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A new look at pointfree metrization theorems

B. Banaschewski, A. Pultr∗

In memory of Miroslav Katětov

Abstract. We present a unified treatment of pointfree metrization theorems based on
an analysis of special properties of bases. It essentially covers all the facts concerning
metrization from Engelking [1] which make pointfree sense. With one exception, where
the generalization is shown to be false, all the theorems extend to the general pointfree
context.
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The recognition that the notion of metric diameters in frames provides a point-
free axiomatization of metrics in spaces ([6], [7]) naturally raised the question of
pointfree metrization theorems. The first of these was the pointfree version of the
classical uniform metrization theorem, saying that a frame is metrizable iff it has
a uniformity with a countable basis ([6]). Note that the latter uniformities are
exactly those called metric in Isbell [2] so that this theorem may be viewed as
providing geometric justification for this terminology. Other known results in this
area are the pointfree version of the Moore and the Bing metrization theorems in
[7] and of the Nagata-Smirnov metrization theorem in Isbell [3].
The purpose of this paper is to present a unified treatment of these and one

further result, the pointfree Archangelskij theorem, based on a detailed analysis of
special properties of bases, which leads to entirely new, and we believe especially
transparent and succinct, proofs in all cases. Furthermore, our treatment covers
all metrization theorems presented in Engelking [1] which make pointfree sense
except for the Jones theorem involving the stars of compact subspaces which we
show does not hold in general.
As an additional feature, our treatment reveals two particular aspects of the

Moore theorem which give it much greater significance here than it has in the
classical context. First, while the notion of development may seem somewhat ad
hoc for spaces, its counterpart for frames, that is: admissibility, is an absolutely
essential concept that plays an important role in various different ways, quite
apart from the question of metrizability. Secondly, the Moore theorem has a
central position here in that all the other theorems are, in a sense, derived from
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it. We note that an important tool of recent origin to obtain the Moore theorem
from the original uniform metrization theorem was provided by Kaiser [5].
As a general reference, we use the excellent survey of metrization theorems in

IV.4 and V.4 of Engelking [1].

1. Preliminaries

1.1. A frame (see [4] and [11] for details) is a complete lattice L satisfying the
distribution law

a ∧
∨

S =
∨

{a ∧ s | s ∈ S}

for all a ∈ L and S ⊆ L.
A basis of a frame L is a subset B ⊆ L such that x =

∨
{b ∈ B | b ≤ x} for

each x ∈ L.
The pseudocomplement of an a ∈ L is a∗ =

∨
{x | x ∧ a = 0}, the largest

element b such that b ∧ a = 0. It is easy to see that (
∨

X)∗ =
∧
{x∗ | x ∈ X} for

any X ⊆ L.

1.2. We write a ≺ b if a∗ ∨ b = 1. A frame L is said to be regular if

x =
∨

{y | y ≺ x}

for all x ∈ L. As usual, a ∈ L is called minimal if it is a minimal non-zero
element, that is, an a 6= 0 such that 0 6= b ≤ a implies b = a. The following simple
observation will be useful:

If L is regular and 0 6= a ∈ L is not minimal then a =
∨
{b | b < a}. Conse-

quently, if B is a basis of L, a =
∨
{b | b ∈ B, b < a}.

Proof: Let b 6= 0, b < a. By regularity, there is a c 6= 0 such that b ∨ c∗ = 1.
Thus,

a = a ∧ (b ∨ c∗) = b ∨ (a ∧ c∗).

Now, if a ∧ c∗ were equal to a we would have a ≤ c∗ and c = c ∧ a = 0, a contra-
diction.

�

1.3. A cover of a frame L is a subset A ⊆ L such that
∨

A = 1. If A, B are
covers we say that A refines B, and write

A ≤ B,

if, for each a ∈ A, there is a b ∈ B such that a ≤ b.
We set

A ∧ B = {a ∧ b | a ∈ A, b ∈ B}

which is obviously a common refinement of A and B.
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For a cover A of L and x ∈ L we put

Ax =
∨

{a | a ∈ A, a ∧ x 6= 0},

and for covers A and B,
AB = {Ab | b ∈ B}.

We say that A star-refines B, and write

A ≤∗ B

if AA ≤ B.

1.4. For a system A of covers of a frame L (always understood to be non-void)
we write

x ⊳A y or simply x ⊳ y

if there is an A ∈ A such that Ax ≤ y, and A is called admissible if

x =
∨

{y | y ⊳A x}

for each x ∈ L. Note that x ⊳A y implies x ≺ y for any A and hence

any frame with an admissible system of covers is regular.

Obviously

(1.4.1) if B is a system of covers such that for each A ∈ A there is a B ∈ B with

B ≤ A then x ⊳A y implies x ⊳B y; consequently, if A is admissible then

so is B.

Further we have

(1.4.2) if B is an admissible system of covers then
⋃

B is a basis,

since, for any x ∈ L,

x =
∨

{b | b ∈ B ∈ B such that By ≤ x and b ∧ y 6= 0 for some y}.

An admissible system of covers is called a uniformity if

(1) for any A, B ∈ A there is a common refinement C ∈ A,
(2) for each A ∈ A there is a star refinement B ∈ A, and
(3) for any cover B, if A ≤ B for some A ∈ A then B ∈ A.

Further, A is called a basis of uniformity whenever (1) and (2) hold.

1.5. The set of all non-negative reals augmented by +∞ will be denoted by

R+.

A metric diameter on a frame L is a monotone zero-preserving map

d : L → R+
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such that

(1) for all a, b, d(a ∨ b) ≤ d(a) + d(b) whenever a ∧ b 6= 0,
(2) for each ε ≥ 0, A(d, ε) = {a | d(a) < ε} is a cover,
(3) the system {A(d, ε) | ε > 0} is admissible, and
(4) for all a ∈ L and ε > 0, d(a) = sup{d(x ∨ y) | x, y ≤ a, d(x), d(y) < ε}.

A frame that admits a metric diameter is said to be metrizable. It should be
noted that this provides a pointfree expression of the metrizability of spaces: a
space is metrizable in the classical sense iff its frame of open sets is metrizable,
where the passage from a metric ρ to a metric diameter d is provided by the usual
diameter

d(U) = sup{ρ(p, q) | p, q ∈ U}.

(see, e.g., [7], [8]).

1.6. In [6] the following characterization of metrizability was proved:

Theorem. A frame L is metrizable iff it admits a countable basis of uniformity.

Clearly, this extends the classical uniform metrization theorem for spaces to
frames. It should be added that, by Isbell’s definition in [2], a frame is called
metrizable whenever it has a uniformity with a countable basis. Thus, this theo-
rem confirms that this terminology indeed carries the correct geometric connota-
tion.

2. Additional background

2.1. We say that elements a, b of a frame L meet if a ∧ b 6= 0. A subset X of a
frame L is called locally finite respectively discrete if there is a coverW of L such
that

each w ∈ W meets only finitely many x ∈ X ,

respectively
each w ∈ W meets at most one x ∈ X .

The cover W is said to witness the local finiteness respectively discreteness of X .
A countable union of locally finite (discrete) subsets of L is called σ-locally

finite (σ-discrete).

2.2 Lemma. If X ⊆ L is locally finite and x ≺ a for each x ∈ X , then
∨

X ≺ a.

Proof: Let W be a witnessing cover. For any w ∈ W let x1, · · · , xn be all the
elements of X met by w, and Y = X r {x1, · · · , xn}. Then w ∧

∨
Y = 0, hence

w ≤ (
∨

Y )∗ and we have

(
∨

X)∗ ∨ a = ((
∨

Y )∗ ∧ (

n∧

j=1

xj)
∗) ∨ a ≥

≥ (w ∨ a) ∧ (

n∧

j=1

(x∗j ∨ a)) = w ∨ a ≥ w.
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As W is a cover this shows that (
∨

X)∗ ∨ a = 1, that is,
∨

X ≺ a. �

2.3. A regular frame L is said to be paracompact if each cover has a locally finite
refinement. As in the classical case of spaces,

the following are equivalent for a regular frame L :

(P1) L is paracompact,
(P2) each cover of L has a σ-discrete refinement,
(P3) each cover of L has a star-refinement.

(See [10], [9].)

2.4. In [7] was proved that

- a frame L is metrizable iff it has a countable admissible system of covers,
and
- any frame with a countable admissible system of covers is paracompact.

Recently T. Kaiser ([5]) found a remarkable formula from which these two facts
follow immediately:

Denote by y 7→ y/C the right adjoint to x 7→ Cx, that is, Cx ≤ y iff x ≤ y/C.
If C is a countable admissible system of covers and A any cover then

B = {c | ∃C ∈ C ∃a ∈ A such that c ∈ C and c ∧ (a/(C(CC))) 6= 0}

is a cover which star-refines A.

3. Some properties of bases

3.1. Besides the standard notions of a σ-locally finite and σ-discrete basis we
will use a straightforward pointfree counterpart of a regular basis, and two others,
connected with admissibility.
A basis of a frame L is said to be regular if there are, for each 0 6= a ∈ L,

subsets C(a) ⊆ L such that

(R1)
∨

C(a) = a, and
(R2) for each c ∈ C(a), the set {b ∈ B | b ∧ c 6= 0 and b � a} is finite.

A basis of a frame L is said to be σ-admissible if it can be written as
⋃

∞

n=1Bn

where {Bn | n = 1, 2, · · · } is an admissible system of covers. It is said to be
σ-stratified if, moreover,

(S1) each Bn is locally finite, and
(S2) Bn ≤∗ Bn−1 for each n ≥ 2.

3.2 Observation. If L has a σ-admissible basis then

(1) each basis of L is σ-admissible,
(2) L has a σ-discrete basis, and
(3) L has a σ-stratified basis.



172 B.Banaschewski, A.Pultr

Indeed, let {An} be admissible. If B is any basis we can put B1 = B, Bn+1 =
{b ∈ B | b ≤ a for an a ∈ An} and since {Bn} is admissible by (1.4.1), we have (1).
Now as L is paracompact by 2.4, there first are σ-discrete refinements Bn of An

and we have a σ-discrete basis B =
⋃

Bn by (1.4.1) and (1.4.2). Secondly, each
cover C has a locally finite star-refinement Cs; putting, inductively, B1 = As

1,
Bn+1 = (An ∧ Bn)

s we obtain a σ-stratified B =
⋃

Bn.

3.3 Lemma. Every σ-stratified basis is regular.

Proof: Let B =
⋃

Bn satisfy (S1) and (S2). Let the local finiteness of Bn be
witnessed by Wn. Obviously, Wn can be chosen so that

Wn ≤ Bn and W1 ≥ W2 ≥ W3 ≥ · · ·

and then the Wn witness the local finiteness for each Bk with k ≤ n. For a ∈ L
put

C(a) = {w | ∃n, w ∈ Wn and Bnw ≤ a}.

Since {Bn | n = 1, 2, · · · } is admissible, to prove that
∨

C(a) = a it suffices to
show that

∨
C(a) ≥ x for any x ⊳ a. Let Bn−1x ≤ a and let w ∈ Wn meet x.

Choose b ∈ Bn such that w ≤ b (recall that Wn ≤ Bn), and a b′ ∈ Bn−1 such
that Bnb ≤ b′. Then b′ ∧ x 6= 0, hence Bnw ≤ Bnb ≤ b′ ≤ a, therefore w ∈ C(a)
and we see that x ≤ Wnx ≤ a.
Take any w ∈ C(a), say, w ∈ Wn with Bnw ≤ a, and put

F = {b | ∃k < n such that b ∈ Bk and b ∧ w 6= 0}.

By (S1) and the choice of Wj , F is finite. Now let b ∈ B be such that b ∧ w 6= 0
and b � a. Let b ∈ Bk. For c ∈ Bj with j ≥ n and c ∧ w 6= 0 one has
c ≤ Bjw ≤ Bnw ≤ a; thus, k < n. As b ∧w 6= 0 we have b ∈ F and hence the set
from (R2) is a subset of F . �

3.4 Lemma. In a regular frame L, every regular basis is σ-locally finite.

Proof: Let B be a regular basis of L with associated subsets C(a) ⊆ L as in
3.1. Then B ∩ {x | x ≥ a} is finite for any a 6= 0 since each c ∈ C(a) meets every
member of this set, and we let ν(a) be the length of the largest chain in this.
Obviously ν(c) < ν(a) whenever 0 < a < c.
Now define

Bn = {b ∈ B | ν(b) = n, or b is minimal and ν(b) ≤ n}

and
Wn =

⋃
{C(b) | b ∈ Bn}.

We first show by induction that each Bn is a cover. This is obvious for n = 1
since

∨
B = 1 and for any b ∈ B there exist c ≥ b in B such that ν(c) = 1. Now

consider any Bn which is a cover, and a b ∈ Bn. By 1.2,

b =
∨

{c ∈ B | c < b}
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for each non-minimal b ∈ B, and hence ν(c) > ν(b) = n for all the c that occur.
Further, replacing these c by c ∈ B such that c ≤ c and ν(c) = n+ 1 we obtain

b ≤
∨

{c | c ∈ B, c < b}

and hence Bn+1 is a cover.
As a result the same holds for Wn. We now show that Bn is locally finite

witnessed by Wn. For any c ∈ Wn let b ∈ Bn be such that c ∧ b 6= 0. Now,
c ∈ C(d) for some d ∈ Bn. We cannot have b < d; this is excluded in the case of
minimal d, and if d is not minimal, ν(d) = n and ν(b) for b < d is greater than n.
Thus, b = d or b � d, and as c ∧ b 6= 0, there are only finitely many such b ∈ B.

�

3.5 Lemma. In a regular frame L, any σ-locally finite basis is σ-admissible.

Proof: Let B =
⋃

∞

n=1Bn be a basis with locally finite Bn witnessed by Wn.
Then, for each x ∈ L and n, put

xn =
∨

{b ∈ Bn | b ≺ x} (≺ x by 2.2)

and for each w ∈ Wn and k,

{b(w, 1), b(w, 2) · · · , b(w, lw)} = {b ∈ Bn | w ∧ b 6= 0}

and
Sk(w) = {b(w, 1), (b(w, 1)k)

∗} ∧ · · · ∧ {b(w, lw), (b(w, lw)k)
∗}.

Let A be the set of covers

Ank = {w ∧ s | w ∈ Wn, s ∈ Sk(w)}, n, k = 1, 2, . . . .

We claim that Ankbk ≤ b for any b ∈ Bn: if w ∧ s ∧ bk 6= 0 for w ∈ Wn and
s ∈ Sk(w) then also w ∧ b 6= 0, hence b = b(w, i) for some i, and since s ∧ bk 6= 0
this implies s ≤ b, showing that w ∧ s ≤ b. Now, x =

∨
xk by regularity, and

since bk ⊳A b as shown, A is admissible. Use 3.2. �

3.6. Combining Lemmas 3.3, 3.4 and 3.5 with the observation 3.2 we obtain

Theorem. The following statements are equivalent for a regular frame L :

(1) L has a σ-discrete basis,
(2) L has a σ-locally finite basis,
(3) L has a regular basis,
(4) L has a σ-admissible basis,
(5) L has a σ-stratified basis.

Note. The relations between these conditions are, of course, not quite symmetric:
σ-admissibility is shared by all bases, if one is such; in some cases, a property P
of a basis implies Q for the same basis; in others, the existence of a basis with
property P implies the existence of another basis with property Q.



174 B.Banaschewski, A.Pultr

4. Metrization theorems

4.1. By 1.6, any result which asserts the existence of a countable basis of uni-
formity for a certain class of frames is rightly considered a metrization theorem.
In this section we describe a number of these, indicating how they follow from
the basic Theorem 3.6. We note that, whenever the result in question is already
known, the proof presented here is fundamentally different from the original one.

4.2. We identify metrization theorems by the author(s) of the corresponding
classical result. Thus we have:

A regular frame is metrizable iff it has

(M1) a countable admissible system of covers (Moore),
(M2) a σ-locally finite basis (Nagata-Smirnov),
(M3) a σ-discrete basis (Bing),
(M4) a regular basis (Archangelskij).

The way these result from 3.6 is clear, given that the existence of a countable
basis of uniformity is obviously equivalent to the existence of a σ-stratified basis.
(M1) and (M3) were originally proved in [7], but with substantially more involved
and unnecessarily circuitous proofs, and (M2) was established in Isbell [3] by
arguing that, after some preparatory observations, the classical proofs generalize
because they really deal with bases rather than with neighbourhoods of points.
(M4) appears here for the first time.

4.3. It may be worth adding that (M3) immediately yields the generalization of
Urysohn’s original metrization theorem that

any regular frame with a countable basis is metrizable

and consequently its compact variant that

a compact regular frame is metrizable iff it has a countable basis.

The latter, of course, is not a proper extension of the classical result if the
Axiom of Choice is assumed because then all compact regular frames are spatial.
On the other hand, (M1) also yields metrization theorems between Moore and

the uniform one, notably the early result of Alexandroff-Urysohn (1923) concern-
ing, in our terminology, countable admissible systems {An} such that for any
a, b ∈ An, if a ∧ b 6= 0 then there exist c ≥ a ∨ b in An−1.

4.4. When considering the excellent survey in Engelking’s book [1], we can ob-
serve that the theorems in 4.2 cover all except one of the cases mentioned there
that are relevant in the pointfree context. The others are either point modi-
fications of the Moore metrization theorem (Bing 1951) and the Archangelskij
metrization theorem (Alexandroff 1960), or criteria concerning neighbourhood
systems of points (Frink 1937, Morita 1955, Nagata 1957) or cases (regular com-
pact, Čech complete) which do not allow for a pointfree extension since the frames
concerned are necessarily spatial (Šnejder 1945, Nagata 1950, Katětov 1948).
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The exceptional case is the Jones metrization theorem (1958) stating that

a Hausdorff space is metrizable iff there is a sequence V1,V2, · · · of open
covers such that for each compact Z ⊆ X and each open U ⊇ Z one has
St(Z,Vk) ⊆ U for some k,

which fails in the general case even though it makes perfectly good pointfree sense:
any non-metrizable Boolean frame without atoms does not have any compact
sublocales and hence satisfies the condition vacuously.

Acknowledgment. Thanks go to the referee for several helpful comments and
for alerting us to the proof of the general Nagata-Smirnov theorem in Isbell [3].
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