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Singlevaluedness of monotone

operators on subspaces of GSG spaces

Martin Heisler

Abstract. We extend Zaj́ıček’s theorem from [Za] about points of singlevaluedness of
monotone operators on Asplund spaces. Namely we prove that every monotone operator
on a subspace of a Banach space containing densely a continuous image of an Asplund
space (these spaces are called GSG spaces) is singlevalued on the whole space except a
σ-cone supported set.
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1. Introduction

In the sequel we consider only real Banach spaces. We denote by BX the
closed unit ball of the space X and by B (x, ε) the open ball centered in x
with radius ε. To shorten the notation we often write only sup 〈A, B〉 instead
of sup {〈a, b〉 : a ∈ A, b ∈ B}.
A Banach space E is called Asplund if every continuous convex function on an

open convex subset G ⊂ E is Fréchet differentiable on a dense Gδ-subset of G.
For more properties of Asplund spaces and convex functions, see e.g. [Ph].
A Banach space E is called a GSG space, if there exist an Asplund space V

and a continuous linear mapping T : V → E such that T (V ) is dense in E. These
spaces were introduced and studied by Stegall [St], see also [Fa, Sections 1.3, 1.4,
1.5].
Let E be a Banach space. A multivalued mapping T : E → E∗ is called a

monotone operator if for every x, y ∈ E, x∗ ∈ Tx, and y∗ ∈ Ty

〈

x∗ − y∗, x − y
〉

≥ 0.

According to [Za], we introduce the following notions of “small” sets. Let E
be a Banach space. If e ∈ E, ‖e‖ = 1, and 0 < c < 1, define

A(e, c) = {x ∈ E : x = λe+ w, λ > 0, ‖w‖ < cλ} =
⋃

λ>0

λB(e, c).
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Definition. A set M ⊂ E is said to be cone supported at x ∈ M if there exist
R > 0, e ∈ X , ‖e‖ = 1, and 0 < c < 1 such that

M ∩ B(x, R) ∩ (x+A(e, c)) = ∅.

A subset of E is said to be cone supported if it is cone supported at all its points.
A set is σ-cone supported if it can be written as a union of countably many cone
supported sets.

In [Za], Zaj́ıček proved the following theorem:

Theorem 1.1. Let E be an Asplund space and let T : E → E∗ be a locally

bounded monotone operator with a domain D(T ) = {x ∈ E : Tx 6= ∅}. Then
there exists a σ-cone supported set D ⊂ D(T ) such that T is singlevalued at each
point of D(T ) \ D.

We shall extend this result to the class of subspaces of GSG spaces. The proof
is more transparent, when we divide it into two steps. In the first step we define
a special property, countable dentability, and we prove that all subspaces of GSG
spaces have this property. In the second step we prove that Zaj́ıček’s theorem is
valid for all Banach spaces with this property.
Since a σ-cone supported set is of first category, our result is a strengthening

of a theorem of Christensen and Kenderov [CK].
Unfortunately we do not know, whether the countable dentability is a charac-

terization of subspaces of GSG spaces or not. We only know that the countable
dentability implies fragmentability of the dual space.

2. Countable dentability

Definition. Let X be a Banach space. Let A ⊂ X and A∗ ⊂ X∗ be bounded
sets, and let ε > 0. We say that (A, A∗) is an ε-denting pair, and we write
(A, A∗) ∈ D(ε), if for every ∅ 6=M ⊂ A∗ there exist x ∈ X and α > 0 such that

sup
〈

S(M, x, α)− S(M, x, α), A
〉

< ε,

where
S(M, x, α) =

{

x∗ ∈ M :
〈

x∗, x
〉

> sup
〈

M, x
〉

− α
}

.

Lemma 2.1. If (A, BX∗) ∈ D (ε), and Y is a subspace of X , then (A ∩ Y, BY ∗) ∈
D (ε).

Proof: Take any ∅ 6=M ⊂ BY ∗ . Without loss of generality we can assume that
M is convex and w*-closed. The mapping Q : X∗ → Y ∗ defined as x∗ 7→ y∗|Y
is linear and w*-to-w* continuous. Therefore the set Q−1(M) ∩ BX∗ is w*-
compact and convex. Moreover, as an easy consequence of Hahn-Banach theorem
we get that Q(Q−1(M) ∩ BX∗) = M . Assume that M is a nonempty linearly



Singlevaluedness of monotone operators 257

ordered system of w*-compact and convex subsets of BX∗ , such that everyN ∈ M
satisfies Q(N) =M . Let N0 =

⋂

M. Clearly N0 is a w*-compact convex set and
Q(N0) ⊂ M . We will show that Q(N0) = M . Take any m ∈ M and define the
systemMm =

{

N ∩ Q−1(m) : N ∈ M
}

of nonempty w*-compact subsets of X∗.
A compactness argument guarantees that the intersection

⋂

Mm is nonempty;
take n ∈

⋂

Mm. Thus n ∈ N0 and Q(n) = m. We have just verified the
assumptions of Zorn lemma. Therefore there exists a minimal convex and w*-
compact set M̃ ⊂ BX∗ , which satisfies the following condition: Q(M̃) = M .
From the assumptions there exist x ∈ X and α > 0 such that

sup
〈

S(M̃, x, α)− S(M̃, x, α), A
〉

< ε.

Define M1 = Q(M̃ \ S(M̃, x, α)); it is a nonempty w*-compact convex set. The

minimality of M̃ gives us that M1 is a proper subset of M and therefore, because
M1 is w*-compact and convex, there exist y ∈ Y and β > 0 such that S(M, y, β)∩
M1 = ∅. Now

sup
〈

S(M, y, β)− S(M, y, β), A ∩ Y
〉

≤ sup
〈

S(M̃, x, α)− S(M̃, x, α), A
〉

< ε.

�

Definition. Let E be a Banach space. We say that E is countably dentable (CD)
if there exists a sequence of bounded sets {An}n∈N

from E with the following
property: for every x ∈ E and every ε > 0 there exists n ∈ N such that x ∈ An

and (An, BE∗) is an ε-denting pair.

An Asplund V space is an easy example of a countably dentable space. Indeed,
take An = n ·BV and use the w*-dentability property of duals to Asplund spaces.

Proposition 2.2. Let E be countably dentable and M be its closed subspace.

Then M is also a countably dentable space.

Proof: Let {An} be the subsets of E from the definition of CD property. Define
Bn = An∩M , for n ∈ N. Fix x ∈ M and ε > 0. We know that there exists n ∈ N

such that x ∈ An and (An, BE∗) ∈ D (ε) and therefore from Lemma 2.1 it follows
that (Bn, BM∗) ∈ D (ε). �

Proposition 2.3. Let E be countably dentable, let X be a Banach space, and
let T : E → X be a linear and continuous mapping such that TE = X . Then X
is a countably dentable space.

Proof: Without loss of generality we may assume that ‖T ‖ ≤ 1. Let {An} be
the subsets of E from the definition of CD property. Define

Bp,n = T (An) +
1

p
BX
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for p, n ∈ N. The sets Bp,n are clearly bounded.

Fix x ∈ X and ε > 0. Let p ∈ N be such that 3p < ε. There exists e ∈ E such

that ‖Te − x‖ < 1
p . Take n ∈ N such that e ∈ An and (An, BE∗) ∈ D

(

1
p

)

. Then

x = (x − Te) + Te ∈
1

p
BX + T (An) = Bp,n.

Now let ∅ 6= M ⊂ BX∗ . Since (An, BE∗) ∈ D
(

1
p

)

, there exist w ∈ E and α > 0

such that

sup
〈

S(T ∗(M), w, α) − S(T ∗(M), w, α), An

〉

<
1

p
.

Then

sup
〈

S(M, Tw, α)− S(M, Tw, α), Bp,n

〉

= sup

〈

S(M, Tw, α)− S(M, Tw, α), T (An) +
1

p
BX

〉

≤ sup
〈

S(M, Tw, α)− S(M, Tw, α), T (An)
〉

+ sup

〈

S(M, Tw, α)− S(M, Tw, α),
1

p
BX

〉

= sup
〈

S(T ∗(M), w, α) − S(T ∗(M), w, α), An

〉

+
1

p
· diamS(M, Tw, α)

≤
1

p
+
2

p
< ε

Thus the space X is countably dentable. �

Corollary 2.4. Every subspace of a GSG space is countably dentable. In par-

ticular, subspaces of WCG spaces are countably dentable.

Proof: We already know that Asplund spaces are CD. Proposition 2.2 and
Proposition 2.3 extend this property to all subspaces of GSG spaces. The second
statement follows immediately from the well-known interpolation theorem [Di,
Chapter 5, Section 4, Theorem 3]. �

3. Singlevaluedness of monotone operators

Lemma 3.1 ([Za, Lemma 2]). Let X be a Banach space and let T : X → X∗ be

a monotone operator. Let H ⊂ {x ∈ X : Tx 6= ∅}, x ∈ H , v ∈ X , ‖v‖ = 1, c ∈ R,

ε > 0, K > 0, x∗ ∈ Tx,

(i) 〈x∗, v〉 > c+ ε, and
(ii) lim

δ→0+
diamT (B(x, δ) ∩ H) < K.
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Then there exists ̺ > 0 such that for every

x̃ ∈ B(x, ̺) ∩ H ∩ (x+A(v, ε/K))

and every x̃∗ ∈ T x̃ the inequality 〈x̃∗, v〉 > c holds.

Lemma 3.2 ([Za, Corollary 1]). Let X be a Banach space. Suppose thatM ⊂ X
is not σ-cone supported. Then there exists ∅ 6= N ⊂ M such that N is cone

supported at no point of N .

Now we are ready to extend Zaj́ıček’s theorem mentioned in the introduction.

Theorem 3.3. Let X be a countably dentable space and let T : X → X∗ be a

monotone operator with a domain D(T ) = {x ∈ X : Tx 6= ∅}. Then there exists
a σ-cone supported set D ⊂ D(T ) such that T is singlevalued at each point of
D(T ) \ D.

Proof: At first assume that Tx is bounded for every x ∈ D(T ). Then we can
write D(T ) as the union of the countable system of sets ∆k = {x ∈ D(T ) :
sup ‖Tx‖ < k}, k ∈ N. It is easy to see that if the statement of our theorem is
true for every T|∆k

it is also true for T . Thus without loss of generality we may

assume that T is globally bounded by some constant K > 0.
Let {An}n∈N

be the system of subsets of X from the definition of CD spaces.
Suppose on the contrary that

D = {x ∈ D(T ) : T is not singlevalued at x}

is not a σ-cone supported set. Define

Dn,m =

{

x ∈ D(T ) : sup
〈

Tx − Tx, An

〉

>
K

m

}

.

Take any x ∈ D. Since T is not singlevalued at x, there exist v ∈ X , ‖v‖ = 1,
and m ∈ N, such that

sup
〈

Tx − Tx, v
〉

>
K

m
.

Now there exists n ∈ N so that v ∈ An and (An, BX∗) ∈ D
(

1
m

)

, and therefore
x ∈ Dn,m. Thus

D =
⋃

{

Dn,m : n, m ∈ N, (An, BX∗) ∈ D

(

1

m

)}

.

Consequently there are m, n ∈ N such that (An, BX∗) is an 1m -denting pair,
and Dn,m is not a σ-cone supported set. By Lemma 3.2 there exists a set ∅ 6= N ⊂
Dn,m, which is cone supported at no point of this set. Moreover T (N) ⊂ K ·BX∗ .



260 M.Heisler

Since (An, BX∗) ∈ D
(

1
m

)

there exist v ∈ X , ‖v‖ = 1, and c > 0 such that the
weak* slice

S =
{

x∗ ∈ T (N) :
〈

x∗, v
〉

> c
}

of T (N) is nonempty and

sup

〈

1

K
S −

1

K
S, An

〉

<
1

m
.

As S 6= ∅, we can choose x ∈ N and x∗ ∈ S ∩ T (x). Choose ε > 0 such that
〈x∗, v〉 > c + ε. Since diamT (N) < 3K, by Lemma 3.1 there exists ̺ > 0
such that for each x̃ ∈ B(x, ̺) ∩ N ∩

(

x+A(v, ε
3K )

)

and each x̃∗ ∈ T x̃ the
inequality 〈x̃∗, v〉 > c holds. Since N is not cone supported at x, the intersection
B(x, ̺) ∩ N ∩

(

x+A(v, ε
3K )

)

is a nonempty set and we can choose x̃ from this
set. Since N ⊂ Dn,m we have

sup
〈

T x̃ − T x̃, An

〉

>
K

m
.

But T x̃ ⊂ S and so

sup
〈

T x̃ − T x̃, An

〉

<
K

m
,

a contradiction.
Assume now that there are some x ∈ D(T ) such that Tx is unbounded. Then

we can construct a monotone operator T̃ in the following way: if the cardinality
of Tx is 0 or 1, let T̃ x = Tx; if the cardinality of Tx is more than 2, define T̃ x
to be equal to arbitrary two points of them. Clearly T̃ is a monotone operator
and every Tx is bounded. Moreover D(T̃ ) = D(T ), and the set where T̃ is not
singlevalued coincides with the set where T is not singlevalued. We already know
that the statement of this theorem is true for T̃ and therefore it is true also for T .

�

Theorem 3.4. Let E be a subspace of a GSG space and let T : E → E∗ be a

monotone operator with a domain D(T ) = {x ∈ E : Tx 6= ∅}. Then there exists
a σ-cone supported set D ⊂ D(T ) such that T is singlevalued at each point of
D(T ) \ D.

Proof: Put together Corollary 2.4 and Theorem 3.3. �
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