@(mng1 +1)),...)
It is easy to prove that y, = 7% € V; and ky = Kny(yn) n = 1,2,... . From

Qup(x) < 1 we know that there exist 7 > 0 such that om (14 7)x) < co. By the
inequality

(1+7)
M((1+)u) > / p(s)ds > Tup(u) > 7N (p(u)),
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we have o (p(2)) < 00. By kn = [2n[nv = 1+ on(knyn) < 1+ on(p(2)), {kn}
is a bounded set. So we can assume that limy, .~ kn, = k (if necessary, we can
choose a convergent subsequence of {ky,} and denote it still by {ky}). Therefore,
for n # ¢,

lyn — we|l y > H(o,...,o,p(x(”;”;fl)) _p—(x(";:“)) L
p(a(mn+1))  p—(2(mnt1)) )H
™ P 0|
[p(z(mn+1)) — p—(x(Mmp+t1))]
o)
_ é_klt‘ 1(0,0,...,0,p—(w(mn + 1), p—(2(mn11)),0,...)||
€ 1 1 €
> 2 e ll-@lly = F k= o0),

i.e. Vg is not compact. This contradiction completes the proof of the necessity.

Sufficiency. From the condition (i) Qps(z) < 1, we have V, C ly. Taking
any sequence {yn} C Vg with k, € Ky(yn), we have k, = 1 4+ on(knyn) <
14 on(p(z)) < oco. So we can assume that k, — k (if necessary, we can take
a convergent subsequence of {yn}). Using the diagonal method, we can get a
subsequence of {y,} (still denoted by {yn}) such that

Jm oy () =y() (G =1,2...)

J
Denote ¢; = (0,...,0,1,0,...), j = 1,2,... . By (ii), for any ¢ > 0, there exists
Jo such that
. , €
| Y 6l ~ -, < 57

J>jo
For m, n large enough, we have

N

Jo
v — ym|| 5 < HZ(yn( — ym(j) eJH +H > (wnd) — ym())e JH
=

J>Jjo

€j

<4 3 [Held _ p=tet)

N

. % n %H > () = p-(())e;

<e,
N

i.e. {yn} is a Cauchy sequence in V. Hence, V x is compact d

For the Orlicz sequence space [ (M) the conditions for the near smoothness and
smoothness are different.
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Corollary 3. [y is nearly smooth iff: (i) M € Ag;
(ii)
— NOp(w) ~p ()
u—0 M(u)

< oo forany > 1.

Proor: Sufficiency. For z € S(I(y)), from M € Ag we know that Qp/(z) =0 <
1. For any A > 0, by condition (ii), oy (A(p(z) —p—(x))) < co. Thus, QN (w) = 0.
Hence, by Theorem 3, we deduce that = is a nearly smooth point.

Necessity. If (i) is not true, there exists x € S(l(57)) with @n(z) = 1. By
Theorem 3, z is not a nearly smooth point. If (ii) is not true, there exists A > 1 and
a sequence {up} with u, | 0 and N(A(p(un) — p—(un))) > 2" LM (uy,). Without
loss of generality, we can assume that M (up) < ﬁ Take a sequence {my}
with 2n—1+f < mpM(up) < o and ug > 0 with M (ug) + 320 mpM(up) = 1.
Put

mi mo

——
T=(UQ, UL, UL, Uy« oy UD, ... .

Then ops(x) =1 and [|z([(57) = 1. On the other hand,

N(Aw) = Z mnN(A(p(un) — p—(un))) = Z mn2n+1M(un) = 0.
n=1

n=1

This implies that Qyn(w) > % > 0. By Theorem 3, z is not a nearly smooth
point. (I

Theorem 4. x € S(ljy) is a nearly smooth point iff: (i) on(p—(kz)) =1 or (ii)
Qur(kx) < 1 and pon(p(kx)) = 1 or (iil) Qp(kx) < 1 and Qn(w) = 0, where
ke Ky (x) and w = (p(klz(1)]) — p—(klx(1)]), p(k[x(2)]) — p-(k|z(2)]),...).
Proor: Sufficiency. It is enough to deal with the following three cases:

(@) on(p—(kz)) = 1;

(D) Qu(kx) <1, on(p(kz)) = 1;

(III) Qpr(kx) <1 and Qn(w) = 0.

For (I) or (II), in view of Theorem 2.55 in [5], = is a smooth point and also a
nearly smooth point. For case (III), we can proceed analogously as in the proof
of the sufficiency of Theorem 3.

Necessity. If ony(p—(kz)) < 1 and Qpr(kx) = 1, repeating the proof of the
necessity of the first case in Theorem 2, we get a contradiction. So, if the condition
in theorem were not necessary, then

on(p—(kz)) <1, Qu(kz) <1, Qn(w) >0 >0 and on(p(kr)) # 1.

But Q(kz) < 1= Vg C (), hence on(p(kz)) > 1. Suppose, without loss of
generality, that z(j) > 0 (j = 1,2,...). In view of the fact that Qps(kz) < 1 =

729
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~N(p(kz)) < oo, we can take jj,jj > 0 such that

on (p— (k) + 3555 N(p(ka()) < 1, X230, N(p(ka())) > 1. Denoting jo =
max{j{, j }, we have

(k|z(5) —i—ZN 7)) >1,

J>jo

Jo

> N
j=1

Jjo

> N( + Y N(p(ka(5)) <1

Jj=1 J>jo

By Qn(w) > eg, we can find a sequence {jn} 1 oo with j; > jg, satisfying

jn+1

| > wle ™

J=jn+1

>ep (n=1,2,...).

Define {yn} by:
yn(4) = p(kx(5)) (n <J < jnt1), yn(d) = p—(kx(4)) (o <J < jn orj > jnt1)
and p—(kz(j)) < yn(j) < p(kx(j)) (1 <j < jo), such that on(yn) = 1, n =

1,2,... . Then obviously {yn} C V5. For m #n, m,n=1,2,..., we have
jn+1
lom =l ey = || 5 @haa)) —p- (e ) > <o,
J=jn+1

i.e. {yn} C Vg is not compact. This contradiction completes the proof of the
theorem. ]

Corollary 4. [ is nearly smooth iff: (1) M € Ao;
(i)
— NO@m) -~ p- @)
u—0 up(w)

< oo forany X\ > 0.

ProoOF: Sufficiency. For = € S(lps), M € Ag implies Qps(kz) = 0 < 1 and for
any A > 1, we have, by the assumption,

=Y N\(p(kx(i)) — p—(kx(i)))) < D> klo(i)|p(klx(i)])
= i=1
< D(om(kz) + on (p(kx))) < oo.

Hence Qn(w) = 0. By Theorem 4, we conclude that x is a nearly smooth point.
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Necessity. If M ¢ Ag, it is easy to construct x € S(lps) with on(p(kz)) < 1
and Qps(kz) = 1, where k € Kjs(x). By Theorem 4, x is not a nearly smooth
point.

If (ii) were not true, there would exist A > 1 and uy, | 0 such that

NA@(un) — p—(un))) > 2" upp(uy),

where uy, are the points of discontinuity of p(u). Without loss of generality, we
can assume that

1
Unp(un) < ontl -
Take {my} with ﬁ < Mpunp(up) < 2%, n=1,2,... . Then

o0 [ee]
ZmnM(un) <1, ZmnN(P(“n)) <Ll
i=1 i=1

Denote

wo = Sup {5 > 0: N(p(s)) + miN(p—(u1) + 3 mnN (p(un) < 1},
n>2

k =1+ M(ug) + imnM(un%

i=1
m1 mo
_1 P
ZC—E UQy ULy e e ey ULy ULy e v vy ULy--- |-

Noticing that on(p—(kx)) < 1, on(p(kx)) > 1, we have k € Ky (). So

lelar = +(1+ ear(he)) = 1.

On the other hand,

NOW) > ma NAp(un) = pun))) > Y mn2" M unp(un) = oo,
n>2 n>2

ie. Qn(w) > % > 0. By Theorem 4, z is not a nearly smooth point. ([l
Remark. If M € Ay, then there exists D > 0 such that
M (u) < up(u) < DM (u).

So, the conditions of Corollary 3 and Corollary 4 are equivalent. This shows
that the near smoothness of I(,) and ljs are equivalent. But recall that the

smoothness of () and lps are not equivalent (see [5] and [7]).
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