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A σ-porous set need not be σ-bilaterally porous

J. Nájares R., L. Zaj́ıček*

Abstract. A closed subset of the real line which is right porous but is not σ-left-porous
is constructed.
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1. Introduction

Let E ⊂ R be a set, and let I be an interval. Then we denote by λ(E, I)
the length of the largest open subinterval of I which does not intersect E . The
right porosity of E at x ∈ R is defined as

p+(E, x) = lim
h→0+

λ
(

E, (x, x+ h)
)

h
.

The left porosity p−(E, x) is defined by the symmetrical way.

We say that:

(i) E is right porous at x if p+(E, x) > 0,
(ii) E is left porous at x if p−(E, x) > 0,
(iii) E is bilaterally porous at x if it is porous both on the right and on the

left at x.

The set E is said to be right (left, bilaterally) porous if it is right (left, bilater-
ally) porous at each of its points and σ-right-porous (σ-left-porous, σ-bilaterally-
porous) if it is a countable union of right (left, bilaterally) porous sets. It is easy
to see that a set is σ-bilaterally porous iff it is bilaterally σ-porous (i.e. it is both
σ-right-porous and σ-left-porous). The main aim of the present article is to prove
the following result.

Theorem. There exists a closed set F ⊂ R which is right porous but is not

σ-left-porous.

We obtain the example slightly modifying the ideas of [F] and [Za 1].
We essentially use Lemma 5 which is a special case of the generalized Foran

lemma [Za 3], which enables us to give a simple proof that our set F is not

*Supported by Research Grant GAUK 363.
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σ-left-porous. Another ingredient of our proof is Proposition, which is analogous
to Proposition 4.4 from [Za 2]. We believe that it can be also of some independent
importance. Note that for symmetrical porosity an analogical proposition does
not hold [E-H-S].

2. Proposition and lemmas

Definition 1. If c > 0 , M ⊂ R and r > 0 are given, then we define

S(c, r, M) =
⋃

{x ⊖ (y − σ, y); y ∈ R, 0 < σ < r, (y − σ, y) ∩ M = ∅},

where c ⊖ (y − σ, y) = (y − cσ, y).

We shall need the following lemmas which are obvious.

Lemma 1. If p+(M, x) ≥ c > 0 , then x ∈
⋂

{S(2c , r, M); r > 0}.

Lemma 2. If c > 1 , x ∈ M and x ∈
⋂

{S(c, r, M); r > 0}, then
p+(M, x) ≥ 1

c .

Proposition. Let A be a σ-right-porous set (σ-left-porous) and c < 1 . Then

there exists a sequence {An}∞n=1 such that A =
∞

∪
n=1

An and p+(An, x) ≥ c

(p−(An, x) ≥ c, respectively) for any n ∈ N and x ∈ An .

Proof: It is sufficient to give the proof for right porosity only. By definition

A =
∞

∪
n=1

Bn where Bn is a right porous set for any n ∈ N . Putting

Bn,k = {x ∈ Bn; p+(Bn, x) ≥ 1
k
} we have that A =

∞

∪
n,k=1,

Bn,k and

p+(Bn,k, x) ≥ 1
k
for any x ∈ Bn,k .

Thus it is sufficient to prove the following statement:

If M ⊂ R, a > 0 and, for each x ∈ M , the inequality p+(M, x) ≥ a holds,

then M =
∞

∪
i=1

Mi , where p+(Mi, y) ≥ c for any y ∈ Mi.

We can suppose a < c < 1, the case a ≥ c being trivial. Choose n ∈ N such
that (1c )

n ≥ 2
a and define Ck = M ∩ ∩

r>0
S(c−k, r, M). By Lemma 1 M = Cn

and therefore M =
n
∪

k=2

(

Ck \ Ck−1

)

∪ C1. By Lemma 2, we have p+(C1, x) ≥ c

for any x ∈ C1.
For k = 2, . . . , n define Tk,m = Ck \ S(c−k+1, m−1, M). Then

∞

∪
m=1

Tk,m = Ck \
∞

∩
m=1

S(c−k+1, m−1, M) = Ck \ Ck−1.

Since Tk,m ⊂ Ck, for each z ∈ Tk,m and r > 0 , there exist y and t such that

0 < t < min(r, m−1), (y−t, y)∩M = ∅ and z ∈ c−k⊖(y−t, y). Put J = c−k+1⊖
(y − t, y). Then z ∈ c−1 ⊖ J and J ∩ Tk,m = ∅, since J ⊂ S(c−k+1, m−1, M).
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Thus, for each z ∈ Tk,m, we have z ∈ ∩
r>0

S(c−1, c−k+1r, Tk,m) and therefore

p+(Tk,m, z) ≥ c by Lemma 2, which proves our statement. �

For the sake of brevity, in the following we shall say that E is V -porous at x
if p−(E, x) > 100

101 . The following lemma is easy to prove.

Lemma 3. Let E ⊂ R, x ∈ R and a natural number p be given such that

x − 10−k or x − 10−(k+1) belongs to E for each natural k > p. Then E is not
V -porous at x.

The following lemma is an immediate consequence of Proposition.

Lemma 4. A set E ⊂ R is σ-left-porous iff it is σ-V -porous.

Definition 2. We say that F ⊂ exp R is a non-σ-V -porosity family if the fol-
lowing conditions hold:

(a) F is a nonempty family of nonempty closed sets,
(b) for each F ∈ F and each open set G ⊂ R with F ∩ G 6= ∅, there exists

F ∗ ∈ F such that ∅ 6= F ∗ ∩ G ⊂ F ∩ G and F is V -porous at no point
of F ∗ ∩ G.

We shall need the following lemma which is a special case of [Za 3, Lemma 4.3].

Lemma 5. Let F be a non-σ-V -porosity family. Then no set from F is σ-V -
porous.

3. Proof of theorem

Our theorem stated in Introduction immediately follows from Lemma 7 and
Lemma 8 below. To formulate them, we need some notions.

Definition 3. Let x ∈ (0, 1). As usual, we write x = 0, a1a2... if x =
∑

∞

i=1 ai10
−i

and ai ∈ {0, 1, ..., 9}. The uniqueness of the expansion is obtained using termi-
nating 0’s whenever x has two expansions. Let a ∈ {0, 1, ..., 9} be a digit. The
density and the upper density of a in the expansion of x are defined as

d(a, x) = lim
n→∞

#{k; 1 ≤ k ≤ n, ak(x) = a}

n
,

d̄(a, x) = lim
n→∞

#{k; 1 ≤ k ≤ n, ak(x) = a}

n
.

The following easy fact is well known and easy to prove.

Lemma 6. The function x 7→ d̄(a, x) is Borel measurable on (0, 1).

Definition 4. For a natural n and x ∈ (0, 1) put

c(x, n) = #{k; n2 < k ≤ (n+ 1)2, ak(x) = 9} and

e(x, n) = #{k; n2 < k ≤ (n+ 1)2, ak(x) 6= 9}
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Let a natural number N , ε > 0, 1 > α > 0 and digits a1, . . . , aN2 ∈
{0, 1, ..., 9} be given. Then we define the set A(α, a1, ..., aN2 , ε) as the set of
all x ∈ (0, 1) for which

a1(x) = a1, ..., aN2(x) = aN2 and(1)

1−
ε

nα
≤

c(x, n)

2n+ 1
< 1 whenever n ≥ N(2)

Lemma 7. Let 0 < α < 1 , ε > 0 and digits a1, . . . , aN2 ∈ {0, 1, ..., 9} such that

(3) N > max[(1 + ε)
1

α , ε
1

α−1 ]

be given.

Then A(α, a1, ..., aN2 , ε) is a closed set which is not σ-left-porous.

Proof: Obviously (2) implies that

(4) e(x, n) 6= 0 whenever n ≥ N and x ∈ A(α, a1, ..., aN2 , ε).

Now suppose that xn ∈ A(α, a1, ..., aN2 , ε) and xn → x. On account of (4) we
easily obtain that

(a1(xn), a2(xn), ... )→ (a1(x), a2(x), ... )

in the space N
N and consequently x ∈ A(α, a1, ..., aN2 , ε). Thus we have that

A(α, a1, ..., aN2 , ε) is closed.

The condition (2) is equivalent to

c(x, n) ∈
[

(1−
ε

nα
)(2n+ 1), 2n+ 1

)

:= In for n ≥ N.

If n ≥ N , we have by (3)

(1−
ε

nα
)(2n+ 1) > (1−

ε

1 + ε
)(2(1 + ε)

1

α ) > 2 and

(2n+ 1)− (1−
ε

nα
)(2n+ 1) =

ε

nα
(2n+ 1) > 2εn1−α > 2.

Thus we have In ⊂ (2, 2n + 1) and length (In) > 2 for n ≥ N ; consequently
A(α, a1, ..., aN2 , ε) 6= ∅ and c(x, n) > 2 whenever x ∈ A(α, a1, ..., aN2 , ε) and
n ≥ N .

Now let F denote the family of all sets of the form A(α, a1, ..., aN2 , ε) for
which (3) holds. By Lemma 4 and Lemma 5 it is sufficient to prove that F is
a non-σ-V -porosity family. To this end suppose that F = A(α, a1, ..., aN2 , ε) ∈ F
and an open set G ⊂ R such that F ∩ G 6= ∅ are given.
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Choose an arbitrary y ∈ F ∩ G and find a natural M so large that

M > N, M > (
ε

2
)
1

α−1 and(5)

F ∗ := A(α, a1, ..., aN2 , aN2+1(y), ..., aM2(y),
1

2
ε) ⊂ G.

Clearly F ∗ ⊂ F . On account of (3) and (5) we have

M > max
(

(1 +
ε

2
)
1

α , (
ε

2
)
1

α−1

)

and therefore F ∗ ∈ F . Thus it is sufficient to prove that F is V -porous at no
point z ∈ F ∗ . To prove this, fix an arbitrary z ∈ F ∗ and consider an arbitrary
natural k > (M + 1)2 . By Lemma 3 it is sufficient to prove that at least one of

the points z−
k
= z − 10−k , z−

k+1 = z − 10−(k+1) belongs to F . It is easy to see

that

(6) c(z, n)− 1 ≤ c(z−
k

, n) and c(z, n)− 1 ≤ c(z−
k+1, n), for each n.

Since z ∈ F ∗ , we have c(z, M) > 0 (we know even c(z, M) > 2) and therefore

(7) as(z) = as(z
−

k
) = as(z

−

k+1) for s ≤ M2.

Now suppose that x ∈ {z−
k

, z−
k+1}. Then (7) says that

as(x) = as(z) for s ≤ M2.

For n ≥ M the definition of F ∗, (6) and (5) yield

c(x, n)

2n+ 1
≥

c(z, n)− 1

2n+ 1
≥ 1−

ε

2nα
−

1

2n+ 1
> 1−

ε

nα
.

Thus it is sufficient to establish that, for x = z−
k
or x = z−

k+1 ,

(8) e(x, n) 6= 0, for each n ≥ M.

To this end suppose that

e(z−
k

, n) = 0 for some n ≥ M.

Since c(z, n) 6= 0, this condition easily implies that

k = n2 + i where i ∈ {1, ..., 2n},

an2+1(z) = 0, ..., an2+i(z) = 0 and

an2+i+1(z) = 9, ..., a(n+1)2(z) = 9.

Consequently it is easy to see that (8) holds for x = z−
k+1. �



702 Najáres J.R., Zaj́ıček L.

Lemma 8. If 12 < α < 1 , then the set A(α, a1, ..., aN2 , ε) from Lemma 7 is right
porous.

Proof: Choose an arbitrary x ∈ A(α, a1, ..., aN2 , ε).
For each natural n , let mn be the maximum of those natural i, for which there

exist natural numbers u, v such that

(9) n2 ≤ u < v ≤ (n+ 1)2 , as(x) = 9 for each u < s ≤ v

and v − u = i. It is easy to see that

2n+ 1− e(x, n) = c(x, n) ≤ mn(e(x, n) + 1) and consequently

mn ≥
2n+ 1− e(x, n)

e(x, n) + 1
.(10)

On account of (2) we have that

e(x, n) ≤
ε(2n+ 1)

nα
for n ≥ N

and therefore (10) implies that there exists c > 0 and a natural n0 such that

(11) mn ≥ cnα for all n ≥ n0.

Now, for each n, choose un, vn such that

vn − un = mn and (9) holds for u = un, v = vn.

Put
yn = x+ 10−vn and zn = x+ 10−vn+1.

It is easy to see that, for each t ∈ (yn, zn), we have

as(t) = 0, for each un < s ≤ vn − 1

and therefore

(12) c(t, n) ≤ 2n+ 1− (mn − 1).

If n is so big that n > n0, n > N and 2n+2− cnα < (2n+ 1)(1− ε
nα ), we have

by (12) and (11)

c(t, n) ≤ 2n+ 2− cnα < (2n+ 1)(1−
ε

nα
).

Thus we obtain by (2) that t /∈ A(α, a1, ..., aN2 , ε). Consequently

p+
(

A(α, a1, ..., aN2 , ε), x
)

≥ lim
n→∞

10−(vn−1) − 10−vn

10−vn+1
=
9

10
.
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